Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.652
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Microbiol ; 121(1): 69-84, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38017607

RESUMEN

Ingestion and killing of bacteria by phagocytic cells are critical processes to protect the human body from bacterial infections. In addition, some immune cells (neutrophils, NK cells) can release microbicidal molecules in the extracellular medium to eliminate non-ingested microorganism. Molecular mechanisms involved in the resulting intracellular and extracellular killing are still poorly understood. In this study, we used the amoeba Dictyostelium discoideum as a model phagocyte to investigate the mechanisms allowing intracellular and extracellular killing of Pseudomonas aeruginosa. When a D. discoideum cell establishes a close contact with a P. aeruginosa bacterium, it can either ingest it and kill it in phagosomes, or kill it extracellularly, allowing a direct side-by-side comparison of these two killing modalities. Efficient intracellular destruction of P. aeruginosa requires the presence of the Kil2 pump in the phagosomal membrane. On the contrary, extracellular lysis is independent on Kil2 but requires the expression of the superoxide-producing protein NoxA, and the extracellular release of the AplA bacteriolytic protein. These results shed new light on the molecular mechanisms allowing elimination of P. aeruginosa bacteria by phagocytic cells.


Asunto(s)
Dictyostelium , Humanos , Dictyostelium/metabolismo , Dictyostelium/microbiología , Pseudomonas aeruginosa/metabolismo , Fagosomas/metabolismo , Neutrófilos , Antibacterianos/metabolismo , Bacterias
2.
Am J Respir Crit Care Med ; 210(3): 343-351, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564365

RESUMEN

Rationale: Observational studies suggest that high-dose isoniazid may be efficacious in treating multidrug-resistant tuberculosis. However, its activity against Mycobacterium tuberculosis (M.tb) with katG mutations (which typically confer high-level resistance) is not established. Objectives: To characterize the early bactericidal activity (EBA) of high-dose isoniazid in patients with tuberculosis caused by katG-mutated M.tb. Methods: A5312 was a phase IIA randomized, open-label trial. Participants with tuberculosis caused by katG-mutated M.tb were randomized to receive 15 or 20 mg/kg isoniazid daily for 7 days. Daily sputum samples were collected for quantitative culture. Intensive pharmacokinetic sampling was performed on Day 6. Data were pooled across all A5312 participants for analysis (drug-sensitive, inhA-mutated, and katG-mutated M.tb). EBA was determined using nonlinear mixed-effects modeling. Measurements and Main Results: Of 80 treated participants, 21 had katG-mutated M.tb. Isoniazid pharmacokinetics were best described by a two-compartment model with an effect of NAT2 acetylator phenotype on clearance. Model-derived maximum concentration and area under the concentration-time curve in the 15 and 20 mg/kg groups were 15.0 and 22.1 mg/L and 57.6 and 76.8 mg ⋅ h/L, respectively. Isoniazid bacterial kill was described using an effect compartment and a sigmoidal maximum efficacy relationship. Isoniazid potency against katG-mutated M.tb was approximately 10-fold lower than in inhA-mutated M.tb. The highest dose of 20 mg/kg did not demonstrate measurable EBA, except against a subset of slow NAT2 acetylators (who experienced the highest concentrations). There were no grade 3 or higher drug-related adverse events. Conclusions: This study found negligible bactericidal activity of high-dose isoniazid (15-20 mg/kg) in the majority of participants with tuberculosis caused by katG-mutated M.tb. Clinical trial registered with www.clinicaltrials.gov (NCT01936831).


Asunto(s)
Antituberculosos , Proteínas Bacterianas , Isoniazida , Mutación , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Isoniazida/farmacocinética , Isoniazida/administración & dosificación , Isoniazida/farmacología , Isoniazida/uso terapéutico , Humanos , Antituberculosos/farmacocinética , Antituberculosos/administración & dosificación , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Femenino , Masculino , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Adulto , Persona de Mediana Edad , Proteínas Bacterianas/genética , Catalasa/genética , Relación Dosis-Respuesta a Droga , Anciano , Pruebas de Sensibilidad Microbiana
3.
J Infect Dis ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941358

RESUMEN

BACKGROUND: TBAJ-876 is a next-generation diarylquinoline. In vivo, diarylquinoline metabolites are formed with activity against Mycobacterium tuberculosis. Species-specific differences in parent drug-to-metabolite ratios might impact the translational value of animal model-based predictions. This study investigates the contribution of TBAJ-876 and its major active metabolite, TBAJ-876-M3 (M3), to the total bactericidal activity in a mouse tuberculosis model. METHODS: In vitro activity of TBAJ-876 and M3 was investigated and compared to bedaquiline. Subsequently, a dose-response study was conducted in M. tuberculosis-infected BALB/c mice treated with TBAJ-876 (1.6/6.3/25 mg/kg) or M3 (3.1/12.5/50 mg/kg). Colony-forming units in the lungs and TBAJ-876 and M3 plasma concentrations were determined. M3's contribution to TBAJ-876's bactericidal activity was estimated based on M3-exposure following TBAJ-876 treatment and corresponding M3-activity observed in M3-treated animals. RESULTS: TBAJ-876 and M3 demonstrated profound bactericidal activity. Lungs of mice treated for 4 weeks with 50 mg/kg M3 were culture-negative. Following TBAJ-876 treatment, M3-exposures were 2.2-3.6x higher than for TBAJ-876. TBAJ-876 activity was substantially attributable to M3, given its high exposure and potent activity. CONCLUSION: These findings emphasize the need to consider metabolites and their potentially distinct exposure and activity profiles compared to parent drugs to enhance the translational value of mouse model-driven predictions.

4.
Infect Immun ; 92(8): e0020724, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38980047

RESUMEN

Interbacterial antagonism involves all major phyla, occurs across the full range of ecological niches, and has great significance for the environment, clinical arena, and agricultural and industrial sectors. Though the earliest insight into interbacterial antagonism traces back to the discovery of antibiotics, a paradigm shift happened when it was learned that protein secretion systems (e.g., types VI and IV secretion systems) deliver toxic "effectors" against competitors. However, a link between interbacterial antagonism and the Gram-negative type II secretion system (T2SS), which exists in many pathogens and environmental species, is not evident in prior reviews on bacterial competition or T2SS function. A current examination of the literature revealed four examples of a T2SS or one of its known substrates having a bactericidal activity against a Gram-positive target or another Gram-negative. When further studied, the T2SS effectors proved to be peptidases that target the peptidoglycan of the competitor. There are also reports of various bacteriolytic enzymes occurring in the culture supernatants of some other Gram-negative species, and a link between these bactericidal activities and T2SS is suggested. Thus, a T2SS can be a mediator of interbacterial antagonism, and it is possible that many T2SSs have antibacterial outputs. Yet, at present, the T2SS remains relatively understudied for its role in interbacterial competition. Arguably, there is a need to analyze the T2SSs of a broader range of species for their role in interbacterial antagonism. Such investigation offers, among other things, a possible pathway toward developing new antimicrobials for treating disease.


Asunto(s)
Sistemas de Secreción Tipo II , Sistemas de Secreción Tipo II/metabolismo , Antibiosis , Bacterias Gramnegativas/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Antibacterianos/farmacología , Humanos
5.
Antimicrob Agents Chemother ; 68(7): e0160123, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38829050

RESUMEN

We examined the correlation between three different methods of Mycobacterium tuberculosis quantification: time to positivity (TTP), log10 CFU, and an assay to detect differentially detectable M. tuberculosis (DD Mtb) from three different prospective studies. Participants with DD Mtb have significantly more variation in the CFU/TTP correlation than participants with no DD Mtb (P < 0.001). This may impact the design of early bactericidal activity studies that use TTP as the primary outcome.


Asunto(s)
Carga Bacteriana , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efectos de los fármacos , Humanos , Carga Bacteriana/métodos , Estudios Prospectivos , Masculino , Adulto , Femenino
6.
Antimicrob Agents Chemother ; 68(8): e0019024, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39016594

RESUMEN

According to the World Health Organization, the number of tuberculosis (TB) infections and the drug-resistant burden worldwide increased by 4.5% and 3.0%, respectively, between 2020 and 2021. Disease severity and complexity drive the interest for undertaking new clinical trials to provide efficient treatment to limit spread and drug resistance. TB Alliance conducted a phase 2 study in 106 patients to guide linezolid (LZD) dose selection using early bactericidal activity over 14 days of treatment. LZD is highly efficient for drug-resistant TB treatment, but treatment monitoring is required since serious adverse events can occur. The objective of this study was to develop a pharmacokinetic-pharmacodynamic (PKPD) model to analyze the dose-response relationship between linezolid exposure and efficacy biomarkers. Using time to positivity (TTP) and colony-forming unit (CFU) count data, we developed a PKPD model in six dosing regimens, differing on LZD dosing intensity. A one-compartment model with five transit absorption compartments and non-linear auto-inhibition elimination described best LZD pharmacokinetic characteristics. TTP and CFU logarithmic scaled [log(CFU)] showed a bactericidal activity of LZD against Mycobacterium tuberculosis. TTP was defined by a model with two significant covariates: the presence of uni- and bilateral cavities decreased baseline TTP value by 24%, and an increase on every 500 mg/L/h of cumulative area under the curve increased the rate at which TTP and CFU change from baseline by 20% and 11%, respectively. CLINICAL TRIALS: This study is registered with ClinicalTrials.gov as NCT02279875.


Asunto(s)
Antituberculosos , Linezolid , Mycobacterium tuberculosis , Linezolid/farmacocinética , Linezolid/farmacología , Linezolid/administración & dosificación , Humanos , Antituberculosos/farmacocinética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Antituberculosos/administración & dosificación , Mycobacterium tuberculosis/efectos de los fármacos , Adulto , Masculino , Femenino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Relación Dosis-Respuesta a Droga , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Recuento de Colonia Microbiana
7.
Antimicrob Agents Chemother ; 68(8): e0026124, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39037241

RESUMEN

Efflux of antibiotics is an important survival strategy in bacteria. Mycobacterium tuberculosis has approximately sixty efflux pumps, but little is known about the role of each pump or the substrates they efflux. The putative efflux pump, EfpA, is a member of the major facilitator superfamily and has been shown to be essential by saturation transposon mutagenesis studies. It has been implicated in the efflux of isoniazid (INH), which is a first-line drug used to treat tuberculosis (TB). This is supported by evidence from transcriptional profiling showing that efpA is induced in response to INH exposure. However, its roles in the physiology and adaptation of M. tuberculosis to antibiotics have yet to be determined. In this study, we describe the repression of efpA in M. tuberculosis, using CRISPR interference (CRISPRi) to knockdown the expression of this essential gene and the direct effect of this on the ability of M. tuberculosis to survive exposure to INH over a 45-day time course. We determined that wild-type levels of efpA were required for recovery of M. tuberculosis following INH exposure and that, after 45 days of INH exposure, only a few viable colonies were recoverable from efpA-repressed M. tuberculosis. We conclude that EfpA is required for recovery of M. tuberculosis following INH exposure, which could reduce the efficacy of INH in vivo, and that EfpA may have a role in the development of resistance during drug therapy.


Asunto(s)
Antituberculosos , Proteínas Bacterianas , Isoniazida , Mycobacterium tuberculosis , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Antituberculosos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
8.
Antimicrob Agents Chemother ; 68(3): e0162123, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38364016

RESUMEN

Antimicrobial resistance is emerging in clinical strains of Clostridioides difficile. Ibezapolstat (IBZ) is a DNA polymerase IIIC inhibitor that has completed phase II clinical trials. IBZ has potent in vitro activity against wild-type, susceptible strains but its effect on C. difficile strains with reduced susceptibility to metronidazole (MTZ), vancomycin (VAN), or fidaxomicin (FDX) has not been tested. The primary objective of this study was to test the antibacterial properties of IBZ against multidrug-resistant C. difficile strains. The in vitro activity, bactericidal, and time-kill activity of IBZ versus comparators were evaluated against 100 clinical strains of which 59 had reduced susceptibility to other C. difficile antibiotics. Morphologic changes against a multidrug resistance strain were visualized by light and scanning electron microscopy. The overall IBZ MIC50/90 values (µg/mL) for evaluated C. difficile strains were 4/8, compared with 2/4 for VAN, 0.5/1 for FDX, and 0.25/4 for MTZ. IBZ MIC50/90 values did not differ based on non-susceptibility to antibiotic class or number of classes to which strains were non-susceptible. IBZ bactericidal activity was similar to the minimum inhibitory concentration (MIC) and maintained in wild-type and non-susceptible strains. Time-kill assays against two laboratory wild-type and two clinical non-susceptible strains demonstrated sustained IBZ activity despite reduced killing by comparator antibiotics for IBZ and VAN non-susceptible strains. Microscopy visualized increased cell lengthening and cellular damage in multidrug-resistant strains exposed to IBZ sub-MIC concentrations. This study demonstrated the potent antibacterial activity of IBZ against a large collection of C. difficile strains including multidrug-resistant strains. This study highlights the therapeutic potential of IBZ against multidrug-resistant strains of C. difficile.


Asunto(s)
Antiinfecciosos , Clostridioides difficile , Infecciones por Clostridium , Nucleósidos de Purina , Humanos , Clostridioides , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Vancomicina/farmacología , Vancomicina/uso terapéutico , Metronidazol/farmacología , Metronidazol/uso terapéutico , Fidaxomicina/farmacología , Fidaxomicina/uso terapéutico , Pruebas de Sensibilidad Microbiana
9.
BMC Microbiol ; 24(1): 55, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341536

RESUMEN

BACKGROUND: The emergence of carbapenem-resistant and extensively drug-resistant (XDR) Acinetobacter baumannii as well as inadequate effective antibiotics calls for an urgent effort to find new antibacterial agents. The therapeutic efficacy of two human scFvs, EB211 and EB279, showing growth inhibitory activity against A. baumannii in vitro, was investigated in immunocompromised mice with A. baumannii pneumonia. RESULTS: The data revealed that infected mice treated with EB211, EB279, and a combination of the two scFvs showed better survival, reduced bacterial load in the lungs, and no marked pathological abnormalities in the kidneys, liver, and lungs when compared to the control groups receiving normal saline or an irrelevant scFv. CONCLUSIONS: The results from this study suggest that the scFvs with direct growth inhibitory activity could offer promising results in the treatment of pneumonia caused by XDR A. baumannii.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Neumonía , Anticuerpos de Cadena Única , Humanos , Animales , Ratones , Anticuerpos de Cadena Única/farmacología , Anticuerpos de Cadena Única/uso terapéutico , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Neumonía/tratamiento farmacológico , Neumonía/microbiología , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana
10.
J Biomed Sci ; 31(1): 18, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287360

RESUMEN

BACKGROUND: Mycobacterium abscessus, a fast-growing non-tuberculous mycobacterium, is an emerging opportunistic pathogen responsible for chronic bronchopulmonary infections in people with respiratory diseases such as cystic fibrosis (CF). Due to its intrinsic polyresistance to a wide range of antibiotics, most treatments for M. abscessus pulmonary infections are poorly effective. In this context, antimicrobial peptides (AMPs) active against bacterial strains and less prompt to cause resistance, represent a good alternative to conventional antibiotics. Herein, we evaluated the effect of three arenicin isoforms, possessing two or four Cysteines involved in one (Ar-1, Ar-2) or two disulfide bonds (Ar-3), on the in vitro growth of M. abscessus. METHODS: The respective disulfide-free AMPs, were built by replacing the Cysteines with alpha-amino-n-butyric acid (Abu) residue. We evaluated the efficiency of the eight arenicin derivatives through their antimicrobial activity against M. abscessus strains, their cytotoxicity towards human cell lines, and their hemolytic activity on human erythrocytes. The mechanism of action of the Ar-1 peptide was further investigated through membrane permeabilization assay, electron microscopy, lipid insertion assay via surface pressure measurement, and the induction of resistance assay. RESULTS: Our results demonstrated that Ar-1 was the safest peptide with no toxicity towards human cells and no hemolytic activity, and the most active against M. abscessus growth. Ar-1 acts by insertion into mycobacterial lipids, resulting in a rapid membranolytic effect that kills M. abscessus without induction of resistance. CONCLUSION: Overall, the present study emphasized Ar-1 as a potential new alternative to conventional antibiotics in the treatment of CF-associated bacterial infection related to M. abscessus.


Asunto(s)
Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Poliestirenos , Humanos , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Antibacterianos/farmacología , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Péptidos/farmacología , Pruebas de Sensibilidad Microbiana
11.
Horm Behav ; 160: 105500, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38316079

RESUMEN

The immune system can be modulated when organisms are exposed to acute or chronic stressors. Glucocorticoids (GCs), the primary hormonal mediators of the physiological stress response, are suspected to play a crucial role in immune modulation. However, most evidence of stress-associated immunomodulation does not separate the effects of glucocorticoid-dependent pathways from those of glucocorticoid-independent mechanisms on immune function. In this study, we experimentally elevated circulating corticosterone, the main avian glucocorticoid, in free-living female tree swallows (Tachycineta bicolor) for one to two weeks to test its effects on immune modulation. Natural variation in bacteria killing ability (BKA), a measure of innate constitutive immunity, was predicted by the interaction between timing of breeding and corticosterone levels. However, experimental elevation of corticosterone had no effect on BKA. Therefore, even when BKA is correlated with natural variation in glucocorticoid levels, this relationship may not be causal. Experiments are necessary to uncover the causal mechanisms of immunomodulation and the consequences of acute and chronic stress on disease vulnerability. Findings in other species indicate that acute increases in GCs can suppress BKA; but our results support the hypothesis that this effect does not persist over longer timescales, during chronic elevations in GCs. Direct comparisons of the effects of acute vs. chronic elevation of GCs on BKA will be important for testing this hypothesis.


Asunto(s)
Corticosterona , Golondrinas , Animales , Corticosterona/farmacología , Glucocorticoides/farmacología , Golondrinas/fisiología , Estrés Fisiológico , Inmunidad Innata
12.
Arch Microbiol ; 206(9): 389, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210205

RESUMEN

Exopolysaccharides produced by lactic acid bacteria have gained attention for their potential health benefits and applications in functional foods. This study explores the isolation and characterization of a novel exopolysaccharide-producing strain from dairy products. The aim was to evaluate its probiotic potential and investigate the properties of the produced exopolysaccharide. A strain identified as Enterococcus faecium PCH.25, isolated from cow butter, demonstrated exopolysaccharide production. The study's novelty lies in the comprehensive characterization of this strain and its exopolysaccharide, revealing unique properties with potential applications in food, cosmetic, and pharmaceutical industries. The E. faecium PCH.25 strain exhibited strong acid tolerance, with a 92.24% viability rate at pH 2 after 2 h of incubation. It also demonstrated notable auto-aggregation (85.27% after 24 h) and co-aggregation abilities, antibiotic sensitivity, and absence of hemolytic activity, suggesting its probiotic potential. The exopolysaccharide produced by this strain showed bactericidal activity (MIC and MBC = 1.8 mg/ml) against Listeria monocytogenes and antioxidant properties (22.8%). Chemical analysis revealed a heteropolysaccharide composed of glucose and fructose monomers, with various functional groups contributing to its bioactivities. Physical characterization of the exopolysaccharide indicated thermal stability up to 270 °C, a negative zeta-potential (-27 mV), and an average particle size of 235 nm. Scanning electron microscopy and energy dispersive X-ray analysis revealed a smooth, nonporous structure primarily composed of carbon and oxygen, with an amorphous nature. These findings suggest that the exopolysaccharide from E. faecium PCH.25 has potential as a natural antibacterial and antioxidant polymer for use in functional foods, cosmetics, and pharmaceuticals.


Asunto(s)
Antibacterianos , Antioxidantes , Mantequilla , Enterococcus faecium , Listeria monocytogenes , Polisacáridos Bacterianos , Probióticos , Enterococcus faecium/metabolismo , Probióticos/aislamiento & purificación , Probióticos/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Antioxidantes/química , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/aislamiento & purificación , Animales , Listeria monocytogenes/efectos de los fármacos , Mantequilla/microbiología , Bovinos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
13.
Int Microbiol ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506949

RESUMEN

Essential oils are highly complex volatile chemical compounds utilized for food preservation. The present study compares the antibacterial, and antibiofilm activities of essential oils (EOs) and their blends. Three EOs-basil, clove, and lemongrass-and their blends were evaluated against five food-borne bacterial pathogens. A concentration-dependent effect with maximum inhibition at minimum inhibitory concentration values was recorded while no synergistic activity was observed on blending of EOs. The mechanism of antibacterial action was identified as ROS burst, leakage of cytoplasmic content, and DNA degradation through fluorescence microscopy, electrical conductivity, and DNA cleavage studies. The role of EOs on biofilm growth was deciphered with lemongrass EO being most effective as it curbed biofilm formation on the surface of corn-starch packaging films. This work highlights the antibacterial action mechanism of EOs and their potential role in curtailing biofilm growth on food-grade packaging material.

14.
Vet Res ; 55(1): 14, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317258

RESUMEN

Streptococcus suis (S. suis) is an important porcine pathogen causing meningitis, arthritis, and septicemia. Serotypes 2 and 14 are the most common zoonotic ones worldwide, whereas serotypes 2, 9, and 7 are very important in pigs in Europe. To cause invasive infections S. suis needs to enter the bloodstream. Consequently, the immune response in blood represents an important line of defense and bacteremia plays a key role in the pathogenesis of invasive S. suis infections. We investigated the working hypothesis that S. suis strains of the same serotype but different clonal complex (CC) might exhibit substantial differences in the interaction with components of the immune system in porcine blood. The experimental design of this study includes comparative analysis of 8 virulent strains belonging to 4 serotypes with strains of the same serotype being genetically not closely related. Significant differences between two strains of the same serotype but different clonal complex were recorded in the flow cytometric analysis of association with different leukocytes for serotype 9 and 14. Our results demonstrate that the serotype 9 strain of CC94 shows significantly increased association with monocytes and survival in porcine blood of conventional piglets as well as a tendency towards decreased composition of C3 in plasma of these piglets in comparison to the serotype 9 strain of CC16. Correlation analysis of C3 deposition on the bacterial surface and survival in respective blood samples of 8-week-old piglets demonstrated a negative correlation indicating that C3 deposition is a crucial step to limit bacterial survival and proliferation of different S. suis pathotypes in the blood of these piglets. In summary, our results indicate that the capsule composition of a S. suis strain is not alone sufficient to determine association with leukocytes, activation of complement, induction of proinflammatory cytokines, oxidative burst, and bacterial survival in porcine blood. In this study, substantial differences in these host-pathogen interactions were observed between strains of the same serotype. Therefore, a more comprehensive characterization of the field isolates, including at least MLST analysis to determine the sequence type/clonal complex, is recommended.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus suis , Enfermedades de los Porcinos , Porcinos , Animales , Streptococcus suis/genética , Monocitos , Tipificación de Secuencias Multilocus/veterinaria , Serogrupo , Granulocitos , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/veterinaria , Enfermedades de los Porcinos/microbiología
15.
Bioorg Med Chem Lett ; 109: 129822, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823728

RESUMEN

The quest for novel antibacterial agents is imperative in the face of escalating antibiotic resistance. Naturally occurring tetrahydro-ß-carboline (THßC) alkaloids have been highlighted due to their significant biological derivatives. However, these structures have been little explored for antibacterial drugs development. In this study, a series of 1,2,3,4-THßC derivatives were synthesized and assessed for their antibacterial prowess against both gram-positive and gram-negative bacteria. The compounds exhibited moderate to good antibacterial activity, with some compounds showing superior efficacy against gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA), to that of Gentamicin. Among these analogs, compound 3k emerged as a hit compound, demonstrating rapid bactericidal action and a significant post-antibacterial effect, with significant cytotoxicity towards human LO2 and HepG2 cells. In addition, compound 3k (10 mg/kg) showed comparable anti-MRSA efficacy to Ciprofloxacin (2 mg/kg) in a mouse model of abdominal infection. Overall, the present findings suggested that THßC derivatives based on the title compounds hold promising applications in the development of antibacterial drugs.


Asunto(s)
Antibacterianos , Carbolinas , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Carbolinas/farmacología , Carbolinas/química , Carbolinas/síntesis química , Humanos , Relación Estructura-Actividad , Animales , Ratones , Bacterias Grampositivas/efectos de los fármacos , Estructura Molecular , Bacterias Gramnegativas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos
16.
Fish Shellfish Immunol ; 152: 109791, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067494

RESUMEN

Antimicrobial peptides (AMPs), characterized by their cationic nature and amphiphilic properties, play a pivotal role in inhibiting the biological activity of microbes. Currently, only a fraction of the antimicrobial potential within the ribosomal protein family has been explored, despite its extensive membership and resemblance to AMPs. Herein we demonstrated that amphioxus RPL17 (BjRPL17) exhibited not only upregulated expression upon bacterial stimulation but also possessed bactericidal capabilities against both Gram-negative and -positive bacteria through combined action mechanisms including interaction with cell surface molecules LPS, LTA, and PGN, disruption of cell membrane integrity, promotion of membrane depolarization, and induction of intracellular ROS production. Furthermore, a peptide derived from residues 127-141 of BjRPL17 (termed BjRPL17-1) showed antibacterial activity against Staphylococcus aureus and its methicillin-resistant strain via the same mechanism observed for the full-length protein. Additionally, the rpl17 gene was highly conserved in Metazoa, hinting it may play a universal role in the antibacterial defense system in different animals. Importantly, neither BjRPL17 nor peptide BjRPL17-1 exhibited toxicity towards mammalian cells thereby offering prospects for designing novel AMP agents based on these findings. Collectively, our results establish RPL17 as a novel member of AMPs with remarkable evolutionary conservation.


Asunto(s)
Secuencia de Aminoácidos , Anfioxos , Proteínas Ribosómicas , Animales , Anfioxos/genética , Anfioxos/inmunología , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/inmunología , Alineación de Secuencia/veterinaria , Staphylococcus aureus/fisiología , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Filogenia , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/inmunología
17.
Mol Biol Rep ; 51(1): 85, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38183506

RESUMEN

BACKGROUND: Urolithin B (UB), the antioxidant polyphenol has a protective impact on several organs against oxidative stress. However, its bioactivity is limited by its hydrophobic structure. In the current study, UB was encapsulated into a liposomal structure to improve its bioactivities anticancer, and antimicrobial potential. METHOD: The UB nano-emulsions (UB-NE) were synthesized and characterized utilizing FESEM, DLS, FTIR, and Zeta-potential analysis. The UB-NMs' selective toxicity was studied by conducting an MTT assay on MCF-7, PANC, AGS, and ASPC1 cells. The AO/PI analysis verified the UB-NMs' cytotoxicity on ASPC1 cell lines and approved the MTT results. Finally, the antibacterial activity of the UB-NMs was studied on both gram-positive (B. subtilis, S. aureus) and gram-negative (E. Coli, P. aeruginosa) bacteria by conducting MIC and MBC analysis. RESULT: The 68.15 nm UB-NMs did not reduce the normal HDF cells' survival. However, they reduced the cancer cells' (PANC and AGS cell lines) survival at high treatment concentrations (> 250 µg/mL) compared with normal HDF and cancer MCF-7 cells. Moreover, the IC50 doses of UB-NMs for the ASPC1 and PANC cancer cells were measured at 44.87, and 221.02 µg/mL, respectively. The UB-NMs selectively exhibited apoptotic-mediated cytotoxicity on the human pancreatic tumor cell line (ASPC1) by down-regulating BCL2 and NFKB gene expression. Also, the BAX gene expression was up-regulated in the ASPC1-treated cells. Moreover, they exhibited significant anti-bactericidal activity against the E. coli (MIC = 50 µg/mL, MBC = 150 µg/mL), P. aeruginosa (MIC = 75 µg/mL, MBC = 275 µg/mL), B. subtilis (MIC = 125 µg/mL, MBC = 450 µg/mL), and S. aureus (MIC = 50 µg/mL, MBC = 200 µg/mL) strains. CONCLUSION: The significant selective cytotoxic impact of the UB-NMs on the human pancreatic tumor cell line makes it an applicable anti-pancreatic cancer compound. Moreover, the antibacterial activity of UB-NMs has the potential to decrease bacterial-mediated pancreatic cancer. However, several bacterial strains and further cancer cell lines are required to verify the UB-NMs' anticancer potential.


Asunto(s)
Escherichia coli , Neoplasias Pancreáticas , Humanos , Staphylococcus aureus , Antibacterianos/farmacología , Células MCF-7
18.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39138062

RESUMEN

AIM: The aim of this study was to purify proanthocyanidins from areca nut seeds (P-AN) and to investigate the bactericidal activity and mechanism of the purified products against Streptococcus mutans. METHODS AND RESULTS: Ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry, Fourier transform infrared, Matrix-assisted laser desorption/ ionization time of flight mass spectrometry (MADLI-TOF-MS), and thiolysis experiment were used for P-AN chemical analysis. Time-kill analysis and glycolytic pH drop were used to evaluate the activity of S. mutans in vitro. Meanwhile, the investigation of the bacteriostatic mechanism included membrane protein, fluidity, permeability, and integrity tests. The results showed that P-AN was a kind of proanthocyanidin mainly composed of B-type proanthocyanidins and their polymers. Moreover, MADLI-TOF-MS and thiolysis experiments demonstrated that the degree of polymerization of P-AN was 13. The time-kill analysis showed that P-AN had strong bactericidal activity against S. mutans. P-AN at minimum inhibitory concentration (MIC) concentrations was able to induce S. mutans death, while complete lethality occurred at 2 MIC. Glycolysis test showed that P-AN significantly inhibited S. mutans acid production (P < .01). The morphological changes of S. mutans were observed by scanning electron microscopy and transmission electron microscopy experiments, which indicated that P-AN destroyed the cellular structure of S. mutans. At the same time, significant changes were observed in membrane proteins, fluidity, permeability, and integrity. CONCLUSION: P-AN can effectively inhibit the activity of S. mutans. P-AN can reduce the erosion of the tooth surface by the acid of S. mutans. P-AN could break the structure of the cell membrane protein of S. mutans. P-AN could destroy the integrity of membrane, resulting in the death of S. mutans.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Proantocianidinas , Semillas , Streptococcus mutans , Proantocianidinas/farmacología , Proantocianidinas/aislamiento & purificación , Proantocianidinas/química , Streptococcus mutans/efectos de los fármacos , Semillas/química , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Nueces/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
19.
Bioorg Chem ; 148: 107451, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759357

RESUMEN

Aminothiazolyl coumarins as potentially new antimicrobial agents were designed and synthesized in an effort to overcome drug resistance. Biological activity assay revealed that some target compounds exhibited significantly inhibitory efficiencies toward bacteria and fungi including drug-resistant pathogens. Especially, aminothiazolyl 7-propyl coumarin 8b and 4-dichlorobenzyl derivative 11b exhibited bactericidal potential (MBC/MIC = 2) toward clinically drug-resistant Enterococcus faecalis with low cytotoxicity to human lung adenocarcinoma A549 cells, rapidly bactericidal effects and no obvious bacterial resistance development against E. faecalis. The preliminary antibacterial action mechanism studies suggested that compound 11b was able to disturb E. faecalis membrane effectively, and interact with bacterial DNA isolated from resistant E. faecalis through noncovalent bonds to cleave DNA, thus inhibiting the growth of E. faecalis strain. Further molecular modeling indicated that compounds 8b and 11b could bind with SER-1084 and ASP-1083 residues of gyrase-DNA complex through hydrogen bonds and hydrophobic interactions. Moreover, compound 11b showed low hemolysis and in vivo toxicity. These findings of aminothiazolyl coumarins as unique structural scaffolds might hold a large promise for the treatments of drug-resistant bacterial infection.


Asunto(s)
Antibacterianos , Cumarinas , Enterococcus faecalis , Pruebas de Sensibilidad Microbiana , Enterococcus faecalis/efectos de los fármacos , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química , ADN Bacteriano/metabolismo , Células A549 , Hemólisis/efectos de los fármacos
20.
Bioorg Chem ; 150: 107534, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38896935

RESUMEN

Bacterial infections and the consequent outburst of bactericide-resistance issues are fatal menace to both global health and agricultural produce. Hence, it is crucial to explore candidate bactericides with new mechanisms of action. The filamenting temperature-sensitive mutant Z (FtsZ) protein has been recognized as a new promising and effective target for new bactericide discovery. Hence, using a scaffold-hopping strategy, we designed new 7H-pyrrolo[2,3-d]pyrimidine derivatives, evaluated their antibacterial activities, and investigated their structure-activity relationships. Among them, compound B6 exhibited the optimal in vitro bioactivity (EC50 = 4.65 µg/mL) against Xanthomonas oryzae pv. oryzae (Xoo), which was superior to the references (bismerthiazol [BT], EC50 = 48.67 µg/mL; thiodiazole copper [TC], EC50 = 98.57 µg/mL]. Furthermore, the potency of compound B6 in targeting FtsZ was validated by GTPase activity assay, FtsZ self-assembly observation, fluorescence titration, Fourier-transform infrared spectroscopy (FT-IR) assay, molecular dynamics simulations, and morphological observation. The GTPase activity assay showed that the final IC50 value of compound B6 against XooFtsZ was 235.0 µM. Interestingly, the GTPase activity results indicated that the B6-XooFtsZ complex has an excellent binding constant (KA = 103.24 M-1). Overall, the antibacterial behavior suggests that B6 can interact with XooFtsZ and inhibit its GTPase activity, leading to bacterial cell elongation and even death. In addition, compound B6 showed acceptable anti-Xoo activity in vivo and low toxicity, and also demonstrated a favorable pharmacokinetic profile predicted by ADMET analysis. Our findings provide new chemotypes for the development of FtsZ inhibitors as well as insights into their underlying mechanisms of action.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Proteínas del Citoesqueleto , Pruebas de Sensibilidad Microbiana , Pirimidinas , Xanthomonas , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Relación Estructura-Actividad , Xanthomonas/efectos de los fármacos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Estructura Molecular , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/metabolismo , Relación Dosis-Respuesta a Droga , Pirroles/química , Pirroles/farmacología , Pirroles/síntesis química , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA