RESUMEN
Surface functionalization with dipolar molecules is known to tune the electronic band alignment in semiconductor films and colloidal quantum dots. Yet, the influence of surface modification on plasmonic nanocrystals and their properties remains little explored. Here, we functionalize tin-doped indium oxide nanocrystals (ITO NCs) via ligand exchange with a series of cinnamic acids with different electron-withdrawing and -donating dipolar characters. Consistent with previous reports on semiconductors, we find that withdrawing (donating) ligands increase (decrease) the work function caused by an electrostatic potential shift across the molecular layer. Quantitative analyses of the plasmonic extinction spectra reveal that varying the ligand molecular dipole affects the near-surface depletion layer, with an anticorrelated trend between the electron concentration and electronic volume fraction, factors that are positively correlated in as-synthesized NCs. Electronic structure engineering through surface modification provides access to distinctive combinations of plasmonic properties that could enable optoelectronic applications, sensing, and hot electron-driven processes.
RESUMEN
Inadequate photo-generated charge separation, migration, and utilization efficiency limit the photocatalytic efficiency. Herein, a MoS2 /MIL-53(Fe) photocatalyst/activator with the S-scheme heterojunction structure is designed and the charge migration behavior is modulated by the internal electric field (IEF). The IEF intensity is enhanced to 40 mV by modulating band bending potential and the depletion layer length of MoS2 . The photo-generated electron migration process is boosted by constructing the electron migration bridge (Fe-O-S) and modulating the IEF as the driving force, confirmed by the density functional theory calculation. Compared with the pristine materials, the photocurrent density of MoS2 /MIL-53(Fe) is significantly enhanced 27.5 times. Contributed by the visible-light-driven cooperative catalytic degradation and the high-efficiency direct photo-generated electron reduction dichlorination process, satisfactory chlorinated antibiotics removal and detoxification performances are achieved. This study opens up new insights into the application of heterojunctions in photocatalytic activation of PDS in environmental remediation.
RESUMEN
Charge density wave (CDW) is a typical collective phenomenon, and the phase change is generally accompanied by electronic transition with potential device applications. For the continuous miniaturization of devices, it is important to investigate the size effect down to the nanoscale. In this work, single-layer (SL) 1T-NbSe2 islands provide an ideal research platform to investigate the size effect on CDW arrangement and electronic states. The CDW motifs (Star-of-David [SOD]) at the island border are along the edge, and those at the interior tend to arrange in a triangular lattice for islands as small as 5 nm. Interestingly, in some small islands, the SOD clusters rearrange into a square-like lattice, and each SOD cluster remains robust as a quantum motif, both in the sense of geometry and electronic structures. Moreover, the electronic structure at the center of the small islands is downwards shifted compared to the big islands, explained by the spatial extension of the band bending originating from the edge of the islands. These findings reveal the robust behavior of CDW motifs down to the nanoscale and provide new insights into the size-limiting effect on 2D2D CDW ordering and electronic states down to a few nanometer extremes.
RESUMEN
Interfacial charge effects, such as band bending, modulation doping, and energy filtering, are critical for improving electronic transport properties of superlattice films. However, effectively manipulating interfacial band bending has proven challenging in previous studies. In this study, (1T'-MoTe2 )x (Bi2 Te3 )y superlattice films with symmetry-mismatch were successfully fabricated via the molecular beam epitaxy. This enables to manipulate the interfacial band bending, thereby optimizing the corresponding thermoelectric performance. These results demonstrate that the increase of Te/Bi flux ratio (R) effectively tailored interfacial band bending, resulting in a reduction of the interfacial electric potential from ≈127 meV at R = 16 to ≈73 meV at R = 8. It is further verified that a smaller interfacial electric potential is more beneficial for optimizing the electronic transport properties of (1T'-MoTe2 )x (Bi2 Te3 )y . Especially, the (1T'-MoTe2 )1 (Bi2 Te3 )12 superlattice film displays the highest thermoelectric power factor of 2.72 mW m-1 K-2 among all films, due to the synergy of modulation doping, energy filtering, and the manipulation of band bending. Moreover, the lattice thermal conductivity of the superlattice films is significantly reduced. This work provides valuable guidance to manipulate the interfacial band bending and further enhance the thermoelectric performances of superlattice films.
RESUMEN
We report on the synthesis of ZnO nanoparticles and ZnO hierarchical nanorod structures using four different alcohols i.e. methanol, isopropanol, ethanol, and aqueous ethanol (70% alcohol, 30% water). The syntheses of the nanoparticles were carried out by non-aqueous and hydrothermal routes. In general, absolute alcohol allows a better control of the synthesis reaction and nanoparticles as small as 5 nm were obtained, confirmed by TEM. XPS analysis elucidated the chemical states that were correlated to the synthesis reaction. For the nanorod growth, these four alcohols were used as seeding solvents, followed by hydrothermal ZnO nanorod growth. Here, the seed layer tailored the nanorod diameters and surface defects, which were studied by SEM and photoluminescence spectroscopy. Subsequently, the ZnO nanorods were electrically characterized and exhibited persistent photoconductivity under UV irradiation of 365 nm. The differences in conductivity in dark and under UV irradiation were attributed to the size of the nanorods, defect states, semiconductor band bending and oxygen adsorption-desorption mechanisms. Parameters such as photoresponse and photosensitivity are also calculated in order to evaluate their applicability in UV sensors. This work demonstrates optimization of the physical, chemical, electrical and optical properties of both ZnO nanostructures via the use of alcoholic solvents.
RESUMEN
Nanostructures exhibit a large surface-to-volume ratio, which makes them sensitive to their ambient conditions. In particular, GaN nanowires and nanofins react to their environment as adsorbates influence their (opto-) electronic properties. Charge transfer between the semiconductor surface and adsorbed species changes the surface band bending of the nanostructures, and the adsorbates can alter the rate of non-radiative recombination in GaN. Despite the importance of these interactions with the ambient environment, the detailed adsorption mechanisms are still not fully understood. In this article, we present a systematic study concerning the environmental sensitivity of the electrical conductivity of GaN nanofins. We identify oxygen- and water-based adsorbates to be responsible for a quenching of the electrical current through GaN nanofins due to an increased surface band bending. Complementary contact potential difference measurements in controlled atmospheres on bulkm- andc-plane GaN reveal additional complexity with regard to water adsorption, for which surface dipoles might play an important role besides an increased surface depletion width. The sensitive reaction of the electrical parameters to the environment and surface condition underlines the necessity of a reproducible pre-treatment and/or surface passivation. The presented results help to further understand the complex adsorption mechanisms at GaN surfaces. Due to the sensitivity of the nanofin conductivity on the environment, such structures could perform well as sensing devices.
RESUMEN
Triboelectricity has been known since antiquity, but the fundamental science underlying this phenomenon lacks consensus. We present a flexoelectric model for triboelectricity where contact deformation induced band bending at the nanoscale is the driving force for charge transfer. This framework is combined with first-principles and finite element calculations to explore charge transfer implications for different contact geometry and materials combinations. We demonstrate that our ab initio based formulation is compatible with existing empirical models and experimental observations including charge transfer between similar materials and size/pressure dependencies associated with triboelectricity.
RESUMEN
The critical current response to an applied out-of-plane magnetic field in a Josephson junction provides insight into the uniformity of its current distribution. In Josephson junctions with semiconducting weak links, the carrier density, and therefore the overall current distribution, can be modified electrostatically via metallic gates. Here, we show local control of the current distribution in an epitaxial Al-InAs Josephson junction equipped with five minigates. We demonstrate that not only can the junction width be electrostatically defined but also the current profile can be locally adjusted to form superconducting quantum interference devices. Our studies show enhanced edge conduction in such long junctions, which can be eliminated by minigates to create a uniform current distribution.
RESUMEN
van der Waals materials exhibit naturally passivated surfaces and an ability to form versatile heterostructures to enable an examination of carrier transport mechanisms not seen in traditional materials. Here, we report a new type of homojunction termed a "band-bending junction" whose potential landscape depends solely on the difference in thickness between the two sides of the junction. Using MoS2 on Au as a prototypical example, we find that surface potential differences can arise from the degree of vertical band bending in thin and thick regions. Furthermore, by using scanning ultrafast electron microscopy, we examine the spatiotemporal dynamics of charge carriers generated at this junction and find that lateral carrier separation is enabled by differences in the band bending in the vertical direction, which we verify with simulations. Band-bending junctions may therefore enable new optoelectronic devices that rely solely on band bending arising from thickness variations to separate charge carriers.
Asunto(s)
Diagnóstico por ImagenRESUMEN
Charge injection is a basic transport process that strongly affects performance of optoelectronic devices such as light-emitting diodes and photodetectors. In these devices, the charge injection barrier is related to the band bending at the active layer/electrode interface and exhibits sophisticated dependence on interface structure and device operating conditions, making it difficult to determine via either theoretical prediction or experimental measurements. Here, in operando cross-sectional scanning Kelvin probe microscopy (SKPM) has been applied in organic photodetectors to visualize the interfacial band bending. The photoinduced interfacial band bending becomes more significant with increasing reverse bias voltage, resulting in reduced charge injection barrier and facilitated charge injection. The photoinduced injection current is orders of magnitude higher than the photocurrent directly generated from light absorption and thus leads to significant photomultiplication. Furthermore, the interfacial structure is tuned to further enhance photoinduced interfacial band bending and the photomultiplication factor.
RESUMEN
Metal-organic frameworks (MOFs) have been intensively studied as a class of semiconductor-like materials in photocatalysis. However, band bending, which plays a crucial role in semiconductor photocatalysis, has not yet been demonstrated in MOF photocatalysts. Herein, a representative MOF, MIL-125-NH2 , is integrated with the metal oxides (MoO3 and V2 O5 ) that feature appropriate work functions and energy levels to afford the corresponding MOF composites. Surface photovoltage results demonstrate band bending in the MOF composites, which gives rise to the built-in electric field of MIL-125-NH2 , boosting the charge separation. As a result, the MOF composites present 56 and 42â times higher activities, respectively, compared to the pristine MOF for photocatalytic H2 production. Upon depositing Pt onto the MOF, â¼6â times higher activity is achieved. This work illustrates band bending of MOFs for the first time, supporting their semiconductor-like nature, which would greatly promote MOF photocatalysis.
RESUMEN
Water-infiltration-induced power generation has the renewable characteristic of generating electrical energy from ambient water. Importantly, it is found that the carrier concentration in semiconductor constituting the energy generator seriously affect the electricity generation. Nevertheless, few studies are conducted on the influence of semiconductor carrier concentration, a crucial factor on electricity generation. Due to this, understanding of the energy harvesting mechanism is still insufficient. Herein, the semiconductor carrier concentration-dependent behavior in water-infiltration-induced electricity generation and the energy harvesting mechanism by ionovoltaic effect are comprehensively verified. A clue to enhance the electric power generation efficiency is also proposed. When 20 µL of water (NaCl, 0.1 m) infiltrates into a porous CuO nanowires film (PCNF), electric power of ≈0.5 V and ≈1 µA are produced for 25 min. Moreover, the PCNF shows good practicability by generating electricity using various ambient water, turning on LEDs, and being fabricated as a curved one.
Asunto(s)
Electricidad , Agua , SemiconductoresRESUMEN
Due to their intrinsically large surface-to-volume ratio, nanowires and nanofins interact strongly with their environment. We investigate the role of the main air constituents nitrogen, oxygen and water on the efficiency of radiative recombination in GaN nanostructures as a function of different surface treatments and at temperatures up to 200 °C. Oxygen and water exposures exhibit a complex behavior as they can both act quenching and enhancing on the photoluminescence intensity dependent on the temperature. For oxygen, these characteristics are already observed for low concentrations of below 0.5% in nitrogen. While the photoluminescence intensity changes induced by oxygen occur independently of illumination, the influence of water is light-induced: it evolves within tens of seconds under ultraviolet light exposure and is heavily influenced by the nanostructure pre-treatment. In contrast to observations in dry atmospheres, water prevents a recovery of the photoluminescence intensity in the dark. Combined measurements of the electrical current through GaN nanofins and their photoluminescence intensity reveal the environmental influence on the interaction of non-radiative recombination processes and changes in the surface band bending of the nanostructures. Several investigated solvents show an enhancing effect on the PL intensity increase, peaking in c-hexane with a 26-fold increase after 6 min of light exposure. Stabilization of the PL intensity was achieved by a passivation of the GaN surface with GaxOy, and ZnO shells. Surprisingly, Al2O3coatings resulted in a highly instable PL intensity during the first minutes of illumination. Our findings reveal the high importance of controlled environmental conditions for the investigation of nanostructures, especially when aimed at their applications in the fields of environmental sensing, photo-catalysis and light-emitting diodes.
RESUMEN
Electron-transport-layer free perovskite solar cells (ETL-free PSCs) have attracted great attention due to their low cost and simple manufacturing process. However, an additional interface layer has to be introduced, and the currently achieved efficiency remains far from full-structure PSCs. Here, we report an in situ interface engineering strategy by the methylammonium acetate (MAAc) ionic liquid perovskite precursor. We found that a dipole layer was in situ constructed through the physical adsorption of the residual MAAc polar molecules on the indium tin oxide electrode, which is significantly different from the treatment by the interface layer in previous reports. This allows a decrease of the effective work function and enables in situ band bending in the perovskite semiconductor. The in situ band bending facilitates charge collection and hinders interfacial charge recombination, leading to ETL-free PSCs with a maximum power conversion efficiency of 21.08%, which is the highest report to date.
RESUMEN
Recent observations of facet-dependent electrical conductivity and photocatalytic activity of various semiconductor crystals are presented. Then, the discovery of facet-dependent surface plasmon resonance absorption of metal-Cu2 O core-shell nanocrystals with tunable sizes and shapes is discussed. The Cu2 O shells also exhibit a facet-specific optical absorption feature. The facet-dependent electrical conductivity, photocatalytic activity, and optical properties are related phenomena, resulting from the presence of an ultrathin surface layer with different band structures and thus varying degrees of band bending for the {100}, {110}, and {111} faces of Cu2 O to absorb light of somewhat different wavelengths. Recently, it is shown that the light absorption and photoluminescence properties of pure Cu2 O cubes, octahedra, and rhombic dodecahedra also display size and facet effects because of their tunable band gaps. A modified band diagram of Cu2 O can be constructed to incorporate these optical effects. Literature also provides examples of facet-dependent optical behaviors of semiconductor nanostructures, indicating that optical properties of nanoscale semiconductor materials are intrinsically facet-dependent. Some applications of semiconductor optical size and facet effects are considered.
RESUMEN
Three-dimensional topological insulators (TIs) have attracted tremendous interest for their possibility to host massless Dirac Fermions in topologically protected surface states (TSSs), which may enable new kinds of high-speed electronics. However, recent reports have outlined the importance of band bending effects within these materials, which results in an additional two-dimensional electron gas (2DEG) with finite mass at the surface. TI surfaces are also known to be highly inhomogeneous on the nanoscale, which is masked in conventional far-field studies. Here, we use near-field microscopy in the mid-infrared spectral range to probe the local surface properties of custom-tailored (Bi0.5Sb0.5)2Te3 structures with nanometer precision in all three spatial dimensions. Applying nanotomography and nanospectroscopy, we reveal a few-nanometer-thick layer of high surface conductivity and retrieve its local dielectric function without assuming any model for the spectral response. This allows us to directly distinguish between different types of surface states. An intersubband transition within the massive 2DEG formed by quantum confinement in the bent conduction band manifests itself as a sharp, surface-bound, Lorentzian-shaped resonance. An additional broadband background in the imaginary part of the dielectric function may be caused by the TSS. Tracing the intersubband resonance with nanometer spatial precision, we observe changes of its frequency, likely originating from local variations of doping or/and the mixing ratio between Bi and Sb. Our results highlight the importance of studying the surfaces of these novel materials on the nanoscale to directly access the local optical and electronic properties via the dielectric function.
RESUMEN
We present a hetero junction based on macrocyclic hydrogen evolution catalysts (HEC) physisorbed on a single crystalline Cu2O(111) surface. Angle-resolved X-ray photoelectron spectroscopy (ARXPS) provides the spatial resolution of the band bending within the first nanometer of the subsurface region. Oxygen vacancies on the Cu2O(111) surface cause a downward band bending which is conserved upon adsorption of HEC layers of various thicknesses. This allows photoexcited electrons to be directed toward the surface where they can be made available for the reduction of protons by the HEC. Furthermore, Poisson's equation relates more subtle changes in the measured ARXPS spectra to the local charge density profile within the first 7 Å away from the surface and with atomic resolution. All observations are consistent with a polarization of the molecular layer in response to the electrical field at the oxide surface, which should be a general phenomenon at such organic-oxide heterointerfaces.
RESUMEN
Though various efforts on modification of electrodes are still undertaken to improve the efficiency of perovskite solar cells, attributing to the large scope of these methods, it is of significance to unveil the working principle systematically. Herein, inverted perovskite solar cells based on indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/CH3 NH3 PbI3 /phenyl-C61-butyric acid methyl ester (PC61 BM)/buffer metal/Al are constructed. Through the choice of different buffer metals to tune work function of the cathode, the contact nature of the active layer with the cathode could be manipulated well. In comparison with the device using Au/Al as the electrode that shows an unfavorable band bending for conducting the excited electrons to the cathode, the one with Ca/Al presents a dramatically improved efficiency over 17.1%, ascribed to the favorable band bending at the interface of the cathode with the active layer. Details for tuning the band bending and the corresponding charge transfer mechanism are given in a systematic manner. Thus, a general guideline for constructing perovskite photovoltaic devices efficiently is provided.
RESUMEN
Solar cells based on perovskite absorbers are rapidly emerging as attractive candidates for photovoltaics development. Understanding the role of the electron-transport layer (ETL) is very important to obtain highly efficient perovskite solar cells. Herein, the effect of the ETL on device performance in planar perovskite solar cells is investigated in detail, and the band bending in different situations is discussed. The ET barrier is shown to be responsible for the poor fill factor (FF) of J-V curves. Introduction of a thin bathocuproine interlayer increases the interface inversion and results in an increase of FF from 56 to 76 %. Some experimental and theoretical results verify these conclusions. Furthermore, this study can provide an interface-engineering strategy to improve device performance.
RESUMEN
By breaking intrinsic Si (100) and (111) wafers to expose sharp {111} and {112} facets, electrical conductivity measurements on single and different silicon crystal faces were performed through contacts with two tungsten probes. While Si {100} and {110} faces are barely conductive at low applied voltages, as expected, the Si {112} surface is highly conductive and Si {111} surface also shows good conductivity. Asymmetrical I-V curves have been recorded for the {111}/{112}, {111}/{110}, and {112}/{110} facet combinations because of different degrees of conduction band bending at these crystal surfaces presenting different barrier heights to current flow. In particular, the {111}/{110} and {112}/{110} facet combinations give I-V curves resembling those of p-n junctions, suggesting a novel field effect transistor design is possible capitalizing on the pronounced facet-dependent electrical conductivity properties of silicon.