Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 57(1): 40-51.e5, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38171362

RESUMEN

Individuals who clear primary hepatitis C virus (HCV) infections clear subsequent reinfections more than 80% of the time, but the mechanisms are poorly defined. Here, we used HCV variants and plasma from individuals with repeated clearance to characterize longitudinal changes in envelope glycoprotein E2 sequences, function, and neutralizing antibody (NAb) resistance. Clearance of infection was associated with early selection of viruses with NAb resistance substitutions that also reduced E2 binding to CD81, the primary HCV receptor. Later, peri-clearance plasma samples regained neutralizing capacity against these variants. We identified a subset of broadly NAbs (bNAbs) for which these loss-of-fitness substitutions conferred resistance to unmutated bNAb ancestors but increased sensitivity to mature bNAbs. These data demonstrate a mechanism by which neutralizing antibodies contribute to repeated immune-mediated HCV clearance, identifying specific bNAbs that exploit fundamental vulnerabilities in E2. The induction of bNAbs with these specificities should be a goal of HCV vaccine development.


Asunto(s)
Anticuerpos Neutralizantes , Hepatitis C , Humanos , Anticuerpos ampliamente neutralizantes , Anticuerpos contra la Hepatitis C/química , Hepacivirus , Proteínas del Envoltorio Viral/genética
2.
Immunity ; 55(11): 2168-2186.e6, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36179690

RESUMEN

Eliciting broadly neutralizing antibodies (bnAbs) is the core of HIV vaccine design. bnAbs specific to the V2-apex region of the HIV envelope acquire breadth and potency with modest somatic hypermutation, making them attractive vaccination targets. To evaluate Apex germline-targeting (ApexGT) vaccine candidates, we engineered knockin (KI) mouse models expressing the germline B cell receptor (BCR) of the bnAb PCT64. We found that high affinity of the ApexGT immunogen for PCT64-germline BCRs was necessary to specifically activate KI B cells at human physiological frequencies, recruit them to germinal centers, and select for mature bnAb mutations. Relative to protein, mRNA-encoded membrane-bound ApexGT immunization significantly increased activation and recruitment of PCT64 precursors to germinal centers and lowered their affinity threshold. We have thus developed additional models for HIV vaccine research, validated ApexGT immunogens for priming V2-apex bnAb precursors, and identified mRNA-LNP as a suitable approach to substantially improve the B cell response.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Ratones , Humanos , Animales , Anticuerpos Anti-VIH , Anticuerpos ampliamente neutralizantes , Anticuerpos Neutralizantes , ARN Mensajero/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana
3.
Immunity ; 51(5): 915-929.e7, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31732167

RESUMEN

The elicitation of broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) trimer remains a major vaccine challenge. Most cross-conserved protein determinants are occluded by self-N-glycan shielding, limiting B cell recognition of the underlying polypeptide surface. The exceptions to the contiguous glycan shield include the conserved receptor CD4 binding site (CD4bs) and glycoprotein (gp)41 elements proximal to the furin cleavage site. Accordingly, we performed heterologous trimer-liposome prime:boosting in rabbits to drive B cells specific for cross-conserved sites. To preferentially expose the CD4bs to B cells, we eliminated proximal N-glycans while maintaining the native-like state of the cleavage-independent NFL trimers, followed by gradual N-glycan restoration coupled with heterologous boosting. This approach successfully elicited CD4bs-directed, cross-neutralizing Abs, including one targeting a unique glycan-protein epitope and a bNAb (87% breadth) directed to the gp120:gp41 interface, both resolved by high-resolution cryoelectron microscopy. This study provides proof-of-principle immunogenicity toward eliciting bNAbs by vaccination.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Liposomas , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Antígenos CD4/química , Antígenos CD4/inmunología , Antígenos CD4/metabolismo , Complemento C3/inmunología , Complemento C3/metabolismo , Reactividad Cruzada/inmunología , Epítopos/inmunología , Glicosilación , Infecciones por VIH/virología , Humanos , Inmunoglobulina G/inmunología , Modelos Moleculares , Pruebas de Neutralización , Polisacáridos/inmunología , Polisacáridos/metabolismo , Unión Proteica , Conformación Proteica , Conejos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/administración & dosificación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
4.
Immunity ; 49(2): 235-246.e4, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30076100

RESUMEN

HIV-1 Envelope (Env) mediates viral-host membrane fusion after binding host-receptor CD4 and coreceptor. Soluble envelopes (SOSIPs), designed to mimic prefusion conformational states of virion-bound envelopes, are proposed immunogens for eliciting neutralizing antibodies, yet only static structures are available. To evaluate conformational landscapes of ligand-free, CD4-bound, inhibitor-bound, and antibody-bound SOSIPs, we measured inter-subunit distances throughout spin-labeled SOSIPs using double electron-electron resonance (DEER) spectroscopy and compared results to soluble and virion-bound Env structures, and single-molecule fluorescence resonance energy transfer (smFRET)-derived dynamics of virion-bound Envs. Unliganded SOSIP measurements were consistent with closed, neutralizing antibody-bound structures and shielding of non-neutralizing epitopes, demonstrating homogeneity at Env apex, increased flexibility near Env base, and no evidence for the intra-subunit flexibility near Env apex suggested by smFRET. CD4 binding increased inter-subunit distances and heterogeneity, consistent with rearrangements required for coreceptor binding. Results suggest similarities between SOSIPs and virion-bound Envs and demonstrate DEER's relevance for immunogen design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Antígenos CD4/metabolismo , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Sitios de Unión de Anticuerpos/inmunología , Línea Celular , Espectroscopía de Resonancia por Spin del Electrón , Epítopos/inmunología , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/genética , Humanos
5.
Immunity ; 47(3): 524-537.e3, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28916265

RESUMEN

Apex broadly neutralizing HIV antibodies (bnAbs) recognize glycans and protein surface close to the 3-fold axis of the envelope (Env) trimer and are among the most potent and broad Abs described. The evolution of apex bnAbs from one donor (CAP256) has been studied in detail and many Abs at different stages of maturation have been described. Using diverse engineering tools, we investigated the involvement of glycan recognition in the development of the CAP256.VRC26 Ab lineage. We found that sialic acid-bearing glycans were recognized by germline-encoded and somatically mutated residues on the Ab heavy chain. This recognition provided an "anchor" for the Abs as the core protein epitope varies, prevented complete neutralization escape, and eventually led to broadening of the response. These findings illustrate how glycan-specific maturation enables a human Ab to cope with pathogen escape mechanisms and will aid in optimization of immunization strategies to induce V2 apex bnAb responses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , VIH-1/inmunología , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Afinidad de Anticuerpos/inmunología , Formación de Anticuerpos/inmunología , Sitios de Unión , Epítopos/inmunología , Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/clasificación , Anticuerpos Anti-VIH/genética , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/virología , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Modelos Moleculares , Ácido N-Acetilneuramínico/metabolismo , Pruebas de Neutralización , Fragmentos de Péptidos/inmunología , Filogenia , Unión Proteica/inmunología , Conformación Proteica , Multimerización de Proteína
6.
J Virol ; 97(9): e0071023, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37681958

RESUMEN

The envelope (Env) glycoproteins on HIV-1 virions are the sole target of broadly neutralizing antibodies (bNAbs) and the focus of vaccines. However, many cross-reactive conserved epitopes are often occluded on virus particles, contributing to the evasion of humoral immunity. This study aimed to identify the Env epitopes that are exposed/occluded on HIV-1 particles and to investigate the mechanisms contributing to their masking. Using a flow cytometry-based assay, three HIV-1 isolates, and a panel of antibodies, we show that only select epitopes, including V2i, the gp120-g41 interface, and gp41-MPER, are accessible on HIV-1 particles, while V3, V2q, and select CD4bs epitopes are masked. These epitopes become accessible after allosteric conformational changes are induced by the pre-binding of select Abs, prompting us to test if similar conformational changes are required for these Abs to exhibit their neutralization capability. We tested HIV-1 neutralization where the virus-mAb mix was pre-incubated/not pre-incubated for 1 hour prior to adding the target cells. Similar levels of neutralization were observed under both assay conditions, suggesting that the interaction between virus and target cells sensitizes the virions for neutralization via bNAbs. We further show that lectin-glycan interactions can also expose these epitopes. However, this effect is dependent on the lectin specificity. Given that, bNAbs are ideal for providing sterilizing immunity and are the goal of current HIV-1 vaccine efforts, these data offer insight on how HIV-1 may occlude these vulnerable epitopes from the host immune response. In addition, the findings can guide the formulation of effective antibody combinations for therapeutic use. IMPORTANCE The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein mediates viral entry and is the sole target of neutralizing antibodies. Our data suggest that antibody epitopes including V2q (e.g., PG9, PGT145), CD4bs (e.g., VRC01, 3BNC117), and V3 (2219, 2557) are masked on HIV-1 particles. The PG9 and 2219 epitopes became accessible for binding after conformational unmasking was induced by the pre-binding of select mAbs. Attempts to understand the masking mechanism led to the revelation that interaction between virus and host cells is needed to sensitize the virions for neutralization by broadly neutralizing antibodies (bNAbs). These data provide insight on how bNAbs may gain access to these occluded epitopes to exert their neutralization effects and block HIV-1 infection. These findings have important implications for the way we evaluate the neutralizing efficacy of antibodies and can potentially guide vaccine design.


Asunto(s)
Anticuerpos ampliamente neutralizantes , Epítopos de Linfocito B , Anticuerpos Anti-VIH , Infecciones por VIH , VIH-1 , Interacciones Microbiota-Huesped , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/patología , Infecciones por VIH/virología , VIH-1/química , VIH-1/inmunología , VIH-1/metabolismo , Lectinas/metabolismo , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/metabolismo , Vacunas contra el SIDA/química , Vacunas contra el SIDA/inmunología , Virión/química , Virión/inmunología , Virión/metabolismo , Polisacáridos/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34261793

RESUMEN

Three variable 2 (V2) loops of HIV-1 envelope glycoprotein (Env) trimer converge at the Env apex to form the epitope of an important classes of HIV-1 broadly neutralizing antibodies (bNAbs). These V2-glycan/apex antibodies are exceptionally potent but less broad (∼60 to 75%) than many other bNAbs. Their CDRH3 regions are typically long, acidic, and tyrosine sulfated. Tyrosine sulfation complicates efforts to improve these antibodies through techniques such as phage or yeast display. To improve the breadth of CAP256-VRC26.25 (VRC26.25), a very potent apex antibody, we adapted and extended a B cell display approach. Specifically, we used CRISPR/Cas12a to introduce VRC26.25 heavy- and light-chain genes into their respective loci in a B cell line, ensuring that each cell expresses a single VRC26.25 variant. We then diversified these loci through activation-induced cytidine deaminase-mediated hypermutation and homology-directed repair using randomized CDRH3 sequences as templates. Iterative sorting with soluble Env trimers and further randomization selected VRC26.25 variants with successively improving affinities. Three mutations in the CDRH3 region largely accounted for this improved affinity, and VRC26.25 modified with these mutations exhibited greater breadth and potency than the original antibody. Our data describe a broader and more-potent form of VRC26.25 as well as an approach useful for improving the breadth and potency of antibodies with functionally important posttranslational modifications.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/química , Anticuerpos ampliamente neutralizantes/genética , Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/genética , Humanos , Ingeniería de Proteínas , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
8.
Virologie (Montrouge) ; 0(0)2024 May 01.
Artículo en Francés | MEDLINE | ID: mdl-38757520

RESUMEN

Antibodies, and notably immunoglobulins A (IgA), are paramount in mucosal tissues as protective immune effectors against invading pathogens and immunomodulators of the microbiota. Upon human immunodeficiency virus type 1 (HIV-1) infection, systemic and mucosal IgA antibody responses are triggered. While naturally produced serum HIV-1 envelope protein-specific IgA are quantitatively and qualitatively weaker than their IgG counterparts, they also possess antiviral properties including neutralization and Fc-dependent functions. IgA neutralizers can block HIV-1 mucosal transmission in animal models, indicating that their elicitation by vaccination would be an important component for preventing infection. Moreover, the first genuine IgA broadly HIV-1 neutralizing antibodies (bNAbs) were recently identified in certain individuals living with HIV-1. Vaccine-based induction of IgA bNAbs potentially protective at the mucosal level is therefore conceivable. Hence, research efforts must therefore be undertaken to better understand their development and functions. In this review, we present the general functions of IgA in homeostasis and antimicrobial immunity and discuss their involvement in the antibody responses against HIV-1.

9.
Retrovirology ; 20(1): 9, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244989

RESUMEN

BACKGROUND: Neutralizing antibodies (NAbs) protect against HIV-1 acquisition in animal models and show promise in treatment of infection. They act by binding to the viral envelope glycoprotein (Env), thereby blocking its receptor interactions and fusogenic function. The potency of neutralization is largely determined by affinity. Less well explained is the persistent fraction, the plateau of remaining infectivity at the highest antibody concentrations. RESULTS: We observed different persistent fractions for neutralization of pseudovirus derived from two Tier-2 isolates of HIV-1, BG505 (Clade A) and B41 (Clade B): it was pronounced for B41 but not BG505 neutralization by NAb PGT151, directed to the interface between the outer and transmembrane subunits of Env, and negligible for either virus by NAb PGT145 to an apical epitope. Autologous neutralization by poly- and monoclonal NAbs from rabbits immunized with soluble native-like B41 trimer also left substantial persistent fractions. These NAbs largely target a cluster of epitopes lining a hole in the dense glycan shield of Env around residue 289. We partially depleted B41-virion populations by incubating them with PGT145- or PGT151-conjugated beads. Each depletion reduced the sensitivity to the depleting NAb and enhanced it to the other. Autologous neutralization by the rabbit NAbs was decreased for PGT145-depleted and enhanced for PGT151-depleted B41 pseudovirus. Those changes in sensitivity encompassed both potency and the persistent fraction. We then compared soluble native-like BG505 and B41 Env trimers affinity-purified by each of three NAbs: 2G12, PGT145, or PGT151. Surface plasmon resonance showed differences among the fractions in antigenicity, including kinetics and stoichiometry, congruently with the differential neutralization. The large persistent fraction after PGT151 neutralization of B41 was attributable to low stoichiometry, which we explained structurally by clashes that the conformational plasticity of B41 Env causes. CONCLUSION: Distinct antigenic forms even of clonal HIV-1 Env, detectable among soluble native-like trimer molecules, are distributed over virions and may profoundly mold neutralization of certain isolates by certain NAbs. Affinity purifications with some antibodies may yield immunogens that preferentially expose epitopes for broadly active NAbs, shielding less cross-reactive ones. NAbs reactive with multiple conformers will together reduce the persistent fraction after passive and active immunization.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Animales , Conejos , Anticuerpos Anti-VIH , Epítopos , Anticuerpos Neutralizantes , Conformación Molecular , Anticuerpos ampliamente neutralizantes , Productos del Gen env del Virus de la Inmunodeficiencia Humana
10.
Clin Immunol ; 257: 109809, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37852345

RESUMEN

Anti-HIV broadly neutralizing antibodies (bNAbs) offer a novel approach to treating, preventing, or curing HIV. Pre-clinical models and clinical trials involving the passive transfer of bNAbs have demonstrated that they can control viremia and potentially serve as alternatives or complement antiretroviral therapy (ART). However, antibody decay, persistent latent reservoirs, and resistance impede bNAb treatment. This review discusses recent advancements and obstacles in applying bNAbs and proposes strategies to enhance their therapeutic potential. These strategies include multi-epitope targeting, antibody half-life extension, combining with current and newer antiretrovirals, and sustained antibody secretion.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Anticuerpos ampliamente neutralizantes/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Anticuerpos Anti-VIH/uso terapéutico
11.
J Virol ; 96(11): e0023122, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35536018

RESUMEN

Despite the worldwide availability of antiretroviral therapy (ART), approximately 150,000 pediatric HIV infections continue to occur annually. ART can dramatically reduce HIV mother-to-child transmission (MTCT), but inconsistent drug access and adherence, as well as primary maternal HIV infection during pregnancy and lactation are major barriers to eliminating vertical HIV transmission. Thus, immunologic strategies to prevent MTCT, such as an HIV vaccine, will be required to attain an HIV-free generation. A primary goal of HIV vaccine research has been to elicit broadly neutralizing antibodies (bnAbs) given the ability of passive bnAb immunization to protect against sensitive strains, yet we previously observed that HIV-transmitting mothers have more plasma neutralization breadth than nontransmitting mothers. Additionally, we have identified infant transmitted/founder (T/F) viruses that escape maternal bnAb responses. In this study, we examine a cohort of postpartum HIV-transmitting women with neutralization breadth to determine if certain maternal bnAb specificities drive the selection of infant T/F viruses. Using HIV pseudoviruses that are resistant to neutralizing antibodies targeting common bnAb epitopes, we mapped the plasma bnAb specificities of this cohort. Significantly more transmitting women with plasma bnAb activity had a mappable plasma bnAb specificity (six of seven, or 85.7%) compared to that of nontransmitting women with plasma bnAb activity (7 of 21, or 33.3%, P = 0.029 by 2-sided Fisher exact test). Our study suggests that having multispecific broad activity and/or uncommon epitope-specific bnAbs in plasma may be associated with protection against the vertical HIV transmission in the setting of maternal bnAb responses. IMPORTANCE As mother to child transmission (MTCT) of HIV plays a major part in the persistence of the HIV/AIDS epidemic and bnAb-based passive and active vaccines are a primary strategy for HIV prevention, research in this field is of great importance. While previous MTCT research has investigated the neutralizing antibody activity of HIV-infected women, this is, to our knowledge, the largest study identifying differences in bnAb specificity of maternal plasma between transmitting and nontransmitting women. Here, we show that among HIV-infected women with broad and potent neutralization activity, more postpartum-transmitting women had a mappable plasma broadly neutralizing antibody (bnAb) specificity, compared to that of nontransmitting women, suggesting that the nontransmitting women more often have multispecific bnAb responses or bnAb responses that target uncommon epitopes. Such responses may be required for protection against vertical HIV transmission in the setting of maternal bnAb responses.


Asunto(s)
Formación de Anticuerpos , Anticuerpos ampliamente neutralizantes , Infecciones por VIH , Seropositividad para VIH , Transmisión Vertical de Enfermedad Infecciosa , Vacunas contra el SIDA , Epítopos , Femenino , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/transmisión , VIH-1 , Humanos , Lactante , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Embarazo
12.
J Virol ; 96(24): e0127022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36453881

RESUMEN

Broadly neutralizing antibodies (bNAbs) for HIV-1 prevention or cure strategies must inhibit transmitted/founder and reservoir viruses. Establishing sensitivity of circulating viruses to bNAbs and genetic patterns affecting neutralization variability may guide rational bNAbs selection for clinical development. We analyzed 326 single env genomes from nine individuals followed longitudinally following acute HIV-1 infection, with samples collected at ~1 week after the first detection of plasma viremia; 300 to 1,709 days postinfection but prior to initiating antiretroviral therapy (ART) (median = 724 days); and ~1 year post ART initiation. Sequences were assessed for phylogenetic relatedness, potential N- and O-linked glycosylation, and variable loop lengths (V1 to V5). A total of 43 env amplicons (median = 3 per patient per time point) were cloned into an expression vector and the TZM-bl assay was used to assess the neutralization profiles of 15 bNAbs targeting the CD4 binding site, V1/V2 region, V3 supersite, MPER, gp120/gp41 interface, and fusion peptide. At 1 µg/mL, the neutralization breadths were as follows: VRC07-LS and N6.LS (100%), VRC01 (86%), PGT151 (81%), 10-1074 and PGT121 (80%), and less than 70% for 10E8, 3BNC117, CAP256.VRC26, 4E10, PGDM1400, and N123-VRC34.01. Features associated with low sensitivity to V1/V2 and V3 bNAbs were higher potential glycosylation sites and/or relatively longer V1 and V4 domains, including known "signature" mutations. The study shows significant variability in the breadth and potency of bNAbs against circulating HIV-1 subtype C envelopes. VRC07-LS, N6.LS, VRC01, PGT151, 10-1074, and PGT121 display broad activity against subtype C variants, and major determinants of sensitivity to most bNAbs were within the V1/V4 domains. IMPORTANCE Broadly neutralizing antibodies (bNAbs) have potential clinical utility in HIV-1 prevention and cure strategies. However, bNAbs target diverse epitopes on the HIV-1 envelope and the virus may evolve to evade immune responses. It is therefore important to identify antibodies with broad activity in high prevalence settings, as well as the genetic patterns that may lead to neutralization escape. We investigated 15 bNAbs with diverse biophysical properties that target six epitopes of the HIV-1 Env glycoprotein for their ability to inhibit viruses that initiated infection, viruses circulating in plasma at chronic infection before antiretroviral treatment (ART), or viruses that were archived in the reservoir during ART in subtype C infected individuals in South Africa, a high burden country. We identify the antibodies most likely to be effective for clinical use in this setting and describe mutational patterns associated with neutralization escape from these antibodies.


Asunto(s)
Infecciones por VIH , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Humanos , Anticuerpos ampliamente neutralizantes/metabolismo , Epítopos/genética , Anticuerpos Anti-VIH/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/genética , Filogenia , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(23): 12693-12699, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457160

RESUMEN

Natural environments can present diverse challenges, but some genotypes remain fit across many environments. Such "generalists" can be hard to evolve, outcompeted by specialists fitter in any particular environment. Here, inspired by the search for broadly neutralizing antibodies during B cell affinity maturation, we demonstrate that environmental changes on an intermediate timescale can reliably evolve generalists, even when faster or slower environmental changes are unable to do so. We find that changing environments on timescales comparable with evolutionary transients in a population enhance the rate of evolving generalists from specialists, without enhancing the reverse process. The yield of generalists is further increased in more complex dynamic environments, such as a "chirp" of increasing frequency. Our work offers design principles for how nonequilibrium fitness "seascapes" can dynamically funnel populations to genotypes unobtainable in static environments.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos/genética , Ambiente , Evolución Molecular , Modelos Genéticos , Animales , Anticuerpos Neutralizantes/genética , Especificidad de Anticuerpos/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Diferenciación Celular , Genotipo , Humanos
14.
Clin Infect Dis ; 75(8): 1342-1350, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-35234862

RESUMEN

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) sequence diversity and the presence of archived epitope muta-tions in antibody binding sites are a major obstacle for the clinical application of broadly neutralizing antibodies (bNAbs) against HIV-1. Specifically, it is unclear to what degree the viral reservoir is compartmentalized and if virus susceptibility to antibody neutralization differs across tissues. METHODS: The Last Gift cohort enrolled 7 people with HIV diagnosed with a terminal illness and collected antemortem blood and postmortem tissues across 33 anatomical compartments for near full-length env HIV genome sequencing. Using these data, we applied a Bayesian machine-learning model (Markov chain Monte Carlo-support vector machine) that uses HIV-1 envelope sequences and approximated glycan-occupancy information to quantitatively predict the half-maximal inhib-itory concentrations (IC50) of bNAbs, allowing us to map neutralization resistance pattern across tissue reservoirs. RESULTS: Predicted mean susceptibilities across tissues within participants were relatively homogenous, and the susceptibility pattern observed in blood often matched what was predicted for tissues. However, selected tissues, such as the brain, showed ev-idence of compartmentalized viral populations with distinct neutralization susceptibilities in some participants. Additionally, we found substantial heterogeneity in the range of neutralization susceptibilities across tissues within and between indi-viduals, and between bNAbs within individuals (standard deviation of log2(IC50) >3.4). CONCLUSIONS: Blood-based screening methods to determine viral susceptibility to bNAbs might underestimate the presence of resistant viral variants in tissues. The extent to which these resistant viruses are clinically relevant, that is, lead to bNAb therapeutic failure, needs to be further explored.


Asunto(s)
Infecciones por VIH , VIH-1 , Anticuerpos Neutralizantes , Teorema de Bayes , Anticuerpos ampliamente neutralizantes , Epítopos , Anticuerpos Anti-VIH , VIH-1/genética , Humanos , Pruebas de Neutralización , Polisacáridos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
15.
Annu Rev Med ; 71: 329-346, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31986089

RESUMEN

In the last decade, over a dozen potent broadly neutralizing antibodies (bnAbs) to several HIV envelope protein epitopes have been identified, and their in vitro neutralization profiles have been defined. Many have demonstrated prevention efficacy in preclinical trials and favorable safety and pharmacokinetic profiles in early human clinical trials. The first human prevention efficacy trials using 10 sequential, every-two-month administrations of a single anti-HIV bnAb are anticipated to conclude in 2020. Combinations of complementary bnAbs and multi-specific bnAbs exhibit improved breadth and potency over most individual antibodies and are entering advanced clinical development. Genetic engineering of the Fc regions has markedly improved bnAb half-life, increased mucosal tissue concentrations of antibodies (especially in the genital tract), and enhanced immunomodulatory and Fc effector functionality, all of which improve antibodies' preventative and therapeutic potential. Human-derived monoclonal antibodies are likely to enter the realm of primary care prevention and therapy for viral infections in the near future.


Asunto(s)
Anticuerpos ampliamente neutralizantes/uso terapéutico , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/prevención & control , Inmunización Pasiva/métodos , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Ensayos Clínicos como Asunto , Humanos , Farmacocinética , Ingeniería de Proteínas , Receptores Fc/genética
16.
EMBO J ; 37(18)2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30087111

RESUMEN

Here, we describe a one-step, in vivo CRISPR/Cas9 nuclease-mediated strategy to generate knock-in mice. We produced knock-in (KI) mice wherein a 1.9-kb DNA fragment bearing a pre-arranged human B-cell receptor heavy chain was recombined into the native murine immunoglobulin locus. Our methodology relies on Cas9 nuclease-induced double-stranded breaks directed by two sgRNAs to occur within the specific target locus of fertilized oocytes. These double-stranded breaks are subsequently repaired via homology-directed repair by a plasmid-borne template containing the pre-arranged human immunoglobulin heavy chain. To validate our knock-in mouse model, we examined the expression of the KI immunoglobulin heavy chains by following B-cell development and performing single B-cell receptor sequencing. We optimized this strategy to generate immunoglobulin KI mice in a short amount of time with a high frequency of homologous recombination (30-50%). In the future, we envision that such knock-in mice will provide much needed vaccination models to evaluate immunoresponses against immunogens specific for various infectious diseases.


Asunto(s)
Linfocitos B/inmunología , Sistemas CRISPR-Cas , Técnicas de Sustitución del Gen/métodos , Cadenas Pesadas de Inmunoglobulina , Animales , Linfocitos B/citología , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Ratones , Ratones Transgénicos
17.
Eur J Immunol ; 51(8): 2051-2061, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34086344

RESUMEN

The potential of immunotherapy strategies utilizing broadly neutralizing antibodies (BNAbs), such as 3BNC117 and 10-1074, to limit viral replication while also facilitating clearance of HIV infected cells has heightened interest in identifying the predominant NK effector subset(s) capable of mediating antibody dependent cellular cytotoxicity (ADCC). Utilizing advanced polychromatic flow cytometry, we identified that CD57 positive NK cells from ART-suppressed in People Living With HIV (PLWH) expressed significantly higher levels of the CD16 FcγR receptor, 2B4 ADCC coreceptor, and HLA-DR activation marker while NKG2C positive NK cells expressed significantly higher levels of the CD2 ADCC coreceptor (p < 0.001, n = 32). Functionally, CD57 positive NK cells from ART-suppressed PLWH with either high or low NKG2C expansion exhibited significantly enhanced degranulation and IFN-γ production against heterologous gp120-coated ADCC targets coated with HIV reference plasma compared to CD57 negative NK cells (p = 0.0029, n = 11). CD57 positive NK cells from control donors lacking NKG2C expansion also exhibited significantly more degranulation and IFN-γ production at every timepoint tested against both heterologous ADCC targets (p = 0.019, n = 9) and HIV-1 infected autologous CD4+ primary T cells coated with BNAbs. Together, our data support CD57 positive and NKG2C positive NK cells as the predominant ADCC effector subsets capable of targeting HIV-infected CD4+ cells in the presence of 3BNC117 and 10-1074 immunotherapy.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/inmunología , Humanos
18.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177194

RESUMEN

Daily burden and clinical toxicities associated with antiretroviral therapy (ART) emphasize the need for alternative strategies to induce long-term human immunodeficiency virus (HIV) remission upon ART cessation. Broadly neutralizing antibodies (bNAbs) can both neutralize free virions and mediate effector functions against infected cells and therefore represent a leading immunotherapeutic approach. To increase potency and breadth, as well as to limit the development of resistant virus strains, it is likely that bNAbs will need to be administered in combination. It is therefore critical to identify bNAb combinations that can achieve robust polyfunctional antiviral activity against a high number of HIV strains. In this study, we systematically assessed the abilities of single bNAbs and triple bNAb combinations to mediate robust polyfunctional antiviral activity against a large panel of cross-clade simian-human immunodeficiency viruses (SHIVs), which are commonly used as tools for validation of therapeutic strategies targeting the HIV envelope in nonhuman primate models. We demonstrate that most bNAbs are capable of mediating both neutralizing and nonneutralizing effector functions against cross-clade SHIVs, although the susceptibility to V3 glycan-specific bNAbs is highly strain dependent. Moreover, we observe a strong correlation between the neutralization potencies and nonneutralizing effector functions of bNAbs against the transmitted/founder SHIV CH505. Finally, we identify several triple bNAb combinations comprising of CD4 binding site-, V2-glycan-, and gp120-gp41 interface-targeting bNAbs that are capable of mediating synergistic polyfunctional antiviral activities against multiple clade A, B, C, and D SHIVs.IMPORTANCE Optimal bNAb immunotherapeutics will need to mediate multiple antiviral functions against a broad range of HIV strains. Our systematic assessment of triple bNAb combinations against SHIVs will identify bNAbs with synergistic, polyfunctional antiviral activity that will inform the selection of candidate bNAbs for optimal combination designs. The identified combinations can be validated in vivo in future passive immunization studies using the SHIV challenge model.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos ampliamente neutralizantes/uso terapéutico , Anticuerpos Anti-VIH/uso terapéutico , Mutación , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Humanos , Inmunización Pasiva , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
19.
Bull Exp Biol Med ; 172(6): 729-733, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35501651

RESUMEN

HIV-1 env-pseudoviruses are a useful tool in the search for antiviral drugs (entry inhibitors) and evaluation of the efficacy of HIV-1 vaccines. Given the high genetic variability of HIV-1, it is necessary to regularly update the panels of pseudoviruses in accordance with the emergence of new strains. Based on genetic variants of HIV-1 circulating in the regions of the Siberian Federal District, 13 HIV-1 env-pseudoviruses of recombinant form CRF63_02A and subtype A6 were obtained. Most pseudoviruses have been shown to be sensitive to neutralization by bnAbs VRC01, PGT126, and 10E8, moderately sensitive to bnAbs PG9 and 4E10, and resistant to bnAbs 2G12, PG16, and 2F5. All obtained variants of pseudoviruses are CCR5-tropic.


Asunto(s)
Infecciones por VIH , VIH-1 , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , VIH-1/genética , Humanos , Pruebas de Neutralización
20.
Retrovirology ; 18(1): 17, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183026

RESUMEN

BACKGROUND: HIV remains one of the most important health issues worldwide, with almost 40 million people living with HIV. Although patients develop antibodies against the virus, its high mutation rate allows evasion of immune responses. Some patients, however, produce antibodies that are able to bind to, and neutralise different strains of HIV. One such 'broadly neutralising' antibody is 'N6'. Identified in 2016, N6 can neutralise 98% of HIV-1 isolates with a median IC50 of 0.066 µg/mL. This neutralisation breadth makes N6 a very promising therapeutic candidate. RESULTS: N6 was expressed in a glycoengineered line of N. benthamiana plants (pN6) and compared to the mammalian cell-expressed equivalent (mN6). Expression at 49 mg/kg (fresh leaf tissue) was achieved in plants, although extraction and purification are more challenging than for most plant-expressed antibodies. N-glycoanalysis demonstrated the absence of xylosylation and a reduction in α(1,3)-fucosylation that are typically found in plant glycoproteins. The N6 light chain contains a potential N-glycosylation site, which was modified and displayed more α(1,3)-fucose than the heavy chain. The binding kinetics of pN6 and mN6, measured by surface plasmon resonance, were similar for HIV gp120. pN6 had a tenfold higher affinity for FcγRIIIa, which was reflected in an antibody-dependent cellular cytotoxicity assay, where pN6 induced a more potent response from effector cells than that of mN6. pN6 demonstrated the same potency and breadth of neutralisation as mN6, against a panel of HIV strains. CONCLUSIONS: The successful expression of N6 in tobacco supports the prospect of developing a low-cost, low-tech production platform for a monoclonal antibody cocktail to control HIV in low-to middle income countries.


Asunto(s)
Anticuerpos Neutralizantes/análisis , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/genética , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Nicotiana/inmunología , Células HEK293 , Anticuerpos Anti-VIH/aislamiento & purificación , Infecciones por VIH/inmunología , Infecciones por VIH/terapia , VIH-1/genética , Humanos , Concentración 50 Inhibidora , Pruebas de Neutralización , Hojas de la Planta/genética , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA