Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(3): 2468-2479, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38534772

RESUMEN

Epigenetic modifications, including aberrant DNA methylation occurring at the promoters of oncogenes and oncosuppressor genes and histone modifications, can contribute to carcinogenesis. Aberrant methylation mediated by histone methylatransferases, alongside histones, can affect methylation of proteins involved in the regulation of pro-survival pathways such as JAK/STAT and contribute to their activation. In this study, we used DNA or histone demethylating agents, 5-Azacytidine (5-AZA) or DS-3201 (valemetostat), respectively, to treat primary effusion lymphoma (PEL) cells, alone or in combination with AG490, a Signal transducer and activator of transcription 3 (STAT3) inhibitor. Cell viability was investigated by trypan blue assay and FACS analysis. The molecular changes induced by 5-AZA and/or AG490 treatments were investigated by Western blot analysis, while cytokine release by PEL cells treated by these drugs was evaluated by Luminex. Statistical analyses were performed with Graphpad Prism® software (version 9) and analyzed by Student's t test or a nonparametric one-way ANOVA test. The results obtained in this study suggest that 5-AZA upregulated molecules that inhibit STAT3 tyrosine phosphorylation, namely Suppressor of Cytokine Signaling 3 (SOCS3) and tyrosine-protein phosphatase non-receptor type (PTPN) 6/Src homology region 2 domain-containing phosphatase-1 (SHP-1), reducing STAT3 activation and downregulating several STAT3 pro-survival targets in PEL cells. As this lymphoma is highly dependent on the constitutive activation of STAT3, 5-AZA impaired PEL cell survival, and when used in combination with AG490 JAK2/STAT3 inhibitor, it potentiated its cytotoxic effect. Differently from 5-AZA, the inhibition of the EZH1/2 histone methyltransferase by DS-3201, reported to contribute to STAT3 activation in other cancers, slightly affected STAT3 phosphorylation or survival in PEL cells, either alone or in combination with AG490. This study suggests that 5-AZA, by upregulating the expression level of SOCS3 and PTPN6/SHP1, reduced STAT3 activation and improved the outcome of treatment targeting this transcription factor in PEL cells.

2.
Hematol Oncol ; 42(1): e3232, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37793012

RESUMEN

Recurrence following allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the major cause of treatment failure in patients with myeloid malignancy. Azacytidine (AZA) maintenance is a promising therapy to prevent relapse and improve survival. We conducted a prospective, one-arm study involving 78 patients with myeloid malignancy at a high risk of recurrence who were enrolled between September 2019 and April 2022. Furthermore, 102 matched historical controls were selected using propensity score matching. With a median follow-up time of 19.6 (3.5-91.7) months, AZA maintenance therapy significantly improved relapse-free survival (RFS; log-rank test, p = 0.01). The AZA and control groups had a 1-year RFS of 87.7% (95% confidence interval [CI], 0.80-0.96) and 72.2% (95% CI, 0.64-0.82), respectively, with a hazard ratio (HR) of 0.21 (95% CI, 0.09-0. 47; p < 0.01). There were no grade 4 adverse effects or deaths related to AZA. Refractory patients with favorable/intermediate-risk acute myeloid leukemia (AML) benefited more from AZA maintenance therapy than those with adverse-risk AML according to the European Leukemia Net guidelines (RFS in favorable/intermediate-risk AML, HR = 0.29, 95% CI, 0.11-0.79; RFS in adverse-risk AML, HR = 0.57, 95% CI, 0.21-1.6; p for interaction = 0.03). Our findings suggest that AZA maintenance therapy following allo-HSCT was safe and could reduce the incidence of relapse, particularly for refractory patients with favorable/intermediate-risk AML.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Azacitidina/uso terapéutico , Estudios Prospectivos , Trasplante Homólogo , Leucemia Mieloide Aguda/tratamiento farmacológico , Enfermedad Crónica , Recurrencia , Estudios Retrospectivos
3.
Ann Hematol ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096371

RESUMEN

Combined therapy with venetoclax and hypomethylating agents has significantly improved the outcome of unfit patients ineligible for intensive chemotherapy. A recently published exploratory analysis of the VIALE-A trial reported that up to 51% of patients achieving remission survived more than 2 years. These data along with those from reallife settings, lead to questioning how long it is appropriate to continue treatment in long-term survivors. Accordingly, recent retrospective studies suggested the feasibility of suspending therapy in selected patients while maintaining prolonged responses. Also, these studies showed that retreatment may induce a second remission in almost a third of patients. We report the case of a patient who received salvage therapy with venetoclax and azacytidine, that was discontinued few cycles after blasts clearance because of severe hematological toxicity. Despite suspension, he maintained a sustained response lasting almost one year and was successfully retreated with the same combination when a second relapse occurred.

4.
Plant Cell Rep ; 43(5): 122, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642121

RESUMEN

KEY MESSAGE: Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.


Asunto(s)
Lagerstroemia , Transcriptoma , Triterpenos , Transcriptoma/genética , Lagerstroemia/genética , Lagerstroemia/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica
5.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34413196

RESUMEN

Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy resulting from overproduction of immature T-cells in the thymus and is typified by widespread alterations in DNA methylation. As survival rates for relapsed T-ALL remain dismal (10 to 25%), development of targeted therapies to prevent relapse is key to improving prognosis. Whereas mutations in the DNA demethylating enzyme TET2 are frequent in adult T-cell malignancies, TET2 mutations in T-ALL are rare. Here, we analyzed RNA-sequencing data of 321 primary T-ALLs, 20 T-ALL cell lines, and 25 normal human tissues, revealing that TET2 is transcriptionally repressed or silenced in 71% and 17% of T-ALL, respectively. Furthermore, we show that TET2 silencing is often associated with hypermethylation of the TET2 promoter in primary T-ALL. Importantly, treatment with the DNA demethylating agent, 5-azacytidine (5-aza), was significantly more toxic to TET2-silenced T-ALL cells and resulted in stable re-expression of the TET2 gene. Additionally, 5-aza led to up-regulation of methylated genes and human endogenous retroviruses (HERVs), which was further enhanced by the addition of physiological levels of vitamin C, a potent enhancer of TET activity. Together, our results clearly identify 5-aza as a potential targeted therapy for TET2-silenced T-ALL.


Asunto(s)
Ácido Ascórbico/farmacología , Azacitidina/farmacología , Biomarcadores de Tumor/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/antagonistas & inhibidores , Dioxigenasas/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Antimetabolitos Antineoplásicos/farmacología , Antioxidantes/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Quimioterapia Combinada , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Regiones Promotoras Genéticas , RNA-Seq , Células Tumorales Cultivadas
6.
Pestic Biochem Physiol ; 202: 105937, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879299

RESUMEN

DNA methylation is an epigenetic process that involves the chemical modification of DNA, leading to the regulation of its transcriptional activity. It is primarily known for the addition of methyl groups to cytosine in DNA. The whitefly Bemisia tabaci is a polyphagous pest insect and a vector that is responsible for transmitting numerous plant viruses, resulting in significant economic losses in agricultural crops globally. In our study, we characterized the expression of two key DNA methylation genes, the DNA methyltransferases Dnmt1 and Dnmt3, in B. tabaci. Additionally, we explored the impact of inhibiting DNMTs on the miRNA pathway and fitness of whitefly. To investigate the role of the DNA methylation pathway in B. tabaci, we found that the expression of Dnmt1 and Dnmt3 varied across different tissues and developmental stages of B. tabaci. We employed azacytidine (5-AZA) treatment of adults to inhibit DNMTs (DNMT1 and DNMT3). Administration of 5-AZA affected the survival and reproduction of this pest. Moreover, inhibition of DNMTs led to a decrease in the expression of the miRNA pathway core genes Dicer1 and Argonaute1, which subsequently resulted in reduced expression of Let-7 and miR-184 which are essential microRNAs in the physiology and biology of insects. The study suggests that DNA methyltransferases could be targeted for developing an inhibition strategy to control this pest and vector insect.


Asunto(s)
Metilación de ADN , Hemípteros , MicroARNs , Animales , Hemípteros/genética , MicroARNs/genética , MicroARNs/metabolismo , Azacitidina/farmacología , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Femenino
7.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731802

RESUMEN

5-azacytidine (AZA), a representative DNA-demethylating drug, has been widely used to treat myelodysplastic syndromes (MDS). However, it remains unclear whether AZA's DNA demethylation of any specific gene is correlated with clinical responses to AZA. In this study, we investigated genes that could contribute to the development of evidence-based epigenetic therapeutics with AZA. A DNA microarray identified that AZA specifically upregulated the expression of 438 genes in AZA-sensitive MDS-L cells but not in AZA-resistant counterpart MDS-L/CDA cells. Of these 438 genes, the ALOX12 gene was hypermethylated in MDS-L cells but not in MDS-L/CDA cells. In addition, we further found that (1) the ALOX12 gene was hypermethylated in patients with MDS compared to healthy controls; (2) MDS classes with excess blasts showed a relatively lower expression of ALOX12 than other classes; (3) a lower expression of ALOX12 correlated with higher bone marrow blasts and a shorter survival in patients with MDS; and (4) an increased ALOX12 expression after AZA treatment was associated with a favorable response to AZA treatment. Taking these factors together, an enhanced expression of the ALOX12 gene may predict favorable therapeutic responses to AZA therapy in MDS.


Asunto(s)
Araquidonato 12-Lipooxigenasa , Azacitidina , Metilación de ADN , Síndromes Mielodisplásicos , Humanos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Azacitidina/uso terapéutico , Azacitidina/farmacología , Masculino , Femenino , Metilación de ADN/efectos de los fármacos , Anciano , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , Persona de Mediana Edad , Anciano de 80 o más Años , Adulto
8.
BMC Plant Biol ; 23(1): 47, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36670371

RESUMEN

BACKGROUND: As one of the ten most famous flowers in China, the chrysanthemum has rich germplasm with a variety of flowering induction pathways, most of which are photoperiod-induced. After treatment with DNA methylation inhibitors, it was found that DNA methylation plays an important role in flowering regulation, but the mechanism of action remains unclear. Therefore, in this study, curcumin, 5-azaC, their mixed treatment, and MET1-RNAi lines were used for transcriptome sequencing to find out how different treatments affected gene expression in chrysanthemums at different stages of flowering. RESULTS: Genomic DNA methylation levels were measured using HPLC technology. The methylation level of the whole genome in the vegetative growth stage was higher than that in the flowering stage. The methylation level of DNA in the vegetative growth stage was the lowest in the curcumin and mixed treatment, and the methylation level of DNA in the transgenic line, mixed treatment, and curcumin treatment was the lowest in the flowering stage. The flowering rate of mixed treatment and curcumin treatment was the lowest. Analysis of differentially expressed genes in transcriptomes showed that 5-azaC treatment had the most differentially expressed genes, followed by curcumin and transgenic lines, and mixed treatment had the fewest. In addition, 5-azaC treatment resulted in the differential expression of multiple DNA methylation transferases, which led to the differential expression of many genes. Analysis of differentially expressed genes in different treatments revealed that different treatments had gene specificity. However, the down-regulated GO pathway in all 4 treatments was involved in the negative regulation of the reproductive process, and post-embryonic development, and regulation of flower development. Several genes associated with DNA methylation and flowering regulation showed differential expression in response to various treatments. CONCLUSIONS: Both DNA methylase reagent treatment and targeted silencing of the MET1 gene can cause differential expression of the genes. The operation of the exogenous application is simple, but the affected genes are exceedingly diverse and untargeted. Therefore, it is possible to construct populations with DNA methylation phenotypic diversity and to screen genes for DNA methylation regulation.


Asunto(s)
Chrysanthemum , Curcumina , Transcriptoma , Metilación de ADN , Curcumina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores , Regulación de la Expresión Génica de las Plantas
9.
Artículo en Inglés | MEDLINE | ID: mdl-38141211

RESUMEN

OBJECTIVES: The aim of the study was to evaluate the treatment response to Interleukin-6-receptor inhibitition (IL-6Ri), primarily tocilizumab, in patients with VEXAS. METHODS: Data were obtained from review of hospital based clinical records and included symptoms, laboratory data, transfusion history, pathology reports, imaging, and treatment. RESULTS: Fifteen patients were treated with tocilizumab intravenously. Two patients changed treatment to subcutaneous sarilumab. Three discontinued treatment due to treatment failure.Of the 10 patients with treatment-response and prednisone use prior to IL-6Ri one was tapered off prednisone, one used it intermittently, and seven patients could be reduced to 10 mg or less daily.Three patients exhibited a marked decrease in UBA1-levels during IL-6Ri which corresponded with symptom control and normalization of haemoglobin levels. However, in most a progressive marrow failure occurred as indicated by decreasing platelet levels, increasing MCV, and for some, declining haemoglobin levels and transfusion dependence in spite of control of the inflammatory symptoms and low c-reactive protein levels.One patient became refractory to both tocilizumab and sarilumab, and had previously failed conventional DMARDs, JAK-inhibition, TNFa-inhibition, and interleukin-1R-inhibiton. Treatment with 9 cycles of azacytidine resulted in complete symptom remission, discontinuation of prednisone, normalization of biochemical parameters and undetectable UBA1 mutation levels which has now lasted for 10 months since cessation of azacytidine. CONCLUSION: IL-6Ri induces control of inflammatory symptoms and allows decreased prednisone usage in a large subset of VEXAS patients. However, most experience progressive bone marrow failure during IL-6Ri.Azacytidine could be a promising treatment strategy and warrants further investigation.

10.
Mol Biol Rep ; 50(9): 7371-7380, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37450078

RESUMEN

BACKGROUND: Cardiovascular diseases remain a major cause of death globally. Cardiac cells once damaged, cannot resume the normal functioning of the heart. Bone marrow derived mesenchymal stem cells (BM-MSCs) have shown the potential to differentiate into cardiac cells. Epigenetic modifications determine cell identity during embryo development via regulation of tissue specific gene expression. The major epigenetic mechanisms that control cell fate and biological functions are DNA methylation and histone modifications. However, epigenetic modifiers alone are not sufficient to generate mature cardiac cells. Various small molecules such as ascorbic acid (AA) and salvianolic acid B (SA) are known for their cardiomyogenic potential. Therefore, this study is aimed to examine the synergistic effects of epigenetic modifiers, valproic acid (VPA) and 5-azacytidine (5-aza) with cardiomyogenic molecules, AA and SA in the cardiac differentiation of MSCs. METHODS AND RESULTS: BM-MSCs were isolated, propagated, characterized, and then treated with an optimized dose of VPA or 5-aza for 24 h. MSCs were maintained in a medium containing AA and SA for 21 days. All groups were assessed for the expression of cardiac genes and proteins through q-PCR and immunocytochemistry, respectively. Results show that epigenetic modifiers VPA or 5-aza in combination with AA and SA significantly upregulate the expression of cardiac genes MEF2C, Nkx2.5, cMHC, Tbx20, and GATA-4. In addition, VPA or 5-aza pretreatment along with AA and SA enhanced the expression of the cardiac proteins connexin-43, GATA-4, cTnI, and Nkx2.5. CONCLUSION: These findings suggest that epigenetic modifiers valproic acid and 5-azacytidine in combination with ascorbic acid and salvianolic acid B promote cardiac differentiation of MSCs. This pretreatment strategy can be exploited for designing future stem cell based therapeutic strategies for cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Células Madre Mesenquimatosas , Humanos , Ácido Valproico/farmacología , Ácido Valproico/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Enfermedades Cardiovasculares/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Azacitidina/farmacología , Azacitidina/metabolismo , Miocitos Cardíacos/metabolismo , Células Cultivadas
11.
Drug Resist Updat ; 61: 100805, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35227933

RESUMEN

Resistance to the hypomethylating agents (HMAs) 5-azacytidine (AZA) and 5-aza-2'-deoxycytidine (DAC) represents a major obstacle in the treatment of elderly patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) which are not suitable for hematopoietic stem cells transplantation. Approximately 50 % of patients do not respond to HMA treatment because of intrinsic (primary) resistance, while others could acquire drug resistance during the repeated cycles of the treatment. To prevent, delay or surmount resistance development, the molecular mechanisms underlying drug resistance must be first identified. This is crucial as no further standard therapeutic opportunities are available for these patients who failed hypomethylating agents-based treatment. The current review provides an updated information about the different mechanisms that may contribute to the development of resistance to HMAs. Despite the similar structure and mechanism of action of HMA, several studies did not report the expected development of cross-resistance. It is clear that in addition to the common modalities of chemoresistance, there must be some specific mechanisms of drug resistance. Changes in transport and metabolism of HMAs are among the most studied mechanisms of resistance. Drug uptake provided by two solute carrier (SLC) families: SLC28 and SLC29 (also known as the concentrative and equilibrative nucleoside transporter families, respectively), could represent one of the mechanisms of cross-resistance. Changes in the metabolism of these drugs are the most likely mechanism responsible for the unique mode of resistance to AZA and DAC. Deoxycytidine kinase and uridine-cytidine kinase due to their necessity for drug activation, each could represent one of the response markers to treatment with DAC and AZA, respectively. Other mechanisms involved in the development of resistance common for both drugs involved: i. increased DNA repair (caused for example by constitutive activation of the ATM/BRCA1 pathway and inhibition of p53-dependent apoptosis); ii. changes in the regulation of apoptosis/disrupted apoptotic pathways (specifically increased levels of the anti-apoptotic protein BCL2) and iii. increased resilience of leukemic stem cells to multiple drugs including HMAs. Despite intense research on the resistance of MDS and AML patients to HMAs, the mechanisms that may reduce the response of these cells to HMAs are not known in detail. We herein highlight the most important directions that future research should take.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Anciano , Azacitidina/farmacología , Azacitidina/uso terapéutico , Decitabina/farmacología , Decitabina/uso terapéutico , Resistencia a Medicamentos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética
12.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569529

RESUMEN

Osteosarcoma is the most frequent primary malignant bone tumor with an annual incidence of about 400 cases in the United States. Osteosarcoma primarily metastasizes to the lungs, where FAS ligand (FASL) is constitutively expressed. The interaction of FASL and its cell surface receptor, FAS, triggers apoptosis in normal cells; however, this function is altered in cancer cells. DNA methylation has previously been explored as a mechanism for altering FAS expression, but no variability was identified in the CpG island (CGI) overlapping the promoter. Analysis of an expanded region, including CGI shores and shelves, revealed high variability in the methylation of certain CpG sites that correlated significantly with FAS mRNA expression in a negative manner. Bisulfite sequencing revealed additional CpG sites, which were highly methylated in the metastatic LM7 cell line but unmethylated in its parental non-metastatic SaOS-2 cell line. Treatment with the demethylating agent, 5-azacytidine, resulted in a loss of methylation in CpG sites located within the FAS promoter and restored FAS protein expression in LM7 cells, resulting in reduced migration. Orthotopic implantation of 5-azacytidine treated LM7 cells into severe combined immunodeficient mice led to decreased lung metastases. These results suggest that DNA methylation of CGI shore sites may regulate FAS expression and constitute a potential target for osteosarcoma therapy, utilizing demethylating agents currently approved for the treatment of other cancers.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Ratones , Animales , Receptor fas/genética , Receptor fas/metabolismo , Neoplasias Óseas/metabolismo , Osteosarcoma/metabolismo , Azacitidina/farmacología , Metilación de ADN , Islas de CpG , Línea Celular Tumoral
13.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203655

RESUMEN

There has been a widespread adoption of hypomethylating agents (HMA: 5-Azacytidine (5-Aza)/decitabine) and venetoclax (Ven) for the treatment of acute myeloid leukemia (AML); however, the mechanisms behind the combination's synergy are poorly understood. Monotherapy often encounters resistance, leading to suboptimal outcomes; however, the combination of HMA and Ven has demonstrated substantial improvements in treatment responses. This study elucidates multiple synergistic pathways contributing to this enhanced therapeutic effect. Key mechanisms include HMA-mediated downregulation of anti-apoptotic proteins, notably MCL-1, and the priming of cells for Ven through the induction of genes encoding pro-apoptotic proteins such as Noxa. Moreover, Ven induces sensitization to HMA, induces overcoming resistance by inhibiting the DHODH enzyme, and disrupts antioxidant pathways (Nrf2) induced by HMA. The combination further disrupts oxidative phosphorylation in leukemia stem cells, amplifying the therapeutic impact. Remarkably, clinical studies have revealed a favorable response, particularly in patients harboring specific mutations, such as IDH1/2, NPM1, CEBPA, or ASXL1. This prompts future studies to explore the nuanced underpinnings of these synergistic mechanisms in AML patients with these molecular signatures.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Humanos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Regulación hacia Abajo , Azacitidina , Leucemia Mieloide Aguda/tratamiento farmacológico
14.
Br J Haematol ; 197(3): 339-348, 2022 05.
Artículo en Español | MEDLINE | ID: mdl-35187646

RESUMEN

5-Azacitidine has been used before stem cell transplantation in juvenile myelomonocytic leukaemia (JMML) patients. Recently, we have described immunophenotypic features in JMML at diagnosis. Here, our aim was to examine the changes in the immunophenotypic features during azacitidine treatment, correlating it with clinical response. Patients treated with 5-azacitidine were evaluated at diagnosis and after three and six cycles of medication. Among 32 patients entering the study, 28 patients were examined after three cycles and 25 patients after six. Patients showed a reduction in CD34/CD117+ cells: median 3.35% at diagnosis, 2.8% after three cycles and 1.63% after six. B-cell progenitors were decreased at diagnosis and decreased after treatment. Monocytes decreased: 11.91% to 6.4% and 4.18% respectively. Complete response was associated with increase in classical monocytes. T lymphocytes, reduced at diagnosis, increased in patients responding to 5-azacitidine. Immunophenotypic aberrancies including expression of CD7 in myeloid progenitors remained after treatment. This feature was associated with a worse response to treatment, as well as presence of NF1. Immunophenotyping was feasible in all patients. Clinical response was associated with a decrease of myeloid progenitors and monocytes and a rise in T lymphocytes although phenotypic aberrancies persisted. The largest effect was observed after three cycles.


Asunto(s)
Leucemia Mielomonocítica Juvenil , Antígenos CD34 , Azacitidina/uso terapéutico , Humanos , Inmunofenotipificación , Recuento de Linfocitos
15.
Cancer Immunol Immunother ; 71(2): 353-363, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34165607

RESUMEN

CD47 is a widely expressed cell-surface protein that regulates phagocytosis mediated by cells of the innate immune system, such as macrophages and dendritic cells. CD47 serves as the ligand for a receptor on these innate immune cells, signal regulatory protein (SIRP)-α, which in turn inhibits phagocytosis. Several targeted CD47 therapeutic antibodies have been investigated clinically; however, how to improve its therapeutic efficacy remains unclear. Herein, we developed a CD47 blocking antibody, named IBI188, that could specifically block the CD47-SIRP-α axis, which transduces the "don't eat me" signal to macrophages. In vitro phagocytosis assays demonstrated the pro-phagocytosis ability of IBI188. Furthermore, several in vivo models were chosen to evaluate the anti-tumor efficacy of IBI188. IBI188 treatment upregulated cell movement- and inflammation-related genes in macrophages. Synergism was observed when combined with an anti-CD20 therapeutic antibody, whose function depends on antibody-dependent cellular cytotoxicity/phagocytosis (ADCC/ADCP). CD47 expression was evaluated following azacytidine (AZA) treatment, a standard-of-care for patients with multiple myeloma; enhanced anti-tumor efficacy was observed in the combination group in AML xenograft models. Notably, IBI188 treatment increased vascular endothelial growth factor-A (VEGF-A) levels in a solid tumor model, and combined treatment with an anti-VEGF-A antibody and IBI188 resulted in an enhanced anti-tumor effect. These data indicate that IBI188 is a therapeutic anti-CD47 antibody with anti-tumor potency, which can be enhanced when used in combination with standard-of-care drugs for cancer treatment.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígeno CD47/antagonistas & inhibidores , Inmunoterapia/métodos , Linfoma de Células B/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Animales , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Apoptosis , Antígeno CD47/inmunología , Proliferación Celular , Femenino , Humanos , Linfoma de Células B/inmunología , Linfoma de Células B/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias/inmunología , Neoplasias/patología , Fagocitosis , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
BMC Plant Biol ; 22(1): 278, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672704

RESUMEN

BACKGROUND: Strawberry ripening involves a number of irreversible biochemical reactions that cause sensory changes through accumulation of sugars, acids and other compounds responsible for fruit color and flavor. The process, which is strongly dependent on methylation marks in other fruits such as tomatoes and oranges, is highly controlled and coordinated in strawberry. RESULTS: Repeated injections of the hypomethylating compound 5-azacytidine (AZA) into green and unripe Fragaria × ananassa receptacles fully arrested the ripening of the fruit. The process, however, was reversible since treated fruit parts reached full maturity within a few days after AZA treatment was stopped. Transcriptomic analyses showed that key genes responsible for the biosynthesis of anthocyanins, phenylpropanoids, and hormones such as abscisic acid (ABA) were affected by the AZA treatment. In fact, AZA downregulated genes associated with ABA biosynthetic genes but upregulated genes associated with its degradation. AZA treatment additionally downregulated a number of essential transcription factors associated with the regulation and control of ripening. Metabolic analyses revealed a marked imbalance in hormone levels, with treated parts accumulating auxins, gibberellins and ABA degradation products, as well as metabolites associated with unripe fruits. CONCLUSIONS: AZA completely halted strawberry ripening by altering the hormone balance, and the expression of genes involves in hormone biosynthesis and degradation processes. These results contradict those previously obtained in other climacteric and fleshly fruits, where AZA led to premature ripening. In any case, our results suggests that the strawberry ripening process is governed by methylation marks.


Asunto(s)
Fragaria , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Azacitidina/farmacología , Fragaria/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hormonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Stem Cells ; 39(4): 497-506, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33438302

RESUMEN

Epigenetic reprogramming and autophagy have critical roles in differentiation of stem cells. However, very little is known about how epigenetic modifications are mediated and how they contribute to autophagy and differentiation in human cardiac stem cells (hCSCs). Previously, we have reported that intracellular matrix metalloproteinase-9 (MMP9), a collagenase, mediates cell death in hCSCs. Here, we investigated whether intracellular MMP9 mediates epigenetic modifications and autophagy in hCSCs. We created MMP9KO hCSCs and treated them with 5-azacytidine, an inhibitor of DNA methylation, and bafilomycin A1, an inhibitor of autophagosome degradation, and evaluated epigenetic modifications, autophagic flux, and differentiation. Our results showed compromised epigenetic modifications, reduced autophagy, and impaired differentiation in MMP9KO hCSCs. Remarkably, paracrine MMP9 supplementation restored epigenetic modifications but further reduced autophagy in MMP9KO hCSCs. We conclude that intracellular MMP9 is a critical mediator of epigenetic modifications and autophagy in hCSCs. Furthermore, the endocrine and paracrine effects of MMP9 vary for regulating autophagy in hCSCs. These novel roles of MMP9 are valuable for stem cell therapy.


Asunto(s)
Autofagia/genética , Epigénesis Genética , Metaloproteinasa 9 de la Matriz/genética , Miocitos Cardíacos/metabolismo , Células Madre/metabolismo , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Azacitidina/farmacología , Sistemas CRISPR-Cas , Diferenciación Celular/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN/efectos de los fármacos , ADN Metiltransferasa 3A/genética , ADN Metiltransferasa 3A/metabolismo , Eliminación de Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Macrólidos/farmacología , Metaloproteinasa 9 de la Matriz/deficiencia , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Comunicación Paracrina/efectos de los fármacos , Transducción de Señal , Sirtuina 1/genética , Sirtuina 1/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos
18.
FASEB J ; 35(10): e21928, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34559924

RESUMEN

Limb contractures are a debilitating and progressive consequence of a wide range of upper motor neuron injuries that affect skeletal muscle function. One type of perinatal brain injury causes cerebral palsy (CP), which affects a child's ability to move and is often painful. While several rehabilitation therapies are used to treat contractures, their long-term effectiveness is marginal since such therapies do not change muscle biological properties. Therefore, new therapies based on a biological understanding of contracture development are needed. Here, we show that myoblast progenitors from contractured muscle in children with CP are hyperproliferative. This phenotype is associated with DNA hypermethylation and specific gene expression patterns that favor cell proliferation over quiescence. Treatment of CP myoblasts with 5-azacytidine, a DNA hypomethylating agent, reduced this epigenetic imprint to TD levels, promoting exit from mitosis and molecular mechanisms of cellular quiescence. Together with previous studies demonstrating reduction in myoblast differentiation, this suggests a mechanism of contracture formation that is due to epigenetic modifications that alter the myogenic program of muscle-generating stem cells. We suggest that normalization of DNA methylation levels could rescue myogenesis and promote regulated muscle growth in muscle contracture and thus may represent a new nonsurgical approach to treating this devastating neuromuscular condition.


Asunto(s)
Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Metilación de ADN , Perfilación de la Expresión Génica , Músculo Esquelético/patología , Mioblastos/metabolismo , Mioblastos/patología , Transcripción Genética , Adolescente , Azacitidina/farmacología , Azacitidina/uso terapéutico , Lesiones Encefálicas/metabolismo , Proliferación Celular , Parálisis Cerebral/tratamiento farmacológico , Parálisis Cerebral/patología , Niño , Preescolar , Metilación de ADN/efectos de los fármacos , Femenino , Humanos , Masculino , Músculo Esquelético/metabolismo , Mioblastos/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
19.
Ann Hematol ; 101(1): 119-130, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34568973

RESUMEN

This study aimed to evaluate the efficacy and safety of venetoclax plus azacitidine and donor lymphocyte infusion (DLI) in treating patients with relapsed acute myeloid leukemia (AML) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Twenty-six AML patients who relapsed after allo-HSCT were enrolled and treated with venetoclax plus azacitidine and DLI. Complete remission with incomplete recovery (CRi), partial remission (PR), and objective remission rate (ORR) were assessed, and then event-free survival (EFS) and overall survival (OS) were evaluated. Besides, adverse events were documented. Additionally, whole exome sequencing was performed in bone marrow samples. The CRi, PR, and ORR rates were 26.9%, 34.6%, and 61.5%, respectively. The median time of EFS and OS was 120 (95% CI: 71-610) days and 284.5 (95% CI: 81-610) days, respectively. The most common adverse events were hematologic system adverse events including agranulocytosis, anemia, and thrombocytopenia, while the adverse events of other systems were relatively less and milder. In addition, no serious adverse events existed. Of note, there were 6 (23.1%) patients who developed GVHD. As for gene mutation, 49 mutated genes were found, which were categorized as first-, second-, and third-class mutations, and then further analysis revealed that the first-class mutations were not correlated with EFS or OS. Additionally, the most frequent mutated genes were FLT3, CEBPA, DNMT3A, KIT, KRAS, and NRAS. Venetoclax plus azacitidine and DLI is efficient and tolerant in treating patients with relapsed AML after allo-HSCT, implying this combined therapy as a potential treatment option in the studied patients.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Azacitidina/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Leucemia Mieloide Aguda/terapia , Transfusión de Linfocitos , Sulfonamidas/uso terapéutico , Adulto , Femenino , Estudios de Seguimiento , Trasplante de Células Madre Hematopoyéticas , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/terapia , Trasplante Homólogo , Resultado del Tratamiento , Adulto Joven
20.
Ann Hematol ; 101(6): 1321-1331, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35352216

RESUMEN

Relapse is a major cause of treatment failure after allogeneic hematopoietic cell transplantation (allo-HCT) in myeloid malignancies. Additional strategies have been devised to further maximize the immunologic effect of allo-HCT, notably through maintenance therapy with hypomethylating agents such as 5-azacytidine (AZA). We conducted a single-center retrospective study to investigate the efficacy of AZA after allo-HCT for high-risk myeloid malignancies. All patients transplanted between Jan 2014 and Sept 2019 for high-risk acute myeloid leukemia (n = 123), myelodysplastic syndrome (n = 51), or chronic myelomonocytic leukemia (n = 11) were included. Patients who died, relapsed, or developed grade ≥ 2 acute graft-versus-host disease before day + 60 were excluded, as well as those who were eligible for anti-FMS-like tyrosine kinase 3 maintenance. Of the 185 included patients, 65 received AZA while 120 did not. Median age at transplant was 59 years; 51.9% of patients were males. The median follow-up was 24 months for both groups. Regarding main patient characteristics and transplantation modalities, the two groups were comparable. In multivariate analyses, there were no significant differences between the two groups in terms of 2-year cumulative incidence of relapse (HR = 1.19; 95% confidence interval (CI) 0.67-2.12; p = 0.55), overall survival (HR = 0.62; 95%CI 0.35-1.12; p = 0.12) and event-free survival (HR = 0.97; 95%CI 0.60-1.58; p = 0.91) rates. In conclusion, single-agent AZA does not appear to be an optimal drug for preventing post-transplant relapse in patients with high-risk myeloid malignancies. This study highlights the need for prospective studies of alternative therapies or combination approaches in the post-transplant setting.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Neoplasias , Azacitidina/uso terapéutico , Femenino , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Leucemia Mieloide Aguda/complicaciones , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Trastornos Mieloproliferativos/complicaciones , Neoplasias/complicaciones , Estudios Prospectivos , Recurrencia , Estudios Retrospectivos , Acondicionamiento Pretrasplante/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA