Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Network ; : 1-34, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39015012

RESUMEN

Social media networks become an active communication medium for connecting people and delivering new messages. Social media can perform as the primary channel, where the globalized events or instances can be explored. Earlier models are facing the pitfall of noticing the temporal and spatial resolution for enhancing the efficacy. Therefore, in this proposed model, a new event detection approach from social media data is presented. Firstly, the essential data is collected and undergone for pre-processing stage. Further, the Bidirectional Encoder Representations from Transformers (BERT) and Term Frequency Inverse Document Frequency (TF-IDF) are employed for extracting features. Subsequently, the two resultant features are given to the multi-scale and dilated layer present in the detection network of GRU and Res-Bi-LSTM, named as Multi-scale and Dilated Adaptive Hybrid Deep Learning (MDA-HDL) for event detection. Moreover, the MDA-HDL network's parameters are tuned by Improved Gannet Optimization Algorithm (IGOA) to enhance the performance. Finally, the execution of the system is done over the Python platform, where the system is validated and compared with baseline methodologies. The accuracy findings of model acquire as 94.96 for dataset 1 and 96.42 for dataset 2. Hence, the recommended model outperforms with the superior results while detecting the social events.

2.
Sensors (Basel) ; 24(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793847

RESUMEN

Ensuring precise prediction of the remaining useful life (RUL) for bearings in rolling machinery is crucial for preventing sudden machine failures and optimizing equipment maintenance strategies. Since the significant interference encountered in real industrial environments and the high complexity of the machining process, accurate and robust RUL prediction of rolling bearings is of tremendous research importance. Hence, a novel RUL prediction model called CNN-VAE-MBiLSTM is proposed in this paper by integrating advantages of convolutional neural network (CNN), variational autoencoder (VAE), and multiple bi-directional long short-term memory (MBiLSTM). The proposed approach includes a CNN-VAE model and a MBiLSTM model. The CNN-VAE model performs well for automatically extracting low-dimensional features from time-frequency spectrum of multi-axis signals, which simplifies the construction of features and minimizes the subjective bias of designers. Based on these features, the MBiLSTM model achieves a commendable performance in the prediction of RUL for bearings, which independently captures sequential characteristics of features in each axis and further obtains differences among multi-axis features. The performance of the proposed approach is validated through an industrial case, and the result indicates that it exhibits a higher accuracy and a better anti-noise capacity in RUL predictions than comparable methods.

3.
Sensors (Basel) ; 24(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38676277

RESUMEN

In order to realize the accurate and reliable fault diagnosis of hydraulic systems, a diagnostic model based on improved tuna swarm optimization (ITSO), optimized convolutional neural networks (CNNs), and bi-directional long short-term memory (BiLSTM) networks is proposed. Firstly, sensor selection is implemented using the random forest algorithm to select useful signals from six kinds of physical or virtual sensors including pressure, temperature, flow rate, vibration, motor power, and motor efficiency coefficient. After that, fused features are extracted by CNN, and then, BiLSTM is applied to learn the forward and backward information contained in the data. The ITSO algorithm is adopted to adaptively optimize the learning rate, regularization coefficient, and node number to obtain the optimal CNN-BiLSTM network. Improved Chebyshev chaotic mapping and the nonlinear reduction strategy are adopted to improve population initialization and individual position updating, further promoting the optimization effect of TSO. The experimental results show that the proposed method can automatically extract fusion features and effectively utilize multi-sensor information. The diagnostic accuracies of the plunger pump, cooler, throttle valve, and accumulator are 99.07%, 99.4%, 98.81%, and 98.51%, respectively. The diagnostic results of noisy data with 0 dB, 5 dB, and 10 dB signal-to-noise ratios (SNRs) show that the ITSO-CNN-BiLSTM model has good robustness to noise interference.

4.
J Environ Manage ; 351: 120005, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183951

RESUMEN

Accurate estimation of potential wildfire behavior characteristics (PWBC) can improve wildfire danger assessment. However, wildfire behavior has been estimated by most fire spread models with immeasurable uncertainties and difficulties in large-scale applications. In this study, a PWBC estimation model (named PWBC-QR-BiLSTM) was proposed by coupling the Bi-directional Long Short-Term Memory (BiLSTM) and quantile regression (QR) methods. Multi-source data, including fuel, weather, topography, infrastructure, and landscape variables, were input into the PWBC-QR-BiLSTM model to estimate the potential rate of spread (ROS) and fire radiative power (FRP) over western Sichuan of China, and then to estimate the probability density of ROS and FRP. Daily ROS and FRP were extracted from the Global Fire Atlas and the MOD14A1/MYD14A1 product. The optimal PWBC-QR-BiLSTM model was determined using the Non-dominated Sorting Genetic Algorithm Ⅱ (NAGA-Ⅱ). Results showed that the PWBC-QR-BiLSTM performed well in estimating potential ROS and FRP with high accuracy (ROS: R2 > 0.7 and MAPE<30%, FRP: R2 > 0.8 and MAPE<25%). The modal PWBC values extracted from the estimated probability density were closer to the observed values, which can be regarded as a good indicator for wildfire danger assessment. The variable importance analysis also verified that fuel and infrastructure variables played an important role in driving wildfire behavior. This study suggests the potential of utilizing artificial intelligence to estimate PWBC and its probability density to improve the guidance on wildfire management.


Asunto(s)
Aprendizaje Profundo , Incendios , Incendios Forestales , Inteligencia Artificial , Especies Reactivas de Oxígeno , Conservación de los Recursos Naturales/métodos , China
5.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36992036

RESUMEN

Detection of the changes in Multi-Functional Radar (MFR) work modes is a critical situation assessment task for Electronic Support Measure (ESM) systems. There are two major challenges that must be addressed: (i) The received radar pulse stream may contain multiple work mode segments of unknown number and duration, which makes the Change Point Detection (CPD) difficult. (ii) Modern MFRs can produce a variety of parameter-level (fine-grained) work modes with complex and flexible patterns, which are challenging to detect through traditional statistical methods and basic learning models. To address the challenges, a deep learning framework is proposed for fine-grained work mode CPD in this paper. First, the fine-grained MFR work mode model is established. Then, a multi-head attention-based bi-directional long short-term memory network is introduced to abstract high-order relationships between successive pulses. Finally, temporal features are adopted to predict the probability of each pulse being a change point. The framework further improves the label configuration and the loss function of training to mitigate the label sparsity problem effectively. The simulation results showed that compared with existing methods, the proposed framework effectively improves the CPD performance at parameter-level. Moreover, the F1-score was increased by 4.15% under hybrid non-ideal conditions.

6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(1): 110-117, 2023 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-36854555

RESUMEN

The extraction of neuroimaging features of migraine patients and the design of identification models are of great significance for the auxiliary diagnosis of related diseases. Compared with the commonly used image features, this study directly uses time-series signals to characterize the functional state of the brain in migraine patients and healthy controls, which can effectively utilize the temporal information and reduce the computational effort of classification model training. Firstly, Group Independent Component Analysis and Dictionary Learning were used to segment different brain areas for small-sample groups and then the regional average time-series signals were extracted. Next, the extracted time series were divided equally into multiple subseries to expand the model input sample. Finally, the time series were modeled using a bi-directional long-short term memory network to learn the pre-and-post temporal information within each time series to characterize the periodic brain state changes to improve the diagnostic accuracy of migraine. The results showed that the classification accuracy of migraine patients and healthy controls was 96.94%, the area under the curve was 0.98, and the computation time was relatively shorter. The experiments indicate that the method in this paper has strong applicability, and the combination of time-series feature extraction and bi-directional long-short term memory network model can be better used for the classification and diagnosis of migraine. This work provides a new idea for the lightweight diagnostic model based on small-sample neuroimaging data, and contributes to the exploration of the neural discrimination mechanism of related diseases.


Asunto(s)
Trastornos Migrañosos , Humanos , Factores de Tiempo , Trastornos Migrañosos/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Neuroimagen
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(3): 458-464, 2023 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-37380384

RESUMEN

Sleep staging is the basis for solving sleep problems. There's an upper limit for the classification accuracy of sleep staging models based on single-channel electroencephalogram (EEG) data and features. To address this problem, this paper proposed an automatic sleep staging model that mixes deep convolutional neural network (DCNN) and bi-directional long short-term memory network (BiLSTM). The model used DCNN to automatically learn the time-frequency domain features of EEG signals, and used BiLSTM to extract the temporal features between the data, fully exploiting the feature information contained in the data to improve the accuracy of automatic sleep staging. At the same time, noise reduction techniques and adaptive synthetic sampling were used to reduce the impact of signal noise and unbalanced data sets on model performance. In this paper, experiments were conducted using the Sleep-European Data Format Database Expanded and the Shanghai Mental Health Center Sleep Database, and achieved an overall accuracy rate of 86.9% and 88.9% respectively. When compared with the basic network model, all the experimental results outperformed the basic network, further demonstrating the validity of this paper's model, which can provide a reference for the construction of a home sleep monitoring system based on single-channel EEG signals.


Asunto(s)
Fases del Sueño , Sueño , China , Electroencefalografía , Bases de Datos Factuales
8.
Sensors (Basel) ; 22(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458962

RESUMEN

Emotions are an essential part of daily human communication. The emotional states and dynamics of the brain can be linked by electroencephalography (EEG) signals that can be used by the Brain-Computer Interface (BCI), to provide better human-machine interactions. Several studies have been conducted in the field of emotion recognition. However, one of the most important issues facing the emotion recognition process, using EEG signals, is the accuracy of recognition. This paper proposes a deep learning-based approach for emotion recognition through EEG signals, which includes data selection, feature extraction, feature selection and classification phases. This research serves the medical field, as the emotion recognition model helps diagnose psychological and behavioral disorders. The research contributes to improving the performance of the emotion recognition model to obtain more accurate results, which, in turn, aids in making the correct medical decisions. A standard pre-processed Database of Emotion Analysis using Physiological signaling (DEAP) was used in this work. The statistical features, wavelet features, and Hurst exponent were extracted from the dataset. The feature selection task was implemented through the Binary Gray Wolf Optimizer. At the classification stage, the stacked bi-directional Long Short-Term Memory (Bi-LSTM) Model was used to recognize human emotions. In this paper, emotions are classified into three main classes: arousal, valence and liking. The proposed approach achieved high accuracy compared to the methods used in past studies, with an average accuracy of 99.45%, 96.87% and 99.68% of valence, arousal, and liking, respectively, which is considered a high performance for the emotion recognition model.


Asunto(s)
Interfaces Cerebro-Computador , Aprendizaje Profundo , Electroencefalografía , Emociones , Memoria a Corto Plazo
9.
Sensors (Basel) ; 22(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35591188

RESUMEN

Whole-body center of gravity (CG) movements in relation to the center of pressure (COP) offer insights into the balance control strategies of the human body. Existing CG measurement methods using expensive measurement equipment fixed in a laboratory environment are not intended for continuous monitoring. The development of wireless sensing technology makes it possible to expand the measurement in daily life. The insole system is a wearable device that can evaluate human balance ability by measuring pressure distribution on the ground. In this study, a novel protocol (data preparation and model training) for estimating the 3-axis CG trajectory from vertical plantar pressures was proposed and its performance was evaluated. Input and target data were obtained through gait experiments conducted on 15 adult and 15 elderly males using a self-made insole prototype and optical motion capture system. One gait cycle was divided into four semantic phases. Features specified for each phase were extracted and the CG trajectory was predicted using a bi-directional long short-term memory (Bi-LSTM) network. The performance of the proposed CG prediction model was evaluated by a comparative study with four prediction models having no gait phase segmentation. The CG trajectory calculated with the optoelectronic system was used as a golden standard. The relative root mean square error of the proposed model on the 3-axis of anterior/posterior, medial/lateral, and proximal/distal showed the best prediction performance, with 2.12%, 12.97%, and 12.47%. Biomechanical analysis of two healthy male groups was conducted. A statistically significant difference between CG trajectories of the two groups was shown in the proposed model. Large CG sway of the medial/lateral axis trajectory and CG fall of the proximal/distal axis trajectory is shown in the old group. The protocol proposed in this study is a basic step to have gait analysis in daily life. It is expected to be utilized as a key element for clinical applications.


Asunto(s)
Zapatos , Dispositivos Electrónicos Vestibles , Adulto , Anciano , Fenómenos Biomecánicos , Marcha , Gravitación , Humanos , Aprendizaje Automático , Masculino
10.
Sensors (Basel) ; 21(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695969

RESUMEN

Based on the openness and accessibility of user data, personality recognition is widely used in personalized recommendation, intelligent medicine, natural language processing, and so on. Existing approaches usually adopt a single deep learning mechanism to extract personality information from user data, which leads to semantic loss to some extent. In addition, researchers encode scattered user posts in a sequential or hierarchical manner, ignoring the connection between posts and the unequal value of different posts to classification tasks. We propose a hierarchical hybrid model based on a self-attention mechanism, namely HMAttn-ECBiL, to fully excavate deep semantic information horizontally and vertically. Multiple modules composed of convolutional neural network and bi-directional long short-term memory encode different types of personality representations in a hierarchical and partitioned manner, which pays attention to the contribution of different words in posts and different posts to personality information and captures the dependencies between scattered posts. Moreover, the addition of a word embedding module effectively makes up for the original semantics filtered by a deep neural network. We verified the hybrid model on the MyPersonality dataset. The experimental results showed that the classification performance of the hybrid model exceeds the different model architectures and baseline models, and the average accuracy reached 72.01%.


Asunto(s)
Procesamiento de Lenguaje Natural , Redes Neurales de la Computación , Personalidad , Semántica
11.
Sensors (Basel) ; 17(2)2017 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-28146106

RESUMEN

In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.

12.
Comput Methods Biomech Biomed Engin ; 27(3): 378-399, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36951376

RESUMEN

Generally, time series data is referred to as the sequential representation of data that observes from different applications. Therefore, such expertise can use Electroencephalography (EEG) signals to fetch data regarding brain neural activities in brain-computer interface (BCI) systems. Due to massive and myriads data, the signals are appealed in a non-stationary format that ends with a poor quality resolution. To overcome this existing issue, a new framework of enhanced deep learning methods is proposed. The source signals are collected and undergo feature extraction in four ways. Hence, the features are concatenated to enhance the performance. Subsequently, the concatenated features are given to probability ratio-based Reptile Search Algorithm (PR-RSA) to select the optimal features. Finally, the classification is conducted using Enhanced Bi-directional Long Short-Term Memory (EBi-LSTM), where the hyperparameters are optimized by PR-RSA. Throughout the result analysis, it is confirmed that the offered model obtains elevated classification accuracy, and thus tends to increase the performance.


Asunto(s)
Interfaces Cerebro-Computador , Redes Neurales de la Computación , Heurística , Factores de Tiempo , Algoritmos , Electroencefalografía/métodos
13.
PeerJ Comput Sci ; 10: e2032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855207

RESUMEN

Aiming at the random and intermittent characteristics of wind speed, a short-term wind speed prediction (SWSP) method based on TSO-VMD-BiLSTM is proposed in this article. Firstly, open-source historical data from a certain region in 2022, including wind speed, direction, pressure, and temperature is analyzed. The data is processed through variational mode decomposition (VMD) to fully extract feature data from historical wind speed records. Secondly, taking historical wind speed, direction, pressure, and temperature as inputs and wind speed as output, a SWSP model based on long short-term memory (LSTM) network is constructed. Thirdly, the tuna swarm optimization (TSO) algorithm is utilized for parameters optimization, and a bi-directional long short-term memory (BiLSTM) network is incorporated to enhance prediction accuracy for micrometeorological parameters. The proposed TSO-VMD-BiLSTM model is validated through comparison with other models, demonstrating its higher accuracy with the maximum absolute error of only 2.52 m/s, the maximum root mean square error of 0.81, the maximum mean absolute error of only 0.54, and the maximum mean absolute percentage error of 6.89%.

14.
Sci Rep ; 14(1): 17841, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090177

RESUMEN

The precise forecasting of air quality is of great significance as an integral component of early warning systems. This remains a formidable challenge owing to the limited information of emission source and the considerable uncertainties inherent in dynamic processes. To improve the accuracy of air quality forecasting, this work proposes a new spatiotemporal hybrid deep learning model based on variational mode decomposition (VMD), graph attention networks (GAT) and bi-directional long short-term memory (BiLSTM), referred to as VMD-GAT-BiLSTM, for air quality forecasting. The proposed model initially employ a VMD to decompose original PM2.5 data into a series of relatively stable sub-sequences, thus reducing the influence of unknown factors on model prediction capabilities. For each sub-sequence, a GAT is then designed to explore deep spatial relationships among different monitoring stations. Next, a BiLSTM is utilized to learn the temporal features of each decomposed sub-sequence. Finally, the forecasting results of each decomposed sub-sequence are aggregated and summed as the final air quality prediction results. Experiment results on the collected Beijing air quality dataset show that the proposed model presents superior performance to other used methods on both short-term and long-term air quality forecasting tasks.

15.
ISA Trans ; 147: 227-238, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443273

RESUMEN

The chemical production process typically possesses complexity and high risks. Effective fault diagnosis is a key technology for ensuring the reliability and safety of chemical production processes. In this study, a comprehensive fault diagnosis method based on time-varying filtering empirical mode decomposition (TVF-EMD), kernel principal component analysis (KPCA), and an improved whale optimization algorithm (WOA) to optimize bi-directional long short-term memory (BiLSTM) is proposed. This research utilizes TVF-EMD and KPCA to analyze and preprocess the raw data, eliminating noise and and reducing the dimensions of the fault data. Subsequently, BiLSTM is employed for fault data classification. To address the hyperparameters within BiLSTM, the enhanced WOA is used for optimization. Finally, the efficacy and superiority of this approach are validated through two fault diagnosis examples.

16.
Heliyon ; 10(8): e29410, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644823

RESUMEN

Currently, the Internet of Things (IoT) generates a huge amount of traffic data in communication and information technology. The diversification and integration of IoT applications and terminals make IoT vulnerable to intrusion attacks. Therefore, it is necessary to develop an efficient Intrusion Detection System (IDS) that guarantees the reliability, integrity, and security of IoT systems. The detection of intrusion is considered a challenging task because of inappropriate features existing in the input data and the slow training process. In order to address these issues, an effective meta heuristic based feature selection and deep learning techniques are developed for enhancing the IDS. The Osprey Optimization Algorithm (OOA) based feature selection is proposed for selecting the highly informative features from the input which leads to an effective differentiation among the normal and attack traffic of network. Moreover, the traditional sigmoid and tangent activation functions are replaced with the Exponential Linear Unit (ELU) activation function to propose the modified Bi-directional Long Short Term Memory (Bi-LSTM). The modified Bi-LSTM is used for classifying the types of intrusion attacks. The ELU activation function makes gradients extremely large during back-propagation and leads to faster learning. This research is analysed in three different datasets such as N-BaIoT, Canadian Institute for Cybersecurity Intrusion Detection Dataset 2017 (CICIDS-2017), and ToN-IoT datasets. The empirical investigation states that the proposed framework obtains impressive detection accuracy of 99.98 %, 99.97 % and 99.88 % on the N-BaIoT, CICIDS-2017, and ToN-IoT datasets, respectively. Compared to peer frameworks, this framework obtains high detection accuracy with better interpretability and reduced processing time.

17.
Comput Biol Chem ; 112: 108127, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38870559

RESUMEN

Spatial transcriptomics, a groundbreaking field in cellular biology, faces the challenge of effectively deciphering complex spatial-temporal gene expression patterns. Traditional data analysis methods often fail to capture the intricate nuances of this data, limiting the depth of understanding in spatial distribution and gene interactions. In response, we present Spatial-Temporal Patterns for Downstream Analysis (STPDA), a sophisticated computational framework tailored for spatial transcriptomic data analysis. STPDA leverages high-resolution mapping to bridge the gap between genomics and histopathology, offering a comprehensive perspective on the spatial dynamics of gene expression within tissues. This approach enables a view of cellular function and organization, marking a paradigm shift in our comprehension of biological systems. By employing Autoregressive Moving Average (ARMA) and Long Short-Term Memory (LSTM) models, STPDA effectively deciphers both global and local spatio-temporal dynamics in cellular environments. This integration of spatial-temporal patterns for downstream analysis offers a transformative approach to spatial transcriptomics data analysis. STPDA excels in various single-cell analytical tasks, including the identification of ligand-receptor interactions and cell type classification. Its ability to harness spatial-temporal patterns not only matches but frequently surpasses the performance of existing state-of-the-art methods. To ensure widespread usability and impact, we have encapsulated STPDA in a scalable and accessible Python package, addressing single-cell tasks through advanced spatial-temporal pattern analysis. This development promises to enhance our understanding of cellular biology, offering novel insights and therapeutic strategies, and represents a substantial advancement in the field of spatial transcriptomics.

18.
Ultrasonics ; 129: 106891, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36493507

RESUMEN

Breast cancer mortality can be significantly reduced by early detection of its symptoms. The 3-D Automated Breast Ultrasound (ABUS) has been widely used for breast screening due to its high sensitivity and reproducibility. The large number of ABUS slices, and high variation in size and shape of the masses, make the manual evaluation a challenging and time-consuming process. To assist the radiologists, we propose a convolutional BiLSTM network to classify the slices based on the presence of a mass. Because of its patch-based architecture, this model produces the approximate location of masses as a heat map. The prepared dataset consists of 60 volumes belonging to 43 patients. The precision, recall, accuracy, F1-score, and AUC of the proposed model for slice classification were 84%, 84%, 93%, 84%, and 97%, respectively. Based on the FROC analysis, the proposed detector obtained a sensitivity of 82% with two false positives per volume.


Asunto(s)
Neoplasias de la Mama , Ultrasonografía Mamaria , Femenino , Humanos , Sensibilidad y Especificidad , Reproducibilidad de los Resultados , Neoplasias de la Mama/diagnóstico por imagen
19.
Environ Sci Pollut Res Int ; 30(58): 121948-121959, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957500

RESUMEN

Precise rainfall forecasting modeling assumes a pivotal role in water resource planning and management. Conducting a comprehensive analysis of the rainfall time series and making appropriate adjustments to the forecast model settings based on the characterization results of the rainfall series significantly enhance the accuracy of the forecast model. This paper employed the Mann-Kendall and sliding T mutation tests to identify the mutational components in rainfall between 1961 and 2013 at four meteorological stations located in Henan Province. Wavelet analysis was utilized to determine the periodicity of the precipitation series. The model parameters were adjusted based on the mutation and periodicity findings, and appropriate training and test sets were selected accordingly. Rainfall simulation in Henan Province, China, was conducted using a combination of complementary ensemble empirical mode decomposition (CEEMD) and bi-directional long short-term memory (BiLSTM) networks. The integrated approach aimed at predicting rainfall in the region. The findings of this study demonstrate that the CEEMD-BiLSTM model, coupled with feature analysis, yielded favorable results in terms of prediction accuracy. The model achieved a mean MAE (mean absolute error) of 131.210, a mean MRE (mean relative error) of 0.637, a mean RMSE (root mean square error) of 187.776, and an NSE (Nash-Sutcliffe efficiency) above 0.910. The data processed according to the feature analysis results and then predicted; Zhengzhou, Anyang, Lushi, and Xinyang stations improved by 39.548%, 14.478%, 11.548%, and 19.037% respectively compared with the original prediction model.


Asunto(s)
Aprendizaje Profundo , China , Simulación por Computador , Meteorología , Mutación , Predicción
20.
Environ Sci Pollut Res Int ; 30(11): 30408-30429, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36434459

RESUMEN

Selective Non-Catalytic Reduction (SNCR) can improve the denitration process and reduce NOx emissions by accurizing prediction of NOx concentration and ammonia escape. However, there are inevitable time delays and nonlinearity problems in the prediction of NOx emission. To reduce NOx concentration quickly in SNCR, excessive ammonia spraying often causes a large amount of ammonia to escape, resulting in secondary pollution. Therefore, it is particularly important to monitor ammonia escape. To solve the above problems, this paper proposes a framework by specifically analyzing the cement denitration process and combining a multi-objective time series bi-directional long short-term memory network (MT-BiLSTM). Among them, the model achieves multi-objective prediction of NOx emission concentration and ammonia escape simultaneously. In addition, time series containing delay information are introduced in the input layer to eliminate the influence of delay. Based on the bi-directional LSTM model, the dropout strategy is adopted to improve the generalization of the model and the Adam optimizer is applied to improve the network performance. Besides, through the multi-step prediction of NOx emission at 3 time points, the dynamic nature of the data is preserved, which provides dynamic information support for realizing the automation of denitration system. The prediction performance of the MT-BiLSTM model is experimentally validated, and the results demonstrate that it can reliably predict both NOx and ammonia escape. The model achieves more accurate and reliable results for the prediction of flue gas concentrations compared with other methods such as SVR, DTR and LSTM. Therefore, the MT-BiLSTM model provides a basis for achieving NOx emission reduction and accurate ammonia injection.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Memoria a Corto Plazo , Contaminación del Aire/análisis , Contaminación Ambiental/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA