Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Genomics ; 18(1): 15, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38326862

RESUMEN

BACKGROUND: It is valuable to analyze the genome-wide association studies (GWAS) data for a complex disease phenotype in the context of the protein-protein interaction (PPI) network, as the related pathophysiology results from the function of interacting polyprotein pathways. The analysis may include the design and curation of a phenotype-specific GWAS meta-database incorporating genotypic and eQTL data linking to PPI and other biological datasets, and the development of systematic workflows for PPI network-based data integration toward protein and pathway prioritization. Here, we pursued this analysis for blood pressure (BP) regulation. METHODS: The relational scheme of the implemented in Microsoft SQL Server BP-GWAS meta-database enabled the combined storage of: GWAS data and attributes mined from GWAS Catalog and the literature, Ensembl-defined SNP-transcript associations, and GTEx eQTL data. The BP-protein interactome was reconstructed from the PICKLE PPI meta-database, extending the GWAS-deduced network with the shortest paths connecting all GWAS-proteins into one component. The shortest-path intermediates were considered as BP-related. For protein prioritization, we combined a new integrated GWAS-based scoring scheme with two network-based criteria: one considering the protein role in the reconstructed by shortest-path (RbSP) interactome and one novel promoting the common neighbors of GWAS-prioritized proteins. Prioritized proteins were ranked by the number of satisfied criteria. RESULTS: The meta-database includes 6687 variants linked with 1167 BP-associated protein-coding genes. The GWAS-deduced PPI network includes 1065 proteins, with 672 forming a connected component. The RbSP interactome contains 1443 additional, network-deduced proteins and indicated that essentially all BP-GWAS proteins are at most second neighbors. The prioritized BP-protein set was derived from the union of the most BP-significant by any of the GWAS-based or the network-based criteria. It included 335 proteins, with ~ 2/3 deduced from the BP PPI network extension and 126 prioritized by at least two criteria. ESR1 was the only protein satisfying all three criteria, followed in the top-10 by INSR, PTN11, CDK6, CSK, NOS3, SH2B3, ATP2B1, FES and FINC, satisfying two. Pathway analysis of the RbSP interactome revealed numerous bioprocesses, which are indeed functionally supported as BP-associated, extending our understanding about BP regulation. CONCLUSIONS: The implemented workflow could be used for other multifactorial diseases.


Asunto(s)
Estudio de Asociación del Genoma Completo , Mapas de Interacción de Proteínas , Humanos , Mapas de Interacción de Proteínas/genética , Estudio de Asociación del Genoma Completo/métodos , Presión Sanguínea/genética , Genotipo , Bases de Datos Factuales , ATPasas Transportadoras de Calcio de la Membrana Plasmática
2.
Curr Hypertens Rep ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259220

RESUMEN

PURPOSE OF REVIEW: We review the role of uromodulin, a protein exclusively expressed in the kidney, in blood pressure regulation and hypertension. RECENT FINDINGS: The last few years have seen a shift of focus from genetic association to mendelian randomisation and uromodulin-salt interaction studies, thus confirming the causal role of uromodulin in blood pressure regulation and hypertension. This work has been complemented by phenome-wide association studies in a wider range of ethnicities. Important recent molecular work elucidated uromodulin trafficking and secretion and provided more insights into the pathophysiological roles of circulating and urinary uromodulin. Uromodulin has a causal role in blood pressure regulation and hypertensin. Recent studies show utility of the uromodulin as a biomarker and a possible precision medicine application based on genetically determined differential responses to loop diuretics.

3.
Am J Physiol Regul Integr Comp Physiol ; 324(5): R625-R634, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36878486

RESUMEN

During hypoxic exposure, humans with high-affinity hemoglobin (and compensatory polycythemia) have blunted increases in heart rate compared with healthy humans with typical oxyhemoglobin dissociation curves. This response may be associated with altered autonomic control of heart rate. Our hypothesis-generating study aimed to investigate cardiac baroreflex sensitivity and heart rate variability among nine humans with high-affinity hemoglobin [6 females, O2 partial pressure at 50% [Formula: see text] (P50) = 16 ± 1 mmHg] compared with 12 humans with typical affinity hemoglobin (6 F, P50 = 26 ± 1 mmHg). Participants breathed normal room air for a 10-min baseline, followed by 20 min of isocapnic hypoxic exposure, designed to lower the arterial partial pressure O2 ([Formula: see text]) to ∼50 mmHg. Beat-by-beat heart rate and arterial blood pressure were recorded. Data were averaged in 5-min periods throughout the hypoxia exposure, beginning with the last 5 min of baseline in normoxia. Spontaneous cardiac baroreflex sensitivity and heart rate variability were determined using the sequence method and the time and frequency domain analyses, respectively. Cardiac baroreflex sensitivity was lower in humans with high-affinity hemoglobin than controls at baseline and during isocapnic hypoxic exposure (normoxia: 7 ± 4 vs. 16 ± 10 ms/mmHg, hypoxia minutes 15-20: 4 ± 3 vs. 14 ± 11 ms/mmHg; group effect: P = 0.02, high-affinity hemoglobin vs. control, respectively). Heart rate variability calculated in both the time (standard deviation of the N-N interval) and frequency (low frequency) domains was lower in humans with high-affinity hemoglobin than in controls (all P < 0.05). Our data suggest that humans with high-affinity hemoglobin may have attenuated cardiac autonomic function.


Asunto(s)
Policitemia , Femenino , Humanos , Corazón , Sistema Nervioso Autónomo , Presión Arterial , Frecuencia Cardíaca/fisiología , Hipoxia , Barorreflejo/fisiología , Presión Sanguínea
4.
Exp Physiol ; 108(12): 1481-1489, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37878751

RESUMEN

The present study evaluated cardiovagal baroreflex sensitivity (BRS) across the menstrual/pill cycle in naturally menstruating women (NAT women) and women using oral hormonal contraceptives (OCP women). In 21 NAT women (23 ± 4 years old) and 22 OCP women (23 ± 3 years old), cardiovagal BRS and circulating concentrations of estradiol and progesterone were evaluated during the lower hormone (early follicular/placebo pill) and higher hormone (late follicular to early luteal/active pill) phases. During the lower hormone phase, cardiovagal BRS up, down and mean gain were lower in NAT women (15.6 ± 8.3, 15.2 ± 6.1 and 15.1 ± 7.1 ms/mmHg) compared with OCP women (24.7 ± 9.4, 22.9 ± 8.0 and 23.0 ± 8.0 ms/mmHg) (P = 0.003, P = 0.002 and P = 0.003, respectively), and higher oestrogen (R2  = 0.15, P = 0.024), but not progesterone (R2  = 0.06, P = 0.18), concentrations were predictive of lower BRS mean gain. During the higher hormone phase, higher progesterone concentrations were predictive of lower BRS mean gain (R2  = 0.12, P = 0.024). A multivariate regression model revealed group (NAT or OCP) to be a significant predictor of cardiovagal BRS mean gain in the lower hormone phase when hormone concentrations were adjusted for (R2  = 0.36, P = 0.0044). The multivariate regression model was not significant during the higher hormone phase (P > 0.05). In summary, cardiovagal BRS is lower in NAT compared with OCP women during the lower hormone phase of the menstrual/pill cycle and might be associated with higher oestrogen concentrations. In contrast, during the higher hormone phase of the menstrual/OCP cycle, higher progesterone concentrations were predictive of lower cardiovagal BRS. NEW FINDINGS: What is the central question of this study? Does cardiovagal baroreflex sensitivity (BRS) differ between naturally menstruating women (NAT women) and women using oral contraceptives (OCP women)? What is the main finding and its importance? The main findings are as follows: (1) NAT women exhibit lower cardiovagal BRS than OCP women during the lower hormone phase of the menstrual or pill cycle; and (2) circulating oestrogen concentrations are significant predictors of cardiovagal BRS during the lower hormone phase, with higher oestrogen concentrations predicting lower BRS. The present data advance our understanding of the effect of endogenous ovarian hormones and OCP use on cardiovascular control mechanisms.


Asunto(s)
Menstruación , Progesterona , Humanos , Femenino , Adulto Joven , Adulto , Barorreflejo , Estradiol , Anticonceptivos Orales , Estrógenos
5.
J Math Biol ; 86(4): 58, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36952058

RESUMEN

The renin-angiotensin system (RAS) plays a pivotal role in the maintenance of volume homeostasis and blood pressure. In addition to the well-studied systemic RAS, local RAS have been documented in various tissues, including the kidney. Given the role of the intrarenal RAS in the pathogenesis of hypertension, a role established via various pharmacologic and genetic studies, substantial efforts have been made to unravel the processes that govern intrarenal RAS activity. In particular, several mechanisms have been proposed to explain the rise in intrarenal angiotensin II (Ang II) that accompanies Ang II infusion, including increased angiotensin type 1 receptor (AT1R)-mediated uptake of Ang II and enhanced intrarenal Ang II production. However, experimentally isolating their contribution to the intrarenal accumulation of Ang II in Ang II-induced hypertension is challenging, given that they are fundamentally connected. Computational modelling is advantageous because the feedback underlying each mechanism can be removed and the effect on intrarenal Ang II can be studied. In this work, the mechanisms governing the intrarenal accumulation of Ang II during Ang II infusion experiments are delineated and the role of the intrarenal RAS in Ang II-induced hypertension is studied. To accomplish this, a compartmental ODE model of the systemic and intrarenal RAS is developed and Ang II infusion experiments are simulated. Simulations indicate that AT1R-mediated uptake of Ang II is the primary mechanism by which Ang II accumulates in the kidney during Ang II infusion. Enhanced local Ang II production is unnecessary. The results demonstrate the role of the intrarenal RAS in the pathogenesis of Ang II-induced hypertension and consequently, clinical hypertension associated with an overactive RAS.


Asunto(s)
Hipertensión , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiología , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/farmacología , Hipertensión/metabolismo , Riñón/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacología
6.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240118

RESUMEN

Today's sedentary lifestyle with excess food and little exercise increases the number of people with hypertension, a major risk factor for stroke. New knowledge of treatments in this field is of utmost importance. In animal experiments, the activation by capsaicin of TRPV1-expressing sensory afferents evokes a drop in blood pressure by triggering the Bezold-Jarisch reflex. In hypertensive rats, capsaicin reduces blood pressure. Conversely, genetic ablation of the TRPV1 receptor results in elevated nocturnal (but not diurnal) blood pressure. These observations imply a therapeutic potential for TRPV1 activation in hypertensive patients. Indeed, in a major epidemiological study involving 9273 volunteers, dietary capsaicin was found to lower the risk for hypertension. New research indicates that the mechanism of action of capsaicin on blood pressure regulation is far more complex than previously thought. In addition to the well-recognized role of capsaicin-sensitive afferents in blood pressure regulation, TRPV1 seems to be expressed both in endothelial cells and vascular smooth muscle. This review aims to evaluate the therapeutic potential of TRPV1-targeting drugs in hypertensive patients.


Asunto(s)
Capsaicina , Hipertensión , Animales , Ratas , Presión Sanguínea , Capsaicina/farmacología , Capsaicina/uso terapéutico , Células Endoteliales , Hipertensión/tratamiento farmacológico , Canales Catiónicos TRPV/genética , Humanos
7.
Entropy (Basel) ; 25(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37372224

RESUMEN

Cardiovascular self-organized criticality has recently been demonstrated. We studied a model of autonomic nervous system changes to better characterize heart rate variability self-organized criticality. The model included short and long-term autonomic changes associated with body position and physical training, respectively. Twelve professional soccer players took part in a 5-week training session divided into "Warm-up", "Intensive", and "Tapering" periods. A stand test was carried out at the beginning and end of each period. Heart rate variability was recorded beat by beat (Polar Team 2). Bradycardias, defined as successive heart rates with a decreasing value, were counted according to their length in number of heartbeat intervals. We checked whether bradycardias were distributed according to Zipf's law, a feature of self-organized criticality. Zipf's law draws a straight line when the rank of occurrence is plotted against the frequency of occurrence in a log-log graph. Bradycardias were distributed according to Zipf's law, regardless of body position or training. Bradycardias were much longer in the standing position than the supine position and Zipf's law was broken after a delay of four heartbeat intervals. Zipf's law could also be broken in some subjects with curved long bradycardia distributions by training. Zipf's law confirms the self-organized nature of heart rate variability and is strongly linked to autonomic standing adjustment. However, Zipf's law could be broken, the significance of which remains unclear.

8.
Am J Physiol Regul Integr Comp Physiol ; 322(5): R400-R410, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35293262

RESUMEN

Sit-stand maneuvers (SSMs) have increasingly been used for baroreflex sensitivity (BRS) measurement in physiological research, but it remains unknown as to how many SSMs need to be performed to measure BRS and assess its relationship with cardiovascular disease (CVD) risk. Therefore, this study aimed to determine 1) the effect of the number of SSM repetitions on BRS, and 2) the association between BRS and CVD risk factors. Data were collected from 174 individuals during 5 min of spontaneous rest and 5 min of repeated SSMs at 0.05 Hz (i.e., 15 cycles of 10-s sit and 10-s stand). During SSMs, BRS was calculated from the incremental cycles of 3, 6, 9, 12, and 15 SSMs using transfer function analysis of heart rate (HR) and systolic blood pressure (SBP). General CVD risk factors, carotid arterial stiffness, and cardiorespiratory fitness were measured. In result, HR and SBP increased during SSMs (P < 0.05). The BRS remained at a similar level during the resting and SSM conditions, whereas the coherence function reached its peak after 3 cycles of SSMs. BRS with ≥6 cycles of SSMs was strongly correlated with age (r = -0.721 to -0.740), carotid distensibility (r = 0.625-0.629), and cardiorespiratory fitness (r = 0.333-0.351) (all P < 0.001). Multiple regression analysis demonstrated that BRS with ≥6 cycles of SSMs explained >60% of the variance in CVD risk factors. Therefore, our findings suggest that repeated SSMs significantly strengthens the association between BRS and CVD risk factors. Particularly, BRS with ≥6 cycles of SSMs is strongly associated with CVD risk.


Asunto(s)
Enfermedades Cardiovasculares , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/diagnóstico , Factores de Riesgo de Enfermedad Cardiaca , Frecuencia Cardíaca/fisiología , Humanos , Factores de Riesgo
9.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163382

RESUMEN

Transient receptor potential melastatin-4 (TRPM4) is activated by an increase in intracellular Ca2+ concentration and is expressed on smooth muscle cells (SMCs). It is implicated in the myogenic constriction of cerebral arteries. We hypothesized that TRPM4 has a general role in intracellular Ca2+ signal amplification in a wide range of blood vessels. TRPM4 function was tested with the TRPM4 antagonist 9-phenanthrol and the TRPM4 activator A23187 on the cardiovascular responses of the rat, in vivo and in isolated basilar, mesenteric, and skeletal muscle arteries. TRPM4 inhibition by 9-phenanthrol resulted in hypotension and a decreased heart rate in the rat. TRPM4 inhibition completely antagonized myogenic tone development and norepinephrine-evoked vasoconstriction, and depolarization (high extracellular KCl concentration) evoked vasoconstriction in a wide range of peripheral arteries. Vasorelaxation caused by TRPM4 inhibition was accompanied by a significant decrease in intracellular Ca2+ concentration, suggesting an inhibition of Ca2+ signal amplification. Immunohistochemistry confirmed TRPM4 expression in the smooth muscle cells of the peripheral arteries. Finally, TRPM4 activation by the Ca2+ ionophore A23187 was competitively inhibited by 9-phenanthrol. In summary, TRPM4 was identified as an essential Ca2+-amplifying channel in peripheral arteries, contributing to both myogenic tone and agonist responses. These results suggest an important role for TRPM4 in the circulation. The modulation of TRPM4 activity may be a therapeutic target for hypertension. Furthermore, the Ca2+ ionophore A23187 was identified as the first high-affinity (nanomolar) direct activator of TRPM4, acting on the 9-phenanthrol binding site.


Asunto(s)
Señalización del Calcio , Canales Catiónicos TRPM/metabolismo , Vasoconstricción , Administración Intravenosa , Animales , Arterias/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Calcimicina/farmacología , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Ionóforos/farmacología , Masculino , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/irrigación sanguínea , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Norepinefrina/farmacología , Fenantrenos/administración & dosificación , Fenantrenos/farmacología , Cloruro de Potasio/farmacología , Ratas Wistar , Canales Catiónicos TRPM/agonistas , Vasoconstricción/efectos de los fármacos
10.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362405

RESUMEN

Natriuretic peptides (NPs) induce vasodilation, natriuresis, and diuresis, counteract the renin-angiotensin-aldosterone system and autonomic nervous system, and are key regulators of cardiovascular volume and pressure homeostasis. Baroreflex afferent pathway is an important reflex loop in the neuroregulation of blood pressure (BP), including nodose ganglion (NG) and nucleus tractus solitarius (NTS). Dysfunction of baroreflex would lead to various hypertensions. Here, we carried out functional experiments to explore the effects of NPs on baroreflex afferent function. Under physiological and hypertensive condition (high-fructose drinking-induced hypertension, HFD), BP was reduced by NPs through NG microinjection and baroreflex sensitivity (BRS) was enhanced via acute intravenous NPs injection. These anti-hypertensive effects were more obvious in female rats with the higher expression of NPs and its receptor A/B (NPRA/NPRB) and lower expression of its receptor C (NPRC). However, these effects were not as obvious as those in HFD rats compared with the same gender control group, which is likely to be explained by the abnormal expression of NPs and NPRs in the hypertensive condition. Our data provide additional evidence showing that NPs play a crucial role in neurocontrol of BP regulation via baroreflex afferent function and may be potential targets for clinical management of metabolic-related hypertension.


Asunto(s)
Barorreflejo , Hipertensión , Femenino , Animales , Ratas , Barorreflejo/fisiología , Presión Sanguínea , Ratas Sprague-Dawley , Vías Aferentes/fisiología , Hipertensión/metabolismo , Péptidos Natriuréticos/metabolismo
11.
Acta Pharmacol Sin ; 42(6): 898-908, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33154555

RESUMEN

Hydrogen sulfide (H2S), which is closely related to various cardiovascular disorders, lowers blood pressure (BP), but whether this action is mediated via the modification of baroreflex afferent function has not been elucidated. Therefore, the current study aimed to investigate the role of the baroreflex afferent pathway in H2S-mediated autonomic control of BP regulation. The results showed that baroreflex sensitivity (BRS) was increased by acute intravenous NaHS (a H2S donor) administration to renovascular hypertensive (RVH) and control rats. Molecular expression data also showed that the expression levels of critical enzymes related to H2S were aberrantly downregulated in the nodose ganglion (NG) and nucleus tractus solitarius (NTS) in RVH rats. A clear reduction in BP by the microinjection of NaHS or L-cysteine into the NG was confirmed in both RVH and control rats, and a less dramatic effect was observed in model rats. Furthermore, the beneficial effects of NaHS administered by chronic intraperitoneal infusion on dysregulated systolic blood pressure (SBP), cardiac parameters, and BRS were verified in RVH rats. Moreover, the increase in BRS was attributed to activation and upregulation of the ATP-sensitive potassium (KATP) channels Kir6.2 and SUR1, which are functionally expressed in the NG and NTS. In summary, H2S plays a crucial role in the autonomic control of BP regulation by improving baroreflex afferent function due at least in part to increased KATP channel expression in the baroreflex afferent pathway under physiological and hypertensive conditions.


Asunto(s)
Vías Aferentes/metabolismo , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Sulfuro de Hidrógeno/metabolismo , Hipertensión/fisiopatología , Animales , Antihipertensivos/farmacología , Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Cardiotónicos/farmacología , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Sulfuro de Hidrógeno/farmacología , Hipertensión/tratamiento farmacológico , Masculino , Ganglio Nudoso/efectos de los fármacos , Ganglio Nudoso/enzimología , Ganglio Nudoso/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Ratas Sprague-Dawley , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/enzimología , Núcleo Solitario/metabolismo , Sulfuros/farmacología , Receptores de Sulfonilureas/metabolismo , Sulfurtransferasas/metabolismo
12.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576086

RESUMEN

The cysteine-rich LIM-only protein 4 (CRP4), a LIM-domain and zinc finger containing adapter protein, has been implicated as a downstream effector of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) pathway in multiple cell types, including vascular smooth muscle cells (VSMCs). VSMCs and nitric oxide (NO)-induced cGMP signaling through cGMP-dependent protein kinase type I (cGKI) play fundamental roles in the physiological regulation of vascular tone and arterial blood pressure (BP). However, it remains unclear whether the vasorelaxant actions attributed to the NO/cGMP axis require CRP4. This study uses mice with a targeted deletion of the CRP4 gene (CRP4 KO) to elucidate whether cGMP-elevating agents, which are well known for their vasorelaxant properties, affect vessel tone, and thus, BP through CRP4. Cinaciguat, a NO- and heme-independent activator of the NO-sensitive (soluble) guanylyl cyclase (NO-GC) and NO-releasing agents, relaxed both CRP4-proficient and -deficient aortic ring segments pre-contracted with prostaglandin F2α. However, the magnitude of relaxation was slightly, but significantly, increased in vessels lacking CRP4. Accordingly, CRP4 KO mice presented with hypotonia at baseline, as well as a greater drop in systolic BP in response to the acute administration of cinaciguat, sodium nitroprusside, and carbachol. Mechanistically, loss of CRP4 in VSMCs reduced the Ca2+-sensitivity of the contractile apparatus, possibly involving regulatory proteins, such as myosin phosphatase targeting subunit 1 (MYPT1) and the regulatory light chain of myosin (RLC). In conclusion, the present findings confirm that the adapter protein CRP4 interacts with the NO-GC/cGMP/cGKI pathway in the vasculature. CRP4 seems to be part of a negative feedback loop that eventually fine-tunes the NO-GC/cGMP axis in VSMCs to increase myofilament Ca2+ desensitization and thereby the maximal vasorelaxant effects attained by (selected) cGMP-elevating agents.


Asunto(s)
Presión Sanguínea , Vasos Sanguíneos/fisiología , GMP Cíclico/metabolismo , Proteínas con Dominio LIM/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Vasos Sanguíneos/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Femenino , Masculino , Ratones Noqueados , Modelos Biológicos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Norepinefrina/farmacología , Transducción de Señal , Guanilil Ciclasa Soluble/metabolismo , Vasodilatadores/farmacología
13.
Zhongguo Zhong Yao Za Zhi ; 46(1): 6-14, 2021 Jan.
Artículo en Zh | MEDLINE | ID: mdl-33645045

RESUMEN

Hypertension is a clinical syndrome characterized by elevated systemic arterial blood pressure, which may be accompanied by functional or organic damage of heart, brain, kidney and other organs. The pathogenesis and development of hypertension are affected by genetic, environmental, epigenetic, intestinal microbiota and other factors. They are the result of multiple factors that promote the change of blood pressure level and vascular resistance. G protein coupled receptors(GPCRs) are the largest and most diverse superfamily of transmembrane receptors that transmit signals across cell membranes and mediate a large number of cellular responses required by human physiology. A variety of GPCRs are involved in the control of blood pressure and the maintenance of normal function of cardiovascular system. Hypertension contributes to the damages of heart, brain, kidney, intestine and other organs. Many GPCRs are expressed in various organs to regulate blood pressure. Although many GPCRs have been used as therapeutic targets for hypertension, their efficacy has not been fully studied. The purpose of this paper is to elucidate the role of GPCRs in blood pressure regulation and its distribution in target organs. The relationship between GPCRs related to intestinal microorganisms and blood pressure is emphasized. It is proposed that traditional Chinese medicine may be a new way to treat hypertension by regulating the related GPCRs via intestinal microbial metabolites.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Presión Sanguínea , Proteínas de Unión al GTP , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
14.
Clin Auton Res ; 30(2): 139-148, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31606797

RESUMEN

PURPOSE: Cardiovagal baroreflex sensitivity (cvBRS) reflects the efficiency of modulating heart rate in response to changes in systolic blood pressure. International guidelines recommend that older adults achieve at least 150 min of moderate-vigorous physical activity per week. We tested the hypothesis that older adults who achieve these guidelines will exhibit greater cardiovagal baroreflex sensitivity versus those who do not. METHODS: A cross-sectional comparison of older adults who did (active, 66 ± 5 years, 251 ± 79 min/week; n = 19) and who did not (inactive, 68 ± 7 years, 89 ± 32 min/week; n = 17) meet the activity guidelines. Beat-by-beat R-R intervals (electrocardiography) and systolic blood pressure (finger photoplethysmography) were recorded. Spontaneous cardiovagal baroreflex sensitivity was assessed using the sequence technique from 10 min of resting supine data. Cardiovagal baroreflex function was also measured during early phase II and phase IV of the Valsalva maneuver. Peak oxygen uptake was determined during maximal cycle ergometry. Moderate-vigorous intensity physical activity and time spent sedentary were assessed over 5 days using the PiezoRx and activPAL, respectively. RESULTS: Groups had similar peak oxygen uptake (active 25 ± 9 vs. inactive 22 ± 6 ml/kg/min; p = 0.218) and sedentary time (active 529 ± 60 vs. inactive 568 ± 88 min/day; p = 0.130). However, the active group had greater (all, p < 0.019) cvBRS at rest (9.1 ± 2.7 vs. 5.0 ± 1.9 ms/mmHg), during phase II (8.2 ± 3.8 vs. 5.4 ± 2.1 ms/mmHg), and during phase IV (9.9 ± 3.8 vs. 5.6 ± 1.6 ms/mmHg). In the pooled sample, moderate-vigorous physical activity was positively correlated (all, p < 0.015) with spontaneous (R = 0.427), phase II (R = 0.447), and phase IV cvBRS (R = 0.629). CONCLUSIONS: Independent of aerobic fitness and sedentary time, meeting activity guidelines was associated with superior cardiovagal baroreflex sensitivity at rest and during the Valsalva maneuver in older adults.


Asunto(s)
Barorreflejo/fisiología , Ejercicio Físico/fisiología , Frecuencia Cardíaca/fisiología , Guías de Práctica Clínica como Asunto/normas , Nervio Vago/fisiología , Maniobra de Valsalva/fisiología , Anciano , Anciano de 80 o más Años , Antropometría/métodos , Presión Sanguínea/fisiología , Estudios Transversales , Femenino , Estado de Salud , Humanos , Internacionalidad , Masculino , Persona de Mediana Edad
15.
Trends Biochem Sci ; 40(8): 422-4, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26027460

RESUMEN

A recent study links N-terminal acetylation and N-end rule degradation to blood pressure regulation. N-terminal mutants of Rgs2, a key G-protein regulator, are differentially processed by N-terminal acetyltransferases and the two branches of the N-end rule pathway. This leads to an imbalance in the signaling governing blood pressure.


Asunto(s)
Proteínas RGS/metabolismo , Humanos
16.
Physiol Genomics ; 50(4): 272-286, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29373075

RESUMEN

Arterial pressure (AP) is lower in premenopausal women than in men of a similar age. Premenopausal women exhibit a lower sympathetic activity and a greater baroreceptor reflex; however, mechanisms controlling sex differences in blood pressure regulation are not well understood. We hypothesized that different neuronal functions in the cardiovascular centers of the brains of men and women may contribute to the sex difference in cardiovascular homeostasis. Our previous studies on male spontaneously hypertensive rats (SHRs) and their normotensive counterparts, Wistar Kyoto (WKY) rats, revealed that the gene-expression profile of the nucleus tractus solitarius (NTS), a region of the medulla oblongata that is pivotal for regulating the set point of AP, is strongly associated with AP. Thus, we hypothesized that gene-expression profiles in the rat NTS are related to sex differences in AP regulation. Because female SHRs clearly exhibit lower AP than their male counterparts of a similar age, we investigated whether SHR NTS exhibits sex differences in gene expression by using microarray and RT-qPCR experiments. The transcript for transient receptor potential cation channel subfamily V member 4 ( Trpv4) was found to be upregulated in SHR NTS in females compared with that in males. The channel was expressed in neurons and glial cells within NTS. The TRPV4 agonist 4-alpha-phorbol-12,13-didecanoate (4α-PDD) decreased blood pressure when injected into NTS of rats. These findings suggest that altered TRPV4 expression might be involved in the sex differences in blood pressure regulation.


Asunto(s)
Presión Sanguínea/fisiología , Canales Catiónicos TRPV/metabolismo , Transcriptoma/genética , Animales , Presión Sanguínea/genética , Femenino , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Caracteres Sexuales , Núcleo Solitario/metabolismo , Canales Catiónicos TRPV/genética
17.
J Neurophysiol ; 119(4): 1257-1265, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357474

RESUMEN

Elevated plasma osmolality (pOsm) has been shown to increase resting sympathetic nerve activity in animals and humans. The present study tested the hypothesis that increases in pOsm and serum sodium (sNa+) concentration would exaggerate muscle sympathetic nerve activity (MSNA) and blood pressure (BP) responses to handgrip (HG) exercise and postexercise ischemia (PEI). BP and MSNA were measured during HG followed by PEI before and after a 23-min hypertonic saline infusion (HSI-3% NaCl). Eighteen participants (age 23 ± 1 yr; BMI 24 ± 1 kg/m2) completed the protocol; pOsm and sNa+ increased from pre- to post-HSI (285 ± 1 to 291 ± 1 mosmol/kg H2O; 138.2 ± 0.3 to 141.3 ± 0.4 mM; P < 0.05 for both). Resting mean BP (90 ± 2 vs. 92 ± 1 mmHg) and MSNA (11 ± 2 vs. 15 ± 2 bursts/min) were increased pre- to post-HSI ( P < 0.05 for both). Mean BP responses to HG (106 ± 2 vs. 111 ± 2 mmHg, P < 0.05) and PEI (102 ± 2 vs. 107 ± 2 mmHg, P < 0.05) were higher post-HSI. Similarly, MSNA during HG (20 ± 2 vs. 29 ± 2 bursts/min, P < 0.05) and PEI (19 ± 2 vs. 24 ± 3 bursts/min, P < 0.05) were greater post-HSI. In addition, the change in MSNA was greater post-HSI during HG (Δ9 ± 2 vs. Δ13 ± 3 bursts/min, P < 0.05). A second set of participants ( n = 13, age 23 ± 1 yr; BMI 24 ± 1 kg/m2) completed a time control (TC) protocol consisting of quiet rest instead of an infusion. The TC condition yielded no change in resting sNa+, pOsm, mean BP, or MSNA (all P > 0.05); responses to HG and PEI were not different pre- to post-quiet rest ( P > 0.05). In summary, acutely increasing pOsm and sNa+ exaggerates BP and MSNA responses during HG exercise and PEI. NEW & NOTEWORTHY Elevated plasma osmolality has been shown to increase resting sympathetic activity and blood pressure. This study provides evidence that acute elevations in plasma osmolality and serum sodium exaggerated muscle sympathetic nerve activity and blood pressure responses during exercise pressor reflex activation in healthy young adults.


Asunto(s)
Presión Sanguínea/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Plasma/química , Solución Salina Hipertónica/administración & dosificación , Sodio/sangre , Sistema Nervioso Simpático/fisiología , Adulto , Femenino , Fuerza de la Mano/fisiología , Humanos , Masculino , Concentración Osmolar , Adulto Joven
18.
J Neurophysiol ; 120(4): 1516-1524, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29947592

RESUMEN

Patients with Parkinson's disease (PD) exhibit attenuated cardiovascular responses to exercise. The underlying mechanisms that are potentially contributing to these impairments are not fully understood. Therefore, we sought to test the hypothesis that patients with PD exhibit blunted cardiovascular responses to isolated muscle metaboreflex activation following exercise. For this, mean blood pressure, cardiac output, and total peripheral resistance were measured using finger photoplethysmography and the Modelflow method in 11 patients with PD [66 ± 2 yr; Hoehn and Yahr score: 2 ± 1 a.u.; time since diagnosis: 7 ± 1 yr; means ± SD) and 9 age-matched controls (66 ± 3 yr). Measurements were obtained at rest, during isometric handgrip exercise performed at 40% maximal voluntary contraction, and during postexercise ischemia. Also, a cold pressor test was assessed to confirm that blunted cardiovascular responses were specific to exercise and not representative of generalized sympathetic responsiveness. Changes in mean blood pressure were attenuated in patients with PD during handgrip (PD: ∆25 ± 2 mmHg vs. controls: ∆31 ± 3 mmHg; P < 0.05), and these group differences remained during postexercise ischemia (∆17 ± 1 mmHg vs. ∆26 ± 1 mmHg, respectively; P < 0.01). Additionally, changes in total peripheral resistance were attenuated during exercise and postexercise ischemia, indicating blunted reflex vasoconstriction in patients with PD. Responses to cold pressor test did not differ between groups, suggesting no group differences in generalized sympathetic responsiveness. Our results support the concept that attenuated cardiovascular responses to exercise observed in patients with PD are, at least in part, explained by an altered skeletal muscle metaboreflex. NEW & NOTEWORTHY Patients with Parkinson's disease (PD) presented blunted cardiovascular responses to exercise. We showed that cardiovascular response evoked by the metabolic component of the exercise pressor reflex is blunted in patients with PD. Furthermore, patients with PD presented similar pressor response during the cold pressor test compared with age-matched controls. Altogether, our results support the hypothesis that attenuated cardiovascular responses to exercise observed in patients with PD are mediate by an altered skeletal muscle metaboreflex.


Asunto(s)
Presión Sanguínea , Ejercicio Físico , Músculo Esquelético/fisiología , Enfermedad de Parkinson/fisiopatología , Reflejo , Anciano , Gasto Cardíaco , Fuerza de la Mano , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Vasoconstricción
19.
Kidney Int ; 94(4): 701-715, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30007527

RESUMEN

Uromodulin, the most abundant protein in normal urine, is essentially produced by the cells lining the thick ascending limb. There it regulates the activity of the cotransporter NKCC2 and is involved in sodium chloride handling and blood pressure regulation. Conflicting reports suggested that uromodulin may also be expressed in the distal convoluted tubule (DCT) where its role remains unknown. Using microdissection studies combined with fluorescent in situ hybridization and co-immunostaining analyses, we found a significant expression of uromodulin in mouse and human DCT at approximately 10% of thick ascending limb expression levels, but restricted to the early part of the DCT (DCT1). Genetic deletion of Umod in mouse was reflected by a major shift in NCC activity from the DCT1 to the downstream DCT2 segment, paralleled by a compensatory expansion of DCT2. By increasing the distal sodium chloride and calcium ion load with chronic furosemide administration, an intrinsic compensatory defect in the DCT from Umod-/- compared to wild type mice was found manifested as sodium wasting and hypercalciuria. In line, co-expression studies in HEK cells suggested a facilitating role for uromodulin in NCC phosphorylation, possibly via SPAK-OSR1 modulation. These experiments demonstrate a significant expression of uromodulin in the early part of mouse and human DCT. Thus, biosynthesis of uromodulin in the DCT1 is critical for its function, structure and plasticity, suggesting novel links between uromodulin, blood pressure control and risk of kidney stones.


Asunto(s)
Túbulos Renales Distales/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Uromodulina/biosíntesis , Uromodulina/genética , Uromodulina/metabolismo , Animales , Furosemida/farmacología , Expresión Génica , Células HEK293 , Humanos , Hipercalciuria/inducido químicamente , Hipercalciuria/genética , Túbulos Renales Distales/fisiología , Masculino , Ratones , Ratones Noqueados , Fosforilación , ARN Mensajero , Sodio/metabolismo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Miembro 1 de la Familia de Transportadores de Soluto 12/antagonistas & inhibidores , Miembro 1 de la Familia de Transportadores de Soluto 12/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA