RESUMEN
Bee venom is a traditional drug used to treat the nervous system, musculoskeletal system, and autoimmune diseases. A previous study found that bee venom and one of its components, phospholipase A2, can protect the brain by suppressing neuroinflammation and can also be used to treat Alzheimer's disease. Thus, new composition bee venom (NCBV), which has an increased phospholipase A2 content of up to 76.2%, was developed as a treatment agent for Alzheimer's disease by INISTst (Republic of Korea). The aim of this study was to characterize the pharmacokinetic profiles of phospholipase A2 contained in NCBV in rats. Single subcutaneous administration of NCBV at doses ranging from 0.2 mg/kg to 5 mg/kg was conducted, and pharmacokinetic parameters of bee venom-derived phospholipase A2 (bvPLA2) increased in a dose-dependent manner. Additionally, no accumulation was observed following multiple dosings (0.5 mg/kg/week), and other constituents of NCBV did not affect the pharmacokinetic profile of bvPLA2. After subcutaneous injection of NCBV, the tissue-to-plasma ratios of bvPLA2 for the tested nine tissues were all <1.0, indicating a limited distribution of the bvPLA2 within the tissues. The findings of this study may help understand the pharmacokinetic characteristics of bvPLA2 and provide useful information for the clinical application of NCBV.
Asunto(s)
Enfermedad de Alzheimer , Venenos de Abeja , Fosfolipasas A2 , Animales , Ratas , Enfermedad de Alzheimer/tratamiento farmacológico , Venenos de Abeja/enzimología , Inyecciones Subcutáneas , Fosfolipasas A2/uso terapéutico , Distribución TisularRESUMEN
Oxaliplatin, a chemotherapy drug used to treat colorectal cancer, induces specific sensory neurotoxicity signs that are aggravated by cold and mechanical stimuli. Here we examined the preventive effects of Bee Venom (BV) derived phospholipase A2 (bvPLA2) on oxaliplatin-induced neuropathic pain in mice and its immunological mechanism. The cold and mechanical allodynia signs were evaluated by acetone and von Frey hair test on the hind paw, respectively. The most significant allodynia signs were observed at three days after an injection of oxaliplatin (6 mg/kg, i.p.) and then decreased gradually to a normal level on days 7-9. The oxaliplatin injection also induced infiltration of macrophages and upregulated levels of the pro-inflammatory cytokine interleukin (IL)-1ß in the lumbar dorsal root ganglia (DRG). Daily treatment with bvPLA2 (0.2 mg/kg, i.p.) for five consecutive days prior to the oxaliplatin injection markedly inhibited the development of cold and mechanical allodynia, and suppressed infiltration of macrophages and the increase of IL-1ß level in the DRG. Such preventive effects of bvPLA2 were completely blocked by depleting regulatory T cells (Tregs) with CD25 antibody pre-treatments. These results suggest that bvPLA2 may prevent oxaliplatin-induced neuropathic pain by suppressing immune responses in the DRG by Tregs.