Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.200
Filtrar
Más filtros

Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(4): 2884-2925, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666911

RESUMEN

At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.

2.
Curr Issues Mol Biol ; 46(5): 3906-3918, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38785510

RESUMEN

The high recurrence rate of cervical cancer is a leading cause of cancer deaths in women. 5-Fluorouracil (5-FU) is an antitumor drug used to treat many types of cancer, but its diminishing effectiveness and side effects limit its use. Norcantharidin (NCTD), a demethylated derivative of cantharidin, exhibits various biological activities. Here, we investigated whether NCTD could potentiate 5-FU to induce cervical cancer cell death. To assess the cell viability and synergistic effects of the drugs, cell counting kit-8 and colony formation assays were performed using HR-HPV-positive cervical cancer cell lines. Annexin V-FITC/PI staining and TUNEL assays were performed to confirm the induction of apoptosis. The synergistic effect of NCTD on the antitumor activity of 5-FU was analyzed using network pharmacology, molecular docking, and molecular dynamics simulations. Apoptosis-related proteins were examined using immunoblotting. The combination of NCTD and 5-FU was synergistic in cervical cancer cell lines. Network pharmacological analysis identified 10 common targets of NCTD and 5-FU for cervical cancer treatment. Molecular docking showed the strong binding affinity of both compounds with CA12, CASP9, and PTGS1. Molecular dynamics simulations showed that the complex system of both drugs with caspase-9 could be in a stable state. NCTD enhanced 5-FU-mediated cytotoxicity by activating apoptosis-related proteins. NCTD acts synergistically with 5-FU to inhibit cervical cancer cell proliferation. NCTD enhances 5-FU-induced apoptosis in cervical cancer cell lines via the caspase-dependent pathway.

3.
J Comput Chem ; 45(18): 1530-1539, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38491535

RESUMEN

Inhibiting the enzymes carbonic anhydrase I (CA I) and carbonic anhydrase II (CA II) presents a potential avenue for addressing nervous system ailments such as glaucoma and Alzheimer's disease. Our study explored harnessing explainable artificial intelligence (XAI) to unveil the molecular traits inherent in CA I and CA II inhibitors. The PubChem molecular fingerprints of these inhibitors, sourced from the ChEMBL database, were subjected to detailed XAI analysis. The study encompassed training 10 regression models using IC50 values, and their efficacy was gauged using metrics including R2, RMSE, and time taken. The Decision Tree Regressor algorithm emerged as the optimal performer (R2: 0.93, RMSE: 0.43, time-taken: 0.07). Furthermore, the PFI method unveiled key molecular features for CA I inhibitors, notably PubChemFP432 (C(O)N) and PubChemFP6978 (C(O)O). The SHAP analysis highlighted the significance of attributes like PubChemFP539 (C(O)NCC), PubChemFP601 (C(O)OCC), and PubChemFP432 (C(O)N) in CA I inhibitiotable n. Likewise, features for CA II inhibitors encompassed PubChemFP528(C(O)OCCN), PubChemFP791 (C(O)OCCC), PubChemFP696 (C(O)OCCCC), PubChemFP335 (C(O)NCCN), PubChemFP580 (C(O)NCCCN), and PubChemFP180 (C(O)NCCC), identified through SHAP analysis. The sulfonamide group (S), aromatic ring (A), and hydrogen bonding group (H) exert a substantial impact on CA I and CA II enzyme activities and IC50 values through the XAI approach. These insights into the CA I and CA II inhibitors are poised to guide future drug discovery efforts, serving as a beacon for innovative therapeutic interventions.


Asunto(s)
Inteligencia Artificial , Anhidrasa Carbónica II , Anhidrasa Carbónica I , Inhibidores de Anhidrasa Carbónica , Diseño de Fármacos , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica II/química , Anhidrasa Carbónica I/antagonistas & inhibidores , Anhidrasa Carbónica I/metabolismo , Humanos , Estructura Molecular
4.
Biol Chem ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38766708

RESUMEN

Amphibians are well-known for their ability to produce and secrete a mixture of bioactive substances in specialized skin glands for the purpose of antibiotic self-protection and defense against predators. Some of these secretions contain various small molecules, such as the highly toxic batrachotoxin, tetrodotoxin, and samandarine. For some time, the presence of peptides in amphibian skin secretions has attracted researchers, consisting of a diverse collection of - to the current state of knowledge - three to 104 amino acid long sequences. From these more than 2000 peptides many are known to exert antimicrobial effects. In addition, there are some reports on amphibian skin peptides that can promote wound healing, regulate immunoreactions, and may serve as antiparasitic and antioxidative substances. So far, the focus has mainly been on skin peptides from frogs and toads (Anura), eclipsing the research on skin peptides of the ca. 700 salamanders and newts (Caudata). Just recently, several novel observations dealing with caudate peptides and their structure-function relationships were reported. This review focuses on the chemistry and bioactivity of caudate amphibian skin peptides and their potential as novel agents for clinical applications.

5.
Plant Biotechnol J ; 22(6): 1435-1452, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38194521

RESUMEN

Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.


Asunto(s)
Betaína , Flavonoides , Estudio de Asociación del Genoma Completo , Lycium , Polimorfismo de Nucleótido Simple , Espermidina , Flavonoides/metabolismo , Lycium/genética , Lycium/metabolismo , Espermidina/metabolismo , Betaína/metabolismo , Polimorfismo de Nucleótido Simple/genética , Genoma de Planta/genética , Frutas/genética , Frutas/metabolismo
6.
Appl Environ Microbiol ; 90(7): e0024724, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38888338

RESUMEN

The aim of this study was to identify a Bifidobacterium strain that improves the performance of Limosilactobacillus reuteri DSM 17938. Initial tests showed that Bifidobacterium longum subsp. longum strains boosted the growth of DSM 17938 during in vivo-like conditions. Further characterization revealed that one of the strains, BG-L47, had better bile and acid tolerance compared to BG-L48, as well as mucus adhesion compared to both BG-L48 and the control strain BB536. BG-L47 also had the capacity to metabolize a broad range of carbohydrates and sugar alcohols. Mapping of glycoside hydrolase (GH) genes of BG-L47 and BB536 revealed many GHs associated with plant-fiber utilization. However, BG-L47 had a broader phenotypic fiber utilization capacity. In addition, B. longum subsp. longum cells boosted the bioactivity of extracellular membrane vesicles (MV) produced by L. reuteri DSM 17938 during co-cultivation. Secreted 5'-nucleotidase (5'NT), an enzyme that converts AMP into the signal molecule adenosine, was increased in MV boosted by BG-L47. The MV exerted an improved antagonistic effect on the pain receptor transient receptor potential vanilloid 1 (TRPV1) and increased the expression of the immune development markers IL-6 and IL-1ß in a peripheral blood mononuclear cell (PBMC) model. Finally, the safety of BG-L47 was evaluated both by genome safety assessment and in a human safety study. Microbiota analysis showed that the treatment did not induce significant changes in the composition. In conclusion, B. longum subsp. longum BG-L47 has favorable physiological properties, can boost the in vitro activity of L. reuteri DSM 17938, and is safe for consumption, making it a candidate for further evaluation in probiotic studies. IMPORTANCE: By using probiotics that contain a combination of strains with synergistic properties, the likelihood of achieving beneficial interactions with the host can increase. In this study, we first performed a broad screening of Bifidobacterium longum subsp. longum strains in terms of synergistic potential and physiological properties. We identified a superior strain, BG-L47, with favorable characteristics and potential to boost the activity of the known probiotic strain Limosilactobacillus reuteri DSM 17938. Furthermore, we demonstrated that BG-L47 is safe for consumption in a human randomized clinical study and by performing a genome safety assessment. This work illustrates that bacteria-bacteria interactions differ at the strain level and further provides a strategy for finding and selecting companion strains of probiotics.


Asunto(s)
Bifidobacterium , Vesículas Extracelulares , Limosilactobacillus reuteri , Probióticos , Limosilactobacillus reuteri/metabolismo , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/crecimiento & desarrollo , Vesículas Extracelulares/metabolismo , Humanos , Bifidobacterium/metabolismo , Bifidobacterium/genética , Bifidobacterium/crecimiento & desarrollo
7.
New Phytol ; 242(2): 558-575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38396374

RESUMEN

Black wolfberry (Lycium ruthenicum Murr.) contains various bioactive metabolites represented by flavonoids, which are quite different among production regions. However, the underlying regulation mechanism of flavonoid biosynthesis governing the bioactivity of black wolfberry remains unclear. Presently, we compared the bioactivity of black wolfberry from five production regions. Multi-omics were performed to construct the regulation network associated with the fruit bioactivity. The detailed regulation mechanisms were identified using genetic and molecular methods. Typically, Qinghai (QH) fruit exhibited higher antioxidant and anti-inflammatory activities. The higher medicinal activity of QH fruit was closely associated with the accumulation of eight flavonoids, especially Kaempferol-3-O-rutinoside (K3R) and Quercetin-3-O-rutinoside (rutin). Flavonoid biosynthesis was found to be more active in QH fruit, and the upregulation of LrFLS, LrCHS, LrF3H and LrCYP75B1 caused the accumulation of K3R and rutin, leading to high medicinal bioactivities of black wolfberry. Importantly, transcription factor LrMYB94 was found to regulate LrFLS, LrCHS and LrF3H, while LrWRKY32 directly triggered LrCYP75B1 expression. Moreover, LrMYB94 interacted with LrWRKY32 to promote LrWRKY32-regulated LrCYP75B1 expression and rutin synthesis in black wolfberry. Transgenic black wolfberry overexpressing LrMYB94/LrWRKY32 contained higher levels of K3R and rutin, and exhibited high medicinal bioactivities. Importantly, the LrMYB94/LrWRKY32-regulated flavonoid biosynthesis was light-responsive, showing the importance of light intensity for the medicinal quality of black wolfberry. Overall, our results elucidated the regulation mechanisms of K3R and rutin synthesis, providing the basis for the genetic breeding of high-quality black wolfberry.


Asunto(s)
Lycium , Lycium/genética , Fitomejoramiento , Flavonoides , Antioxidantes , Rutina , Frutas/genética
8.
J Exp Bot ; 75(13): 3797-3817, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38630561

RESUMEN

The growing demand for sustainable solutions in agriculture, which are critical for crop productivity and food quality in the face of climate change and the need to reduce agrochemical usage, has brought biostimulants into the spotlight as valuable tools for regenerative agriculture. With their diverse biological activities, biostimulants can contribute to crop growth, nutrient use efficiency, and abiotic stress resilience, as well as to the restoration of soil health. Biomolecules include humic substances, protein lysates, phenolics, and carbohydrates have undergone thorough investigation because of their demonstrated biostimulant activities. Here, we review the process of the discovery and development of extract-based biostimulants, and propose a practical step-by-step pipeline that starts with initial identification of biomolecules, followed by extraction and isolation, determination of bioactivity, identification of active compound(s), elucidation of mechanisms, formulation, and assessment of effectiveness. The different steps generate a roadmap that aims to expedite the transfer of interdisciplinary knowledge from laboratory-scale studies to pilot-scale production in practical scenarios that are aligned with the prevailing regulatory frameworks.


Asunto(s)
Productos Agrícolas , Productos Agrícolas/crecimiento & desarrollo , Sustancias Húmicas/análisis
9.
Chemistry ; 30(4): e202302595, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37814110

RESUMEN

Podophyllotoxin is an aryltetralin lignan lactone derived from different plants of Podophyllum. It consists of five rings with four chiral centers, one trans-lactone and one aryl tetrahydronaphthalene skeleton with multiple modification sites. Moreover, podophyllotoxin and its derivatives showed lots of bioactivities, including anticancer, anti-inflammatory, antiviral, and insecticidal properties. The demand for podophyllotoxin and its derivatives is rising as a result of their high efficacy. As a continuation of our previous review (Chem. Eur. J., 2017, 23, 4467-4526), herein, total synthesis, biotransformation, structural modifications, bioactivities, and structure-activity relationships of podophyllotoxin and its derivatives from 2017 to 2022 are summarized. Meanwhile, a piece of update information on the origin of new podophyllotoxin analogues from plants from 2014 to 2022 was compiled. We hope that this review will provide a reference for future high value-added applications of podophyllotoxin and its analogues in the pharmaceutical and agricultural fields.


Asunto(s)
Lignanos , Podofilotoxina , Relación Estructura-Actividad , Lignanos/química , Lactonas , Biología
10.
Anal Biochem ; 686: 115413, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38040174

RESUMEN

To establish an in vitro biological activity detection method for luteinizing hormone (LH), the hLHCGR-CREB-HEK293 cell line was constructed to stably express human luteinizing hormone/chorionic gonadotropin receptor (hLHCGR). After optimization, the rhLH starting working concentration was 800 mIU/mL with 4-fold serial dilutions, 10 concentrations and an incubation time of 5 h. The method was confirmed to be highly specific, with good accuracy, precision and linearity, meeting the needs of process research and release testing, and can be used as a routine detection method for LH biological activity. With the increasing demand for research and development of rhLH biologically similar drugs, establishing a stable and simple activity assay method to evaluate the biological activity of rhLH can provide technical support for quality control of rhLH products and powerful tools for comparability research of similar products.


Asunto(s)
Gonadotropina Coriónica , Hormona Luteinizante , Humanos , Genes Reporteros , Células HEK293 , Hormona Luteinizante/genética , Preparaciones Farmacéuticas , Proteínas Recombinantes , Bioensayo
11.
FASEB J ; 37(1): e22717, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563024

RESUMEN

Bone morphogenetic proteins (BMP) are powerful regulators of cellular processes such as proliferation, differentiation, and apoptosis. However, the specific molecular requirements controlling the bioavailability of BMPs in the extracellular matrix (ECM) are not yet fully understood. Our previous work showed that BMPs are targeted to the ECM as growth factor-prodomain (GF-PD) complexes (CPLXs) via specific interactions of their PDs. We showed that BMP-7 PD binding to the extracellular microfibril component fibrillin-1 renders the CPLXs from an open, bioactive V-shape into a closed, latent ring shape. Here, we show that specific PD interactions with heparin/heparan sulfate glycosaminoglycans (GAGs) allow to target and spatially concentrate BMP-7 and BMP-9 CPLXs in bioactive V-shape conformation. However, targeting to GAGs may be BMP specific, since BMP-10 GF and CPLX do not interact with heparin. Bioactivity assays on solid phase in combination with interaction studies showed that the BMP-7 PD protects the BMP-7 GF from inactivation by heparin. By using transmission electron microscopy, molecular docking, and site-directed mutagenesis, we determined the BMP-7 PD-binding site for heparin. Further, fine-mapping of the fibrillin-1-binding site within the BMP-7 PD and molecular modeling showed that both binding sites are mutually exclusive in the open V- versus closed ring-shape conformation. Together, our data suggest that targeting exquisite BMP PD-binding sites by extracellular protein and GAG scaffolds integrates BMP GF bioavailability in a contextual manner in development, postnatal life, and connective tissue disease.


Asunto(s)
Proteína Morfogenética Ósea 7 , Glicosaminoglicanos , Proteína Morfogenética Ósea 7/metabolismo , Heparina/metabolismo , Fibrilina-1/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Morfogenéticas Óseas/metabolismo , Heparitina Sulfato/metabolismo , Unión Proteica , Proteína Morfogenética Ósea 2/metabolismo
12.
Biotechnol Bioeng ; 121(9): 2767-2779, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38837342

RESUMEN

Injectable, tissue mimetic, bioactive, and biodegradable hydrogels offer less invasive regeneration and repair of tissues. The monitoring swelling and in vitro degradation capacities of hydrogels are highly important for drug delivery and tissue regeneration processes. Bioactivity of bone tissue engineered constructs in terms of mineralized apatite formation capacity is also pivotal. We have previously reported in situ forming chitosan-based injectable hydrogels integrated with hydroxyapatite and heparin for bone regeneration, promoting angiogenesis. These hydrogels were functionalized by glycerol and pH to improve their mechano-structural properties. In the present study, functionalized hybrid hydrogels were investigated for their swelling, in vitro degradation, and bioactivity performances. Hydrogels have degraded gradually in phosphate-buffered saline (PBS) with and without lysozyme enzyme. The percentage weight loss of hydrogels and their morphological and chemical properties, and pH of media were analyzed. The swelling ratio of hydrogels (55%-68%(wt), 6 h of equilibrium) indicated a high degree of cross-linking, can be suitable for controlled drug release. Hydrogels have gradually degraded reaching to 60%-70% (wt%) in 42 days in the presence and absence of lysozyme, respectively. Simulated body fluid (SBF)-treated hydrogels containing hydroxyapatite-induced needle-like carbonated-apatite mineralization was further enhanced by heparin content significantly.


Asunto(s)
Regeneración Ósea , Quitosano , Hidrogeles , Quitosano/química , Hidrogeles/química , Hidrogeles/farmacología , Regeneración Ósea/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Durapatita/química , Durapatita/farmacología , Muramidasa/química , Muramidasa/farmacología , Concentración de Iones de Hidrógeno , Materiales Biocompatibles/química , Heparina/química , Heparina/farmacología
13.
Adv Appl Microbiol ; 128: 83-104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39059844

RESUMEN

Fatty acids and their derivatives are indispensable biomolecules in all organisms, and can be used as intermediates in the synthesis of pharmaceuticals, biofuels and pesticides, and thus their demand has increased dramatically in recent years. In addition to serving as structural components of cell membranes and metabolic energy, fatty acids and their derivatives can also be used as signal transduction and regulatory bioactive molecules to regulate cell functions. Biosynthesis of fatty acids and their derivatives through microbial catalysis provides green and alternative options to meet the goal. However, the low biosynthetic titer of fatty acids and their derivatives limits their industrial production and application. In this review, we first summarize the metabolic pathways and related enzymes of fatty acids and their derivatives biosynthesis. Then, the strategies and research progress of biosynthesis of fatty acids and derivatives through metabolic and enzyme engineering were reviewed. The biosynthesis of saturated fatty acids (medium chain fatty acids and long chain fatty acids), bioactive fatty acids (PUFAs, oxylipins, ether lipids), and their derivatives with microbial and enzymatic catalysis were respectively summarized. Finally, synthetic biology strategies to improve fatty acids and their derivatives production through enzyme rational design, carbon metabolism flux, cofactors balance, and metabolic pathways design were discussed. The review provides references and prospects for fatty acids and their derivatives biosynthesis and industrial production.


Asunto(s)
Ácidos Grasos , Ingeniería Metabólica , Redes y Vías Metabólicas , Biología Sintética , Ácidos Grasos/biosíntesis , Ácidos Grasos/metabolismo , Biología Sintética/métodos , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Bacterias/metabolismo , Bacterias/genética , Vías Biosintéticas
14.
Microb Cell Fact ; 23(1): 94, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539197

RESUMEN

BACKGROUND: Surfactin, a green lipopeptide bio-surfactant, exhibits excellent surface, hemolytic, antibacterial, and emulsifying activities. However, a lack of clear understanding of the synthesis regulation mechanism of surfactin homologue components has hindered the customized production of surfactin products with different biological activities. RESULTS: In this study, exogenous valine and 2-methylbutyric acid supplementation significantly facilitated the production of C14-C15 surfactin proportions (up to 75% or more), with a positive correlation between the homologue proportion and fortified concentration. Subsequently, the branched-chain amino acid degradation pathway and the glutamate synthesis pathway are identified as critical pathways in regulating C14-C15 surfactin synthesis by transcriptome analysis. Overexpression of genes bkdAB and glnA resulted in a 1.4-fold and 1.3-fold increase in C14 surfactin, respectively. Finally, the C14-rich surfactin was observed to significantly enhance emulsification activity, achieving an EI24 exceeding 60% against hexadecane, while simultaneously reducing hemolytic activity. Conversely, the C15-rich surfactin demonstrated an increase in both hemolytic and antibacterial activities. CONCLUSION: This study presents the first evidence of a potential connection between surfactin homologue synthesis and the conversion of glutamate and glutamine, providing a theoretical basis for targeting the synthesis regulation and structure-activity relationships of surfactin and other lipopeptide compounds.


Asunto(s)
Ácidos Grasos , Tensoactivos , Ácidos Grasos/metabolismo , Tensoactivos/metabolismo , Ácido Glutámico/metabolismo , Lipopéptidos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Péptidos Cíclicos/química , Bacillus subtilis/genética
15.
Microb Ecol ; 87(1): 67, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703220

RESUMEN

Spiders host a diverse range of bacteria in their guts and other tissues, which have been found to play a significant role in their fitness. This study aimed to investigate the community diversity and functional characteristics of spider-associated bacteria in four tissues of Heteropoda venatoria using HTS of the 16S rRNA gene and culturomics technologies, as well as the functional verification of the isolated strains. The results of HTS showed that the spider-associated bacteria in different tissues belonged to 34 phyla, 72 classes, 170 orders, 277 families, and 458 genera. Bacillus was found to be the most abundant bacteria in the venom gland, silk gland, and ovary, while Stenotrophomonas, Acinetobacter, and Sphingomonas were dominant in the gut microbiota. Based on the amplicon sequencing results, 21 distinct cultivation conditions were developed using culturomics to isolate bacteria from the ovary, gut, venom gland, and silk gland. A total of 119 bacterial strains, representing 4 phyla and 25 genera, with Bacillus and Serratia as the dominant genera, were isolated. Five strains exhibited high efficiency in degrading pesticides in the in vitro experiments. Out of the 119 isolates, 28 exhibited antibacterial activity against at least one of the tested bacterial strains, including the pathogenic bacteria Staphylococcus aureus, Acinetobacter baumanii, and Enterococcus faecalis. The study also identified three strains, GL312, PL211, and PL316, which exhibited significant cytotoxicity against MGC-803. The crude extract from the fermentation broth of strain PL316 was found to effectively induce apoptosis in MGC-803 cells. Overall, this study offers a comprehensive understanding of the bacterial community structure associated with H. venatoria. It also provides valuable insights into discovering novel antitumor natural products for gastric cancer and xenobiotic-degrading bacteria of spiders.


Asunto(s)
Bacterias , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Ribosómico 16S , Arañas , Animales , Arañas/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Femenino , Microbioma Gastrointestinal , Humanos , Filogenia , Biodiversidad , Antibacterianos/farmacología , Plaguicidas
16.
Anal Bioanal Chem ; 416(3): 715-731, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36988684

RESUMEN

Current strategies for non-target food screening focus mainly on known hazardous chemicals (adulterants, residues, contaminants, packaging migrants, etc.) instead of bioactive constituents in general and exclude the biological effect detection. To widen the perspective, a more proactive non-target effect-directed strategy is introduced to complement food safety in order to detect not only known but also unknown bioactive compounds. The developed 10-dimensional hyphenation included on-surface digestion (1D), planar chromatographic separation (2D), visualization using white light (3D), UV light (4D), fluorescence light (5D), effect-directed assay analysis (6D), heart-cut zone elution to an orthogonal reversed phase column chromatography including online desalting (7D) with subsequent diode array detection (8D), high-resolution mass spectrometry (9D), and fragmentation (10D). Metabolism, i.e., intestinal digestion of each sample, was simulated and integrated on the same adsorbent surface to study any changes in the compound profiles. As proof of principle, nine convenience tomato products and a freshly prepared tomato soup were screened via five different planar assays in a non-targeted mode. Non-digested and digested samples were compared side by side. In their effect-directed profiles, 14 bioactive compounds from classes of lipids, plant hormones, spices, and pesticides were identified. In particular, bioactive compounds coming from the lipid class were increased by gastrointestinal digestion, while spices and pesticides remained unaffected. With regard to food safety, the determination of the two dinitrophenol herbicides dinoterb and dinoseb in highly processed tomato products should be given special attention. The hyphenation covered a broad analyte spectrum and showed robust and reliable results.


Asunto(s)
Plaguicidas , Solanum lycopersicum , Cromatografía en Capa Delgada/métodos , Espectrometría de Masas , Digestión , Cromatografía Líquida de Alta Presión/métodos
17.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38724454

RESUMEN

AIMS: Neocosmospora species are saprobes, endophytes, and pathogens belonging to the family Nectriaceae. This study aims to investigate the taxonomy, biosynthetic potential, and application of three newly isolated Neocosmospora species from mangrove habitats in the southern part of Thailand using phylogeny, bioactivity screening, genome sequencing, and bioinformatics analysis. METHODS AND RESULTS: Detailed descriptions, illustrations, and a multi-locus phylogenetic tree with large subunit ribosomal DNA (LSU), internal transcribed spacer (ITS), translation elongation factor 1-alpha (ef1-α), and RNA polymerase II second largest subunit (RPB2) regions showing the placement of three fungal strains, MFLUCC 17-0253, MFLUCC 17-0257, and MFLUCC 17-0259 clustered within the Neocosmospora clade with strong statistical support. Fungal crude extracts of the new species N. mangrovei MFLUCC 17-0253 exhibited strong antifungal activity to control Colletotrichum truncatum CG-0064, while N. ferruginea MFLUCC 17-0259 exhibited only moderate antifungal activity toward C. acutatum CC-0036. Thus, N. mangrovei MFLUCC 17-0253 was sequenced by Oxford nanopore technology. The bioinformatics analysis revealed that 49.17 Mb genome of this fungus harbors 41 potential biosynthetic gene clusters. CONCLUSION: Two fungal isolates of Neocosmospora and a new species of N. mangrovei were reported in this study. These fungal strains showed activity against pathogenic fungi causing anthracnose in chili. In addition, full genome sequencing and bioinformatics analysis of N. mangrovei MFLUCC 17-0253 were obtained.


Asunto(s)
Colletotrichum , Filogenia , Colletotrichum/genética , Tailandia , Ascomicetos/genética , Antifúngicos/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Agentes de Control Biológico , ADN de Hongos/genética , Genoma Fúngico , Pueblos del Sudeste Asiático
18.
Bioorg Chem ; 143: 107091, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183683

RESUMEN

This scientific review documents the recent progress of C3-spirooxindoles chemistry (synthesis and reaction mechanism) and their bioactivities, focusing on the promising results as well as highlighting the biological mechanism via the reported molecular docking findings of the most bioactive derivatives. C3-Spirooxindoles are attractive bioactive agents and have been found in a variety of natural compounds, including alkaloids. They are widely investigated in the field of medicinal chemistry and play a key role in medication development, such as antivirals, anticancer agents, antimicrobials, etc. Regarding organic synthesis, several traditional and advanced strategies have been reported, particularly those that started with isatin derivatives.


Asunto(s)
Benzopiranos , Nitrilos , Compuestos de Espiro , Espirooxindoles , Simulación del Acoplamiento Molecular , Compuestos de Espiro/farmacología , Compuestos de Espiro/química , Oxindoles/farmacología , Oxindoles/química
19.
Int J Med Sci ; 21(10): 1915-1928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113883

RESUMEN

Introduction: Lung cancer, characterized by uncontrolled cellular proliferation within the lung tissues, is the predominant cause of cancer-related fatalities worldwide. The traditional medicinal herb Piper longum has emerged as a significant contender in oncological research because of its documented anticancer attributes, suggesting its potential for novel therapeutic development. Methods: This study adopted network pharmacology and omics methodology to elucidate the anti-lung cancer potential of P. longum by identifying its bioactive constituents and their corresponding molecular targets. Results: Through a comprehensive literature review and the Integrated Medicinal Plant Phytochemistry and Therapeutics database (IMPPAT), we identified 33 bioactive molecules from P. longum. Subsequent analyses employing tools such as SwissTargetPrediction, SuperPred, and DIGEP-Pred facilitated the isolation of 676 potential targets, among which 72 intersected with 666 lung cancer-associated genetic markers identified through databases including the Therapeutic Target Database (TTD), Online Mendelian Inheritance in Man (OMIM), and GeneCards. Further validation through protein-protein interaction (PPI) networks, gene ontology, pathway analyses, boxplots, and overall survival metrics underscored the therapeutic potential of compounds such as 7-epi-eudesm-4(15)-ene-1ß, demethoxypiplartine, methyl 3,4,5-trimethoxycinnamate, 6-alpha-diol, and aristolodione. Notably, our findings reaffirm the relevance of lung cancer genes, such as CTNNB1, STAT3, HIF1A, HSP90AA1, and ERBB2, integral to various cellular processes and pivotal in cancer genesis and advancement. Molecular docking assessments revealed pronounced affinity between 6-alpha-diol and HIF1A, underscoring their potential as therapeutic agents for lung cancer. Conclusion: This study not only highlights the bioactive compounds of P. longum but also reinforces the molecular underpinnings of its anticancer mechanism, paving the way for future lung cancer therapeutics.


Asunto(s)
Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Farmacología en Red , Piper , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Piper/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/química , Mapas de Interacción de Proteínas/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/química , Plantas Medicinales/química
20.
Chirality ; 36(2): e23638, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38384151

RESUMEN

Chiral pesticides have the special chiral structures, so enantioselective biological effects are usually observed in living organisms. Current study used paclobutrazol as a case study and explored the enantioselective degradation and oxidative stress effect on wheat. The results demonstrated that the degradation of R-paclobutrazol was faster than S-paclobutrazol significantly and improved the content of MDA and O2 - in wheat plants, which proved that the R-paclobutrazol induced oxidative damage in wheat, showing selective biological effects, and S-paclobutrazol was friendly to wheat. This study provided a theoretical basis for the selective activity of chiral pesticides and the development of chiral pesticide monomers.


Asunto(s)
Plaguicidas , Triazoles , Triticum , Triticum/metabolismo , Estereoisomerismo , Plaguicidas/química , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA