Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.628
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(14): 3726-3740.e43, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861993

RESUMEN

Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and mitogen-activated protein kinase (MAPK) pathway activation. The high specificity of the designed agonists reveals distinct roles for two FGFR splice variants in driving arterial endothelium and perivascular cell fates during early vascular development. Our designed modular assemblies should be broadly useful for unraveling the complexities of signaling in key developmental transitions and for developing future therapeutic applications.


Asunto(s)
Diferenciación Celular , Factores de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos , Transducción de Señal , Animales , Humanos , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones , Ligandos , Calcio/metabolismo , Sistema de Señalización de MAP Quinasas
2.
Proc Natl Acad Sci U S A ; 121(27): e2318198121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917007

RESUMEN

Establishing modular binders as diagnostic detection agents represents a cost- and time-efficient alternative to the commonly used binders that are generated one molecule at a time. In contrast to these conventional approaches, a modular binder can be designed in silico from individual modules to, in principle, recognize any desired linear epitope without going through a selection and hit-validation process, given a set of preexisting, amino acid-specific modules. Designed armadillo repeat proteins (dArmRP) have been developed as modular binder scaffolds, and we report here the generation of highly specific dArmRP modules by yeast surface display selection, performed on a rationally designed dArmRP library. A selection strategy was developed to distinguish the binding difference resulting from a single amino acid mutation in the target peptide. Our reverse-competitor strategy introduced here employs the designated target as a competitor to increase the sensitivity when separating specific from cross-reactive binders that show similar affinities for the target peptide. With this switch in selection focus from affinity to specificity, we found that the enrichment during this specificity sort is indicative of the desired phenotype, regardless of the binder abundance. Hence, deep sequencing of the selection pools allows retrieval of phenotypic hits with only 0.1% abundance in the selectivity sort pool from the next-generation sequencing data alone. In a proof-of-principle study, a binder was created by replacing all corresponding wild-type modules with a newly selected module, yielding a binder with very high affinity for the designated target that has been successfully validated as a detection agent in western blot analysis.


Asunto(s)
Proteínas del Dominio Armadillo , Saccharomyces cerevisiae , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Unión Proteica , Péptidos/metabolismo , Péptidos/genética , Péptidos/química , Epítopos/genética , Biblioteca de Péptidos
3.
Mol Ther ; 32(6): 1687-1700, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38582966

RESUMEN

Deep-learning-based methods for protein structure prediction have achieved unprecedented accuracy, yet their utility in the engineering of protein-based binders remains constrained due to a gap between the ability to predict the structures of candidate proteins and the ability toprioritize proteins by their potential to bind to a target. To bridge this gap, we introduce Automated Pairwise Peptide-Receptor Analysis for Screening Engineered proteins (APPRAISE), a method for predicting the target-binding propensity of engineered proteins. After generating structural models of engineered proteins competing for binding to a target using an established structure prediction tool such as AlphaFold-Multimer or ESMFold, APPRAISE performs a rapid (under 1 CPU second per model) scoring analysis that takes into account biophysical and geometrical constraints. As proof-of-concept cases, we demonstrate that APPRAISE can accurately classify receptor-dependent vs. receptor-independent adeno-associated viral vectors and diverse classes of engineered proteins such as miniproteins targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike, nanobodies targeting a G-protein-coupled receptor, and peptides that specifically bind to transferrin receptor or programmed death-ligand 1 (PD-L1). APPRAISE is accessible through a web-based notebook interface using Google Colaboratory (https://tiny.cc/APPRAISE). With its accuracy, interpretability, and generalizability, APPRAISE promises to expand the utility of protein structure prediction and accelerate protein engineering for biomedical applications.


Asunto(s)
Unión Proteica , Ingeniería de Proteínas , SARS-CoV-2 , Ingeniería de Proteínas/métodos , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Modelos Moleculares , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Conformación Proteica , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Aprendizaje Profundo , COVID-19/virología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/química , Dependovirus/genética , Vectores Genéticos/química , Vectores Genéticos/genética , Vectores Genéticos/metabolismo
4.
Bioessays ; 45(9): e2200218, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452394

RESUMEN

Secreted signaling molecules act as morphogens to control patterning and growth in many developing tissues. Since locally produced morphogens spread to form a concentration gradient in the surrounding tissue, spreading is generally thought to be the key step in the non-autonomous actions. Here, we review recent advances in tool development to investigate morphogen function using the role of decapentaplegic (Dpp)/bone morphogenetic protein (BMP)-type ligand in the Drosophila wing disc as an example. By applying protein binder tools to distinguish between the roles of Dpp spreading and local Dpp signaling, we found that Dpp signaling in the source cells is important for wing patterning and growth but Dpp spreading from this source cells is not as strictly required as previously thought. Given recent studies showing unexpected requirements of long-range action of different morphogens, manipulating endogenous morphogen gradients by synthetic protein binder tools could shed more light on how morphogens act in developing tissues.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Tipificación del Cuerpo/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica
5.
Proc Natl Acad Sci U S A ; 119(21): e2121966119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35580187

RESUMEN

The self-assembly of amyloid ß peptide (Aß) to fibrillar and oligomeric aggregates is linked to Alzheimer's disease. Aß binders may serve as inhibitors of aggregation to prevent the generation of neurotoxic species and for the detection of Aß species. A particular challenge involves finding binders to on-pathway oligomers given their transient nature. Here we construct two phage­display libraries built on the highly inert and stable protein scaffold S100G, one containing a six-residue variable surface patch and one harboring a seven-residue variable loop insertion. Monomers and fibrils of Aß40 and Aß42 were separately coupled to silica nanoparticles, using a coupling strategy leading to the presence of oligomers on the monomer beads, and they were used in three rounds of affinity selection. Next-generation sequencing revealed sequence clusters and candidate binding proteins (SXkmers). Two SXkmers were expressed as soluble proteins and tested in terms of aggregation inhibition via thioflavin T fluorescence. We identified an SXkmer with loop­insertion YLTIRLM as an inhibitor of the secondary nucleation of Aß42 and binding analyses using surface plasmon resonance technology, Förster resonance energy transfer, and microfluidics diffusional sizing imply an interaction with intermediate oligomeric species. A linear peptide with the YLTIRLM sequence was found inhibitory but at a lower potency than the more constrained SXkmer loop. We identified an SXkmer with side-patch VI-WI-DD as an inhibitor of Aß40 aggregation. Remarkably, our data imply that SXkmer-YLTIRLM blocks secondary nucleation through an interaction with oligomeric intermediates in solution or at the fibril surface, which is a unique inhibitory mechanism for a library-derived inhibitor.


Asunto(s)
Enfermedad de Alzheimer , Bacteriófagos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Bacteriófagos/metabolismo , Técnicas de Visualización de Superficie Celular , Humanos , Fragmentos de Péptidos/metabolismo , Placa Amiloide
6.
Nano Lett ; 24(25): 7662-7671, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38870422

RESUMEN

Extensive investigations have proven the effectiveness of elastic binders in settling the challenge of structural damage posed by volume expansion of high-capacity anode used in nanoscale silicon. However, the sluggish ionic conductivity of polymer binder severely restricts the electrode reactions, making it unsuitable for practical applications. Inspired by the biological tissues with rapid neurotransmission and robust muscles, we propose a biomimetic binder that contains ionic conductive polymer (by polymerization reaction of poly(ethylene glycol) diglycidyl ether and polyethylenimine) and rigid polymer backbone (polyacrylic acid), which can effectively mitigate both Li-ion transport resistance and lithiation stress to stabilize the silicon nanoparticles during cycles. Consequently, the silicon anode with biomimetic binder achieves a rate capability of 1897 mAh g-1 at 8.0 A g-1 and capacity retention of 87% after 150 cycles under areal capacity upon 3.0 mAh cm-2. These results demonstrate the possibility of decoupling ionic conductivity from mechanical properties toward practical high-capacity anodes for energy-dense batteries.

7.
J Biol Chem ; 299(8): 104967, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380079

RESUMEN

Salmonella enterica serovar Typhimurium melibiose permease (MelBSt) is a prototype of the Na+-coupled major facilitator superfamily transporters, which are important for the cellular uptake of molecules including sugars and small drugs. Although the symport mechanisms have been well-studied, mechanisms of substrate binding and translocation remain enigmatic. We have previously determined the sugar-binding site of outward-facing MelBSt by crystallography. To obtain other key kinetic states, here we raised camelid single-domain nanobodies (Nbs) and carried out a screening against the WT MelBSt under 4 ligand conditions. We applied an in vivo cAMP-dependent two-hybrid assay to detect interactions of Nbs with MelBSt and melibiose transport assays to determine the effects on MelBSt functions. We found that all selected Nbs showed partial to complete inhibitions of MelBSt transport activities, confirming their intracellular interactions. A group of Nbs (714, 725, and 733) was purified, and isothermal titration calorimetry measurements showed that their binding affinities were significantly inhibited by the substrate melibiose. When titrating melibiose to the MelBSt/Nb complexes, Nb also inhibited the sugar-binding. However, the Nb733/MelBSt complex retained binding to the coupling cation Na+ and also to the regulatory enzyme EIIAGlc of the glucose-specific phosphoenolpyruvate/sugar phosphotransferase system. Further, EIIAGlc/MelBSt complex also retained binding to Nb733 and formed a stable supercomplex. All data indicated that MelBSt trapped by Nbs retained its physiological functions and the trapped conformation is similar to that bound by the physiological regulator EIIAGlc. Therefore, these conformational Nbs can be useful tools for further structural, functional, and conformational analyses.


Asunto(s)
Anticuerpos de Dominio Único , Simportadores , Anticuerpos de Dominio Único/metabolismo , Melibiosa/metabolismo , Simportadores/metabolismo , Transporte Iónico , Sodio/metabolismo
8.
Small ; 20(27): e2312091, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308418

RESUMEN

Grafted biopolymer binders are demonstrated to improve the processability and cycling stability of the silicon (Si) nanoparticle anodes. However, there is little systematical exploration regarding the relationship between grafting density and performance of grafted binder for Si anodes, especially when Si particles exceed the critical breaking size. Herein, a series of guar gum grafted polyacrylamide (GP) binders with different grafting densities are designed and prepared to determine the optimal grafting density for maximizing the electrochemical performance of Si submicroparticle (SiSMP) anodes. Among various GP binders, GP5 with recommended grafting density demonstrates the strongest adhesion strength, best mechanical properties, and highest intrinsic ionic conductivity. These characteristics enable the SiSMP electrodes to sustain the electrode integrity and accelerate lithium-ion transport kinetics during cycling, resulting in high capacity and stable cyclability. The superior role of GP5 binder in enabling robust structure and stable interface of SiSMP electrodes is revealed through the PeakForce atomic force microscopy and in situ differential electrochemical mass spectrometry. Furthermore, the stable cyclabilities of high-loading SiSMP@GP5 electrode with ultralow GP5 content (1 wt%) at high areal capacity as well as the good cyclability of Ah-level LiNi0.8Co0.1Mn0.1O2/SiSMP@GP5 pouch cell strongly confirms the practical viability of the GP5 binder.

9.
Small ; : e2405118, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140191

RESUMEN

The development of polymer binders is necessary to meet the growing demands of modern energy storage technologies. While catechol-containing materials are proven successful in silicon anodes, their application in organic batteries remains unexplored. In this contribution, the synthesis of four polymers are described with nearly identical side chain composition but varying backbone structures. The materials are used to investigate the effect of polymer backbone structure on the binding abilities of catechol-containing materials. Comparative analysis with the commonly used polyvinylidene fluoride (PVDF) binder aims to address two critical questions: 1) Can catechol-rich polymers replace PVDF for use in organic cathodes? and 2) Does the choice of polymer backbone affect the performance of the battery?. The investigation reveals that supramolecular interactions, such as π-π stacking and coordination bonding, are pivotal features of catechol binders. Among the catechol-rich polymers, the polyacrylate binder stands out, likely attributed to its high flexibility. Additionally, introducing an oxygen atom into a catechol-rich polynorbornene enhances lithium-ion conductivity and rate performance. Overall, the findings highlight the viability of catechol-containing polymers as organic cathode binders, and that the choice of polymer backbone is a crucial factor for their use as lithium-ion battery binder materials.

10.
Small ; 20(9): e2306530, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37803923

RESUMEN

In this study, a three-step strategy including electrochemical cathode deposition, self-oxidation, and hydrothermal reaction is applied to prepare the LiMn2 O4 nanosheets on carbon cloth (LMOns@CC) as a binder-free cathode in a hybrid capacitive deionization (CDI) cell for selectively extracting lithium from salt-lake brine. The binder-free LMOns@CC electrodes are constructed from dozens of 2D LiMn2 O4 nanosheets on carbon cloth substrates, resulting in a uniform 2D array of highly ordered nanosheets with hierarchical nanostructure. The charge/discharge process of the LMOns@CC electrode demonstrates that visible redox peaks and high pseudocapacitive contribution rates endow the LMOns@CC cathode with a maximum Li+ ion electrosorption capacity of 4.71 mmol g-1 at 1.2 V. Moreover, the LMOns@CC electrode performs outstanding cycling stability with a high-capacity retention rate of 97.4% and a manganese mass dissolution rate of 0.35% over ten absorption-desorption cycles. The density functional theory (DFT) theoretical calculations verify that the Li+ selectivity of the LMOns@CC electrode is attributed to the greater adsorption energy of Li+ ions than other ions. Finally, the selective extraction performance of Li+ ions in natural Tibet salt lake brine reveals that the LMOns@CC has selectivity ( α Mg 2 + Li + $\alpha _{{\mathrm{Mg}}^{2 + }}^{{\mathrm{Li}}^ + }$ = 7.48) and excellent cycling stability (100 cycles), which would make it a candidate electrode for lithium extraction from salt lakes.

11.
Small ; : e2401345, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767495

RESUMEN

Novel binder designs are shown to be fruitful in improving the electrochemical performance of silicon (Si)-based anodes. However, issues with mechanical damage from dramatic volume change and poor lithium-ion (Li+) diffusion kinetics in Si-based materials still need to be addressed. Herein, an aqueous self-repairing borate-type binder (SBG) with a web-like architecture and high ionic conductivity is designed for Si and SiO electrodes. The 3D web-like architecture of the SBG binder enables uniform stress distribution, while its self-repairing ability promotes effective stress dissipation and mechanical damage repair, thereby enhancing the damage tolerance of the electrode. The tetracoordinate boron ions ( - BO 4 - $ - {\mathrm{BO}}_4^ - $ ) in the SBG binder boosts the Li transportation kinetics of Si-based electrodes. Based on dynamic covalent and ionic conductive boronic ester bonds, the diverse requirements of the binder, including uniform stress distribution, self-repairing ability, and high ionic conductivity, can be met by simple components. Consequently, the proposed straightforward multifunction design strategy for binders based on dynamic boron chemistry provides valuable insights into fabricating high-performance Si-based anodes.

12.
Small ; : e2403048, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708777

RESUMEN

Silicon-based anodes heavily depend on the binder to preserve the unbroken electrode structure. In the present work, natural flaxseed gum (FG) is used as a binder of silicon nanoparticles (SiNPs) anode for the first time. Owing to a large number of polar groups and a rich branched structure, this material not only anchors tightly to the surface of SiNPs through bonding interactions but also formed a hydrogen bonding network structure among molecules. As a result, the FG binder can endow the silicon electrode with stable interfacial adhesion and outstanding mechanical properties. In addition, FG with a high viscosity facilitates the homogeneous dispersion of the electrode components. When FG is used as a binder, the cycling performance of the Si anode is greatly improved. After one hundred cycles at an applied current density of 1 A g-1, the electrode continues to display remarkable electrochemical properties with a significant cyclic capacity (2213 mA h g-1) and initial Coulombic efficiency (ICE) of 89.7%.

13.
Small ; : e2403993, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031746

RESUMEN

Polyvinylidene fluoride (PVDF) has unique electrochemical oxidation resistance and is the only binder for high-voltage cathode materials in the battery industry for a long time. However, PVDF still has some drawbacks, such as environmental limitations on fluorine, strict requirements for environmental humidity, weak adhesion, and poor lithium ion conductivity. Herein, the long-standing issues associated with high-voltage lithium cobalt oxide (LiCoO2; LCO) are successfully addressed by incorporating phenolphthalein polyetherketone (PEK-C) and phenolphthalein polyethersulfone (PES-C) as binder materials. These binders have unexpected electrochemical oxidation resistance and robustness adhesion, ensure uniform coverage on the surface of LCO, and establish an effective and fast ion-conductive CEI/binder composite layer. By leveraging these favorable characteristics, electrodes based on polyarylether binders demonstrate significantly better cycling and rate performance than their counterparts using traditional PVDF binders. The fast ion-conductive CEI/binder composite layer effectively mitigates adverse reactions at the cathode-electrolyte interface. As anticipated, batteries utilizing phenolphthalein polyarylether binders exhibit capacity retention rates of 88.92% and 80.4% after 200 and 500 cycles at 4.5 and 4.6 V, respectively. The application of binders, such as polyarylether binders, offers a straightforward and inspiring approach for designing high-energy-density battery materials.

14.
Small ; : e2404556, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032001

RESUMEN

Silicon (Si) is a promising anode material for high-energy-density lithium-ion batteries, but the significant volume change of Si particles during alloying/dealloying with lithium (Li) undermines the mechanical integrity of Si anode, causing electrode fracture, delamination and rapid capacity decay. Herein, a robust triple crosslinked network (TCN) binder with high ionic conductivity and hierarchical stress dissipation is reported for Si anodes, which is prepared by in situ chemical crosslinking polyacrylic acid (PAA) and melamine (MA). The triple interactions of hydrogen bonds, electrostatic interactions, and covalent amide bonds enhance the adhesion of binder to Si and synergistically promote stress dissipation within Si anodes, thus strengthening the dynamic structural stability of Si anodes during cycling. Moreover, the rapid coupling/decoupling of Li+ with the TCN binder enables an impressive Li+ transference number of 0.63 and high ionic conductivity of 1.2 × 10-4 S cm-1. Consequently, the Si-TCN anode delivers specific capacity of 2268 mAh g-1 with a high mass loading of 2 mg cm-2, high-rate performance of 1673 mAh g-1 at 5 A g-1, and stable cycling for 250 cycles at 1 A g-1, thus showing great prospects for high-energy-density Si-based batteries.

15.
Small ; 20(29): e2311652, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38361217

RESUMEN

Modern strides in energy storage underscore the significance of all-solid-state batteries (ASSBs) predicated on solid electrolytes and lithium (Li) metal anodes in response to the demand for safer batteries. Nonetheless, ASSBs are often beleaguered by non-uniform Li deposition during cycling, leading to compromised cell performance from internal short circuits and hindered charge transfer. In this study, the concept of "bottom deposition" is introduced to stabilize metal deposition based on the lithiophilic current collector and a protective layer composed of a polymeric binder and carbon black. The bottom deposition, wherein Li plating ensues between the protective layer and the current collector, circumvents internal short circuits and facilitates uniform volumetric changes of Li. The prepared functional binder for the protective layer presents outstanding mechanical robustness and adhesive properties, which can withstand the volume expansion caused by metal growth. Furthermore, its excellent ion transfer properties promote uniform Li bottom deposition even under a current density of 6 mA·cm-2. Also, scanning electron microscopy analysis reveals a consistent plating/stripping morphology of Li after cycling. Consequently, the proposed system exhibits enhanced electrochemical performance when assessed within the ASSB framework, operating under a configuration marked by a high Li utilization rate reliant on an ultrathin Li.

16.
Small ; : e2401592, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805745

RESUMEN

In anion exchange membrane (AEM) water electrolyzers, AEMs separate hydrogen and oxygen, but should efficiently transport hydroxide ions. In the electrodes, catalyst nanoparticles are mechanically bonded to the porous transport layer or membrane by a polymeric binder. Since these binders form a thin layer on the catalyst particles, they should not only transport hydroxide ions and water to the catalyst particles, but should also transport the nascating gases away. In the worst case, if formation of gases is >> than gas transport, a gas pocket between catalyst surface and the binder may form and hinder access to reactants (hydroxide ions, water). In this work, the ion conductive binder SEBS-DABCO is blended with PIM-1, a highly permeable polymer of intrinsic microporosity. With increasing amount of PIM-1 in the blends, the permeability for water (selected to represent small molecules) increases. Simultaneously, swelling and conductivity decrease, due to the increased hydrophobicity. Ex situ data and electrochemical data indicate that blends with 50% PIM-1 have better properties than blends with 25% or 75% PIM-1, and tests in the electrolyzer confirm an improved performance when the SEBS-DABCO binder contains 50% PIM-1.

17.
Small ; : e2401698, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794861

RESUMEN

Integrated monolithic electrodes (IMEs) free of inactive components demonstrate great potential in boosting energy-power densities and cycling life of lithium-ion batteries. However, their practical applications are significantly limited by low active substance loading (< 4.0 mg cm-2 and 1.0 g cm-3), complicated manufacturing process, and high fabrication cost. Herein, employing industrial Cu-Mn alloy foil as a precursor, a simple neutral salt solution-mediated electrochemical dealloying strategy is proposed to address such problems. The resultant Cu-Mn IMEs achieve not only a significantly larger active material loading due to the in situ generated Cu2O and MnOx (ca. 16.0 mg cm-2 and 1.78 g cm-3), simultaneously fast transport of ions and electrons due to the well-formed nanoporous structure and built-in Cu current collector, but also high structural stability due to the interconnected ligaments and suitable free space to relieve the volume expansion upon lithiation. As a result, they demonstrate remarkable performances including large specific capacities (> 5.7 mAh cm-2), remarkable pseudocapacitive effect despite the battery-type constitutes, long cycling life, and good working condition in a lithium-ion full cell. This study sheds new light on the further development of IMEs, enriches the existing dealloying techniques, and builds a bridge between the two.

18.
Small ; 20(27): e2309800, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38312078

RESUMEN

The present work addresses the limitations by fabricating a wide range of negative electrodes, including metal nitrides/sulfides on a 3D bimetallic conductive porous network (3D-Ni and 3D-NiCo) via a dynamic hydrogen bubble template (DHBT) method followed by vapour phase growth (VPG) process. Among the prepared negative electrodes, the 3D-Fe3S4-Fe4N/NiCo nanostructure demonstrates an impressive specific capacitance (Cs) of 1125 F g-1 (2475 mF cm-2) at 1 A g-1 with 80% capacitance retention over 5000 cycles. Similarly, a 3D-Mn3P nanostructured positive electrode fabricated via electrodeposition followed by a phosphorization process exhibits a maximum specific capacity (Cg) of 923.04 C g-1 (1846.08 mF cm-2) at 1 A g-1 with 80% stability. A 3D-Mn3P/Ni//3D-Fe3S4-Fe4N/NiCo supercapattery is also assembled, and it shows a notable CS of 151 F g-1 at 1 A g-1, as well as a high energy density (ED) of 51 Wh kg-1,a power density (PD) of 782.57 W kg-1 and a capacitance efficiency of 76% over 10 000 cycles. This may be ascribed to the use of a bimetallic 3D porous conductive template and the attachment of transition metal sulfide and nitride. The development of negative electrodes and supercapattery devices is greatly aided by this exploration of novel synthesis techniques and material choice.

19.
Eur J Nucl Med Mol Imaging ; 51(11): 3334-3345, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38787395

RESUMEN

PURPOSE: The advancement of heterodimeric tracers, renowned for their high sensitivity, marks a significant trend in the development of radiotracers for cancer diagnosis. Our prior work on [68Ga]Ga-HX01, a heterodimeric tracer targeting CD13 and integrin αvß3, led to its approval for phase I clinical trials by the China National Medical Production Administration (NMPA). However, its fast clearance and limited tumor retention pose challenges for broader clinical application in cancer treatment. This study aims to develop a new radiopharmaceutical with increased tumor uptake and prolonged retention, rendering it a potential therapeutic candidate. METHODS: New albumin binder-conjugated compounds were synthesized based on the structure of HX01. In vitro and in vivo evaluation of these new compounds were performed after labelling with 68Ga. Small-animal PET/CT imaging were conducted at different time points at 0.5-6 h post injection (p.i.) using BxPC-3 xenograft mice models. The one with the best imaging performance was further radiolabeled with 177Lu for small-animal SPECT/CT and ex vivo biodistribution investigation. RESULTS: We have synthesized novel albumin binder-conjugated compounds, building upon the structure of HX01. When radiolabeled with 68Ga, all compounds demonstrated improved pharmacokinetics (PK). Small-animal PET/CT studies revealed that these new albumin binder-conjugated compounds, particularly [68Ga]Ga-L6, exhibited significantly enhanced tumor accumulation and retention compared with [68Ga]Ga-L0 without an albumin binder. [68Ga]Ga-L6 outperformed [68Ga]Ga-L7, a compound developed using a previously reported albumin binder. Furthermore, [177Lu]Lu-L6 demonstrated rapid clearance from normal tissues, high tumor uptake, and prolonged retention in small-animal SPECT/CT and biodistribution studies, positioning it as an ideal candidate for radiotherapeutic applications. CONCLUSION: A new integrin αvß3 and CD13 targeting compound was screened out. This compound bears a novel albumin binder and exhibits increased tumor uptake and prolonged tumor retention in BxPC-3 tumors and low background in normal organs, making it a perfect candidate for radiotherapy when radiolabeled with 177Lu.


Asunto(s)
Integrina alfaVbeta3 , Radiofármacos , Animales , Radiofármacos/farmacocinética , Radiofármacos/química , Radiofármacos/uso terapéutico , Integrina alfaVbeta3/metabolismo , Ratones , Humanos , Distribución Tisular , Línea Celular Tumoral , Albúminas/química , Tomografía Computarizada por Tomografía de Emisión de Positrones , Femenino , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia
20.
Am J Nephrol ; 55(2): 127-135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38091973

RESUMEN

INTRODUCTION: Sucroferric oxyhydroxide (SO), a non-calcium, chewable, iron-based phosphate binder (PB), effectively lowers serum phosphorus (sP) concentrations while reducing pill burden relative to other PBs. To date, SO studies have largely examined treatment-experienced, prevalent hemodialysis populations. We aimed to explore the role of first-line SO initiated during the first year of dialysis. METHODS: We retrospectively analyzed deidentified data from adults receiving in-center hemodialysis who were prescribed SO monotherapy within the first year of hemodialysis as part of routine clinical care. All patients continuing SO monotherapy for 12 months were included. Changes from baseline in sP, achievement of sP ≤5.5 and ≤4.5 mg/dL, and other laboratory parameters were analyzed quarterly for 1 year. RESULTS: The overall cohort included 596 patients, 286 of whom had a dialysis vintage ≤3 months. In the 3 months preceding SO initiation, sP rapidly increased (mean increases of 1.02 and 1.65 mg/dL in the overall cohort and incident cohort, respectively). SO treatment was associated with significant decreases in quarterly sP (mean decreases of 0.26-0.36; p < 0.0001 for each quarter and overall). While receiving SO, 55-60% of patients achieved sP ≤5.5 mg/dL and 21-24% achieved sP ≤4.5 mg/dL (p < 0.0001 for each quarter and overall vs. baseline). Daily PB pill burden was approximately 4 pills. Serum calcium concentrations increased and intact parathyroid hormone concentrations decreased during SO treatment (p < 0.0001 vs. baseline). CONCLUSIONS: Among patients on hemodialysis, initiating SO as a first-line PB resulted in significant reductions in sP while maintaining a relatively low PB pill burden.


Asunto(s)
Hiperfosfatemia , Fósforo , Adulto , Humanos , Hiperfosfatemia/tratamiento farmacológico , Hiperfosfatemia/etiología , Estudios Retrospectivos , Diálisis Renal/efectos adversos , Diálisis Renal/métodos , Compuestos Férricos/uso terapéutico , Sacarosa , Fosfatos , Combinación de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA