Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Calcif Tissue Int ; 113(1): 110-125, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37147466

RESUMEN

The skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part, by increasing the production and delivery of bone matrix. Nmp4 shares traits with scaling factors, which are transcription factors that influence the expression of hundreds of genes to govern proteome allocation for establishing secretory cell infrastructure and capacity. Nmp4 is expressed in all tissues and while global loss of this gene leads to no overt baseline phenotype, deletion of Nmp4 has broad tissue effects in mice challenged with certain stressors. In addition to an enhanced response to osteoporosis therapies, Nmp4-deficient mice are less sensitive to high fat diet-induced weight gain and insulin resistance, exhibit a reduced disease severity in response to influenza A virus (IAV) infection, and resist the development of some forms of rheumatoid arthritis. In this review, we present the current understanding of the mechanisms underlying Nmp4 regulation of the skeletal response to osteoanabolics, and we discuss how this unique gene contributes to the diverse phenotypes among different tissues and stresses. An emerging theme is that Nmp4 is important for the infrastructure and capacity of secretory cells that are critical for health and disease.


Asunto(s)
Osteoporosis , Hormona Paratiroidea , Ratones , Animales , Hormona Paratiroidea/metabolismo , Ratones Noqueados , Factores de Transcripción/genética , Regulación de la Expresión Génica , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética
2.
FASEB J ; 34(2): 3037-3050, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908035

RESUMEN

Pulsed electromagnetic fields (PEMFs) and whole-body vibration (WBV) are proved to partially preserve bone mass/strength in hindlimb-unloaded and ovariectomized animals. However, the potential age-dependent skeletal response to either PEMF or WBV has not been fully investigated. Moreover, whether the coupled "mechano-electro-magnetic" signals can induce greater osteogenic potential than single stimulation remains unknown. Herein, 5-month-old or 20-month-old rats were assigned to the Control, PEMF, WBV, and PEMF + WBV groups. After 8-week treatment, single PEMF/WBV enhanced bone mass, strength, and anabolism in 5-month-old rats, but not in 20-month-old rats. PEMF + WBV induced greater increase of bone quantity, quality, and anabolism than single PEMF/WBV in young adult rats. PEMF + WBV also inhibited bone loss in elderly rats by primarily improving osteoblast and osteocyte activity, but had no effects on bone resorption. PEMF + WBV upregulated the expression of various canonical Wnt ligands and downstream molecules (p-GSK-3ß and ß-catenin), but had no impacts on noncanonical Wnt5a expression in aged skeleton, revealing the potential involvement of canonical Wnt signaling in bone anabolism of PEMF + WBV. This study not only reveals much weaker responsiveness of aged skeleton to single PEMF/WBV relative to young adult skeleton, but also presents a novel noninvasive approach based on combinatorial treatment with PEMF + WBV for improving bone health and preserving bone quantity/quality (especially for age-related osteoporosis) with stronger anabolic effects.


Asunto(s)
Envejecimiento , Magnetoterapia , Osteoporosis , Esqueleto , Vibración , Animales , Masculino , Osteoporosis/metabolismo , Osteoporosis/fisiopatología , Osteoporosis/terapia , Ratas , Ratas Sprague-Dawley , Esqueleto/metabolismo , Esqueleto/fisiopatología
3.
Int J Mol Sci ; 20(11)2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31181661

RESUMEN

Several lines of evidence suggest that oxidative stress is one of the key pathogenic mechanisms of osteoporosis. We aimed to elucidate the bone protective effects of petunidin, one of the most common anthocyanidins, considering its potent antioxidative activity. Petunidin (>5 µg/mL) significantly inhibited osteoclastogenesis and downregulated c-fos, Nfatc1, Mmp9, Ctsk, and Dc-stamp mRNA expression in RAW264.7 cells. Conversely, petunidin (>16 µg/mL) stimulated mineralized matrix formation and gene expression of Bmp2 and Ocn, whereas it suppressed Mmp13, Mmp2, and Mmp9 mRNA expression and proteolytic activities of MMP13 and MMP9 in MC3T3-E1 cells. Micro-CT and bone histomorphometry analyses of sRANKL-induced osteopenic C57BL/6J mice showed that daily oral administration of petunidin (7.5 mg/kg/day) increased bone volume to tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), the ratio of osteoid volume to tissue volume (OV/TV), osteoid thickness (O.Th), the ratio of osteoid surface to bone surface (OS/BS), the ratio of osteoblast surface to bone surface (Ob.S/BS), and the number of osteoblast per unit of bone surface (N.Ob/BS), and decreased trabecular separation (Tb.Sp), the ratio of eroded surface to bone surface (ES/BS), the ratio of osteoclast surface to bone surface (Oc.S/BS), and number of osteoclast per unit of bone surface (N.Oc/BS), compared to untreated mice. Furthermore, histological sections of the femurs showed that oral administration of petunidin to sRANKL-induced osteopenic mice increased the size of osteoblasts located along the bone surface and the volume of osteoid was consistent with the in vitro osteoblast differentiation and MMP inhibition. These results suggest that petunidin is a promising natural agent to improve sRANKL-induced osteopenia in mice through increased osteoid formation, reflecting accelerated osteoblastogenesis, concomitant with suppressed bone resorption.


Asunto(s)
Antocianinas/uso terapéutico , Conservadores de la Densidad Ósea/uso terapéutico , Osteoblastos/efectos de los fármacos , Osteogénesis , Osteoporosis/tratamiento farmacológico , Animales , Antocianinas/farmacología , Conservadores de la Densidad Ósea/farmacología , Proteína Morfogenética Ósea 2/metabolismo , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/metabolismo , Femenino , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteoporosis/metabolismo , Ligando RANK/metabolismo , Células RAW 264.7
4.
Proc Natl Acad Sci U S A ; 112(5): E478-86, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605937

RESUMEN

Osteocytes, >90% of the cells in bone, lie embedded within the mineralized matrix and coordinate osteoclast and osteoblast activity on bone surfaces by mechanisms still unclear. Bone anabolic stimuli activate Wnt signaling, and human mutations of components along this pathway underscore its crucial role in bone accrual and maintenance. However, the cell responsible for orchestrating Wnt anabolic actions has remained elusive. We show herein that activation of canonical Wnt signaling exclusively in osteocytes [dominant active (da)ßcat(Ot) mice] induces bone anabolism and triggers Notch signaling without affecting survival. These features contrast with those of mice expressing the same daß-catenin in osteoblasts, which exhibit decreased resorption and perinatal death from leukemia. daßcat(Ot) mice exhibit increased bone mineral density in the axial and appendicular skeleton, and marked increase in bone volume in cancellous/trabecular and cortical compartments compared with littermate controls. daßcat(Ot) mice display increased resorption and formation markers, high number of osteoclasts and osteoblasts in cancellous and cortical bone, increased bone matrix production, and markedly elevated periosteal bone formation rate. Wnt and Notch signaling target genes, osteoblast and osteocyte markers, and proosteoclastogenic and antiosteoclastogenic cytokines are elevated in bones of daßcat(Ot) mice. Further, the increase in RANKL depends on Sost/sclerostin. Thus, activation of osteocytic ß-catenin signaling increases both osteoclasts and osteoblasts, leading to bone gain, and is sufficient to activate the Notch pathway. These findings demonstrate disparate outcomes of ß-catenin activation in osteocytes versus osteoblasts and identify osteocytes as central target cells of the anabolic actions of canonical Wnt/ß-catenin signaling in bone.


Asunto(s)
Huesos/metabolismo , Osteocitos/fisiología , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Densidad Ósea , Ratones , Ratones Transgénicos
5.
Proc Natl Acad Sci U S A ; 111(48): E5187-95, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25404300

RESUMEN

We identified previously in vitro LRP4 (low-density lipoprotein receptor-related protein 4) as a facilitator of the WNT (Wingless-type) antagonist sclerostin and found mutations disrupting this function to be associated with high bone mass in humans similar to patients lacking sclerostin. To further delineate the role of LRP4 in bone in vivo, we generated mice lacking Lrp4 in osteoblasts/osteocytes or osteocytes only. Lrp4 deficiency promoted progressive cancellous and cortical bone gain in both mutants, although more pronouncedly in mice deficient in osteoblast/osteocyte Lrp4, consistent with our observation in human bone that LRP4 is most strongly expressed by osteoblasts and early osteocytes. Bone gain was related primarily to increased bone formation. Interestingly, Lrp4 deficiency in bone dramatically elevated serum sclerostin levels whereas bone expression of Sost encoding for sclerostin was unaltered, indicating that osteoblastic Lrp4 retains sclerostin within bone. Moreover, we generated anti-LRP4 antibodies selectively blocking sclerostin facilitator function while leaving unperturbed LRP4-agrin interaction, which is essential for neuromuscular junction function. These antibodies increased bone formation and thus cancellous and cortical bone mass in skeletally mature rodents. Together, we demonstrate a pivotal role of LRP4 in bone homeostasis by retaining and facilitating sclerostin action locally and provide a novel avenue to bone anabolic therapy by antagonizing LRP4 sclerostin facilitator function.


Asunto(s)
Densidad Ósea , Huesos/metabolismo , Glicoproteínas/sangre , Receptores de LDL/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Anciano , Agrina/metabolismo , Animales , Anticuerpos Bloqueadores/farmacología , Línea Celular , Femenino , Cuello Femoral/microbiología , Expresión Génica , Glicoproteínas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteínas Relacionadas con Receptor de LDL , Masculino , Ratones Noqueados , Microscopía Confocal , Unión Neuromuscular/metabolismo , Osteoblastos/metabolismo , Osteocitos/metabolismo , Osteogénesis/genética , Unión Proteica , Ratas Wistar , Receptores de LDL/antagonistas & inhibidores , Receptores de LDL/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Microtomografía por Rayos X
6.
Bone ; 179: 116985, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38052372

RESUMEN

Sclerostin is an extracellular inhibitor of canonical Wnt signaling that inhibits bone formation and stimulates bone resorption. Anti-sclerostin antibodies (Scl-Ab) have been developed as bone-building agents. DKK1, another extracellular inhibitor of the pathway, is upregulated in osteocytes in response to sclerostin inhibition. To further enhance bone-forming effects, a bispecific antibody inhibiting both sclerostin and DKK1 was created (AMG 147). In nonclinical safety studies, AMG 147 resulted in novel skull findings. In the rat, there was increased thickness of skull bones of neural crest origin due to increased subperiosteal compact lamellar and intramembranous woven bone. Externally, subperiosteal fibroblastic/osteoblastic stromal cell proliferation with woven bone and hemorrhage was also observed. Scl-Ab alone resulted in increased skull thickness in the rat, like AMG 147, but without the stromal cell proliferation/woven bone formation. In contrast to embryonic flat bone development, intramembranous bone formed similar to plexiform bone. In the monkey, AMG 147 resulted in macroscopic skull thickening due to a diffuse increase in appositional lamellar bone and increased intramembranous bone on both periosteal surfaces of all skull bones. These data demonstrate that dual inhibition of sclerostin and DDK1 results in unique effects on the skull not observed with sclerostin inhibition alone.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Anticuerpos , Huesos , Péptidos y Proteínas de Señalización Intercelular , Animales , Ratas , Anticuerpos/farmacología , Osteogénesis , Primates , Cráneo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Huesos/efectos de los fármacos , Huesos/fisiología
7.
Trends Endocrinol Metab ; 35(2): 85-87, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38040579

RESUMEN

Knowledge is rapidly accumulating on basic roles and modulation of bone-marrow adipose tissue (BMAT). Among key modulators are physical forces on bones as exerted by gravity and exercise. Studying humans returning from space has revealed that, in addition to physical forces, local energetics within the bone marrow can play modulatory roles.


Asunto(s)
Tejido Adiposo , Médula Ósea , Humanos , Huesos , Ejercicio Físico
8.
Biochem Pharmacol ; 223: 116177, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552853

RESUMEN

Nowadays, the treatment of musculoskeletal diseases represents a major challenge in the developed world. Diseases such as osteoporosis, osteoarthritis and arthritis have a high incidence and prevalence as a consequence of population aging, and they are also associated with a socioeconomic burden. Many efforts have been made to find a treatment for these diseases with various levels of success, but new approaches are still needed to deal with these pathologies. In this context, one peptide derived for the C-terminal extreme of the Parathormone related Peptide (PTHrP) called Osteostatin can be useful to treat musculoskeletal diseases. This pentapeptide (TRSAW) has demonstrated both in different in vitro and in vivo models, its role as a molecule with anti-resorptive, anabolic, anti-inflammatory, and anti-antioxidant properties. Our aim with this work is to review the Osteostatin main features, the knowledge of its mechanisms of action as well as its possible use for the treatment of osteoporosis, bone regeneration and fractures and against arthritis given its anti-inflammatory properties.


Asunto(s)
Artritis , Osteoporosis , Fragmentos de Péptidos , Humanos , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Osteoporosis/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
9.
Int Immunopharmacol ; 130: 111671, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38367467

RESUMEN

Osteoporosis has become a global social problem with the tendency toward the aging population. The challenge in managing osteoporosis is to develop new anti-osteoporosis drugs that target bone anabolism. The purpose of this study was to uncover the novel mechanism of Vildagliptin on bone metabolism. We revealed that Vildagliptin significantly promoted osteogenic differentiation of precursor osteoblasts and bone marrow mesenchymal stem cells (BMSCs). At the same time, it significantly enhanced the polarization of RAW264.7 macrophages to the M2 type and the secretion of osteogenic factors BMP2 and TGF-ß1. This was confirmed by the increased osteogenic differentiation observed in the osteoblast-RAW264.7 co-culture system. Moreover, Vildagliptin significantly enhanced the transformation of BMSCs into the osteogenic morphology in the osteoblast-BMSC co-culture system. Finally, Vildagliptin also inhibited osteoclastic differentiation of RAW 264.7 cells. The potential mechanism underlying these effects involved targeting the GAS6/AXL/ERK5 pathway. In the in vivo study, Vildagliptin significantly alleviated postmenopausal osteoporosis in ovariectomized mice. These findings represent the first comprehensive revelation of the regulatory effect of Vildagliptin on bone metabolism. Specifically, Vildagliptin demonstrates the ability to promote bone anabolism and inhibit bone resorption by simultaneously targeting osteoblasts, BMSCs, and osteoclasts. The bone-protective effects of Vildagliptin were further confirmed in a postmenopausal osteoporosis model. The clinical significance of this study lies in laying a theoretical foundation for bone protection therapy in type-2 diabetes patients with compromised bone conditions or postmenopausal osteoporosis.


Asunto(s)
Osteoporosis Posmenopáusica , Osteoporosis , Femenino , Humanos , Ratones , Animales , Anciano , Osteogénesis , Vildagliptina/uso terapéutico , Vildagliptina/farmacología , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Diferenciación Celular , Células Cultivadas
10.
Bone ; 177: 116891, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37660938

RESUMEN

Severe osteoporosis is often treated with one of three Food and Drug Administration (FDA)-approved osteoanabolics. These drugs act by (1) parathyroid hormone (PTH) receptor stimulation using analogues to PTH (teriparatide) or PTH-related peptide (abaloparatide) or by (2) monoclonal antibody neutralization of sclerostin, an innate Wnt inhibitor (Scl-mAb, romosozumab-aqqg). The efficacies of both strategies wane over time. The transcription factor Nmp4 (Nuclear Matrix Protein 4) is expressed in all tissues yet mice lacking this gene are healthy and exhibit enhanced PTH-induced bone formation. Conditional deletion of Nmp4 in mesenchymal stem progenitor cells (MSPCs) phenocopies the elevated response to PTH in global Nmp4-/- mice. However, targeted deletion in later osteoblast stages does not replicate this response. In this study we queried whether loss of Nmp4 improves Scl-mAb potency. Experimental cohorts included global Nmp4-/- and Nmp4+/+ littermates and three conditional knockout models. Nmp4-floxed (Nmp4fl/fl) mice were crossed with mice harboring one of three Cre-drivers (i) Prx1Cre+ targeting MSPCs, (ii) BglapCre+ (mature osteocalcin-expressing osteoblasts), and (iii) Dmp1Cre+ (osteocytes). Female mice were treated with Scl-mAb or 0.9 % saline vehicle for 4 or 7 weeks from 10 weeks of age. Skeletal response was assessed using micro-computed tomography, dual-energy X-ray absorptiometry, bone histomorphometry, and serum analysis. Global Nmp4-/- mice exhibited enhanced Scl-mAb-induced increases in trabecular bone in the femur and spine and a heightened increase in whole body areal bone mineral density compared to global Nmp4+/+ controls. This improved Scl-mAb potency was primarily driven by enhanced increases in bone formation. Nmp4fl/fl;PrxCre+ mice showed an exaggerated Scl-mAb-induced increase in femoral bone but not in the spine since Prrx1 is not expressed in vertebra. The Nmp4fl/fl;BglapCre+ and Nmp4fl/fl;Dmp1Cre+ mice did not exhibit an improved Scl-mAb response. We conclude that Nmp4 expression in MSPCs interferes with the bone anabolic response to anti-sclerostin therapy.

11.
J Bone Miner Res ; 38(1): 70-85, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36321253

RESUMEN

Activation of bone anabolic pathways is a fruitful approach for treating severe osteoporosis, yet FDA-approved osteoanabolics, eg, parathyroid hormone (PTH), have limited efficacy. Improving their potency is a promising strategy for maximizing bone anabolic output. Nmp4 (Nuclear Matrix Protein 4) global knockout mice exhibit enhanced PTH-induced increases in trabecular bone but display no overt baseline skeletal phenotype. Nmp4 is expressed in all tissues; therefore, to determine which cell type is responsible for driving the beneficial effects of Nmp4 inhibition, we conditionally removed this gene from cells at distinct stages of osteogenic differentiation. Nmp4-floxed (Nmp4fl/fl ) mice were crossed with mice bearing one of three Cre drivers including (i) Prx1Cre+  to remove Nmp4 from mesenchymal stem/progenitor cells (MSPCs) in long bones; (ii) BglapCre+  targeting mature osteoblasts, and (iii) Dmp1Cre+  to disable Nmp4 in osteocytes. Virgin female Cre+  and Cre- mice (10 weeks of age) were sorted into cohorts by weight and genotype. Mice were administered daily injections of either human PTH 1-34 at 30 µg/kg or vehicle for 4 weeks or 7 weeks. Skeletal response was assessed using dual-energy X-ray absorptiometry, micro-computed tomography, bone histomorphometry, and serum analysis for remodeling markers. Nmp4fl/fl ;Prx1Cre+  mice virtually phenocopied the global Nmp4-/- skeleton in the femur, ie, a mild baseline phenotype but significantly enhanced PTH-induced increase in femur trabecular bone volume/total volume (BV/TV) compared with their Nmp4fl/fl ;Prx1Cre- controls. This was not observed in the spine, where Prrx1 is not expressed. Heightened response to PTH was coincident with enhanced bone formation. Conditional loss of Nmp4 from the mature osteoblasts (Nmp4fl/fl ;BglapCre+ ) failed to increase BV/TV or enhance PTH response. However, conditional disabling of Nmp4 in osteocytes (Nmp4fl/fl ;Dmp1Cre+ ) increased BV/TV without boosting response to hormone under our experimental regimen. We conclude that Nmp4-/- Prx1-expressing MSPCs drive the improved response to PTH therapy and that this gene has stage-specific effects on osteoanabolism. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Femenino , Humanos , Ratones , Huesos , Densidad Ósea , Proteínas de Homeodominio/genética , Ratones Noqueados , Hormona Paratiroidea/farmacología , Microtomografía por Rayos X
12.
J Bone Miner Res ; 38(5): 765-774, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36891756

RESUMEN

The development of Wnt-based osteoanabolic agents has progressed rapidly in recent years, given the potent effects of Wnt modulation on bone homeostasis. Simultaneous pharmacologic inhibition of the Wnt antagonists sclerostin and Dkk1 can be optimized to create potentiated effects in the cancellous bone compartment. We looked for other candidates that might be co-inhibited along with sclerostin to potentiate the effects in the cortical compartment. Sostdc1 (Wise), like sclerostin and Dkk1, also binds and inhibits Lrp5/6 coreceptors to impair canonical Wnt signaling, but Sostdc1 has greater effects in the cortical bone. To test this concept, we deleted Sostdc1 and Sost from mice and measured the skeletal effects in cortical and cancellous compartments individually. Sost deletion alone produced high bone mass in all compartments, whereas Sostdc1 deletion alone had no measurable effects on either envelope. Mice with codeletion of Sostdc1 and Sost had high bone mass and increased cortical properties (bone mass, formation rates, mechanical properties), but only among males. Combined administration of sclerostin antibody and Sostdc1 antibody in wild-type female mice produced potentiation of cortical bone gain despite no effect of Sostdc1 antibody alone. In conclusion, Sostdc1 inhibition/deletion can work in concert with sclerostin deficiency to improve cortical bone properties. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Glicoproteínas , Péptidos y Proteínas de Señalización Intercelular , Masculino , Femenino , Animales , Ratones , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Glicoproteínas/metabolismo , Huesos/metabolismo , Hueso Cortical/metabolismo , Hueso Esponjoso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
13.
Aging Dis ; 13(6): 1891-1900, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36465166

RESUMEN

Age-associated low bone mass disease is a growing problem in the US. Development of osteoanabolic therapies for treating skeletal fragility has lagged behind anti-catabolic therapies, but several bone-building molecules are clinically available. We reported previously that antibody-based neutralization of the Lrp5/Lrp6 inhibitor Dkk1 has minimal effects on bone gain, but can potentiate the already potent osteoanabolic effects of sclerostin inhibition (another Lrp5/Lrp6 inhibitor highly expressed by osteocytes). In this communication, we test whether an optimized ratio of sclerostin and Dkk1 antibodies (Scl-mAb and Dkk1-mAb, respectively), administered at low doses, can maintain the same bone-building effects as higher dose Scl-mAb, in adult (6 months of age) and aged (20 months of age) wild-type mice. A 3:1 dose of Scl-mAb:Dkk1-mAb at 12.5 mg/kg was equally efficacious as 25 mg/kg of Scl-mAb in both age groups, using radiographic (DXA, µCT), biomechanical, (3-point bending tests), and histological (fluorochrome-based bone formation parameters) outcome measures. For some bone properties, including trabecular thickness and bone mineral density in the spine, and endocortical bone formation rates in the femur, the 3:1 treatment was associated with significantly improved skeletal properties compared to twice the dose of Scl-mAb. Cortical porosity in aged mice was also reduced by both Scl-mAb and low-dose 3:1 treatment. Overall, both treatments were efficacious in the mature adult (6 mo.) and aged (20 mo.) skeletons, suggesting Wnt targeting is a viable strategy for improving skeletal fragility in the very old. Further, the data suggest that low dose of combination therapy can be at least equally efficacious as higher doses of Scl-mAb monotherapy.

14.
Eur J Med Chem ; 244: 114813, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36219902

RESUMEN

In search of novel osteogenic entities, a series of twenty-seven quinazolinone-benzopyran-indole hybrids were designed and synthesized using molecular hybridization approach. All the compounds were scrutinized for their osteogenic potential, primarily based on alkaline phosphatase assay as one of the major anabolic markers. From the primary screening, four osteogenic compounds were sorted from the series and were found nontoxic to the osteoblasts. Further, increased osteoblast differentiation and osteogenic mRNA upregulations suggest compound 47 as the most potent osteoanabolic agent. Immunoblot and ELISA analysis demonstrated that compound 47 promotes osteogenesis via RUNX2 and BMP2 mediated non-canonical p38 pathway. In vivo studies in BALB/c mice inferred that compound 47 stimulates bone anabolism as evident from histological and gene expression studies at 5 mg. kg-1. day-1 dose. Furthermore, structural activity relationship (SAR) and pharmacokinetic studies suggest compound 47 as a BMP2 upregulator and a potential bone anabolic lead for combating future bone metabolic disorders.


Asunto(s)
Benzopiranos , Osteogénesis , Ratones , Animales , Regulación hacia Arriba , Benzopiranos/metabolismo , Quinazolinonas/farmacología , Quinazolinonas/metabolismo , Proteína Morfogenética Ósea 2/metabolismo , Osteoblastos/metabolismo , Indoles/metabolismo , Diferenciación Celular
15.
JBMR Plus ; 5(5): e10462, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33977198

RESUMEN

Sclerostin antibody (romosozumab) was recently approved for clinical use in the United States to treat osteoporosis. We and others have explored Wnt-based combination therapy to disproportionately improve the anabolic effects of sclerostin inhibition, including cotreatment with sclerostin antibody (Scl-mAb) and Dkk1 antibody (Dkk1-mAb). To determine the optimal ratio of Scl-mAb and Dkk1-mAb for producing maximal anabolic action, the proportion of Scl-mAb and Dkk1-mAb were systematically varied while holding the total antibody dose constant. A 3:1 mixture of Scl-mAb to Dkk1-mAb produced two to three times as much cancellous bone mass as an equivalent dose of Scl-mAb alone. Further, a 75% reduction in the dose of the 3:1 mixture was equally efficacious to a full dose of Scl-mAb in the distal femur metaphysis. The Scl-mAb/Dkk1-mAb combination approach was highly efficacious in the cancellous bone mass, but the cortical compartment was much more subtly affected. The osteoanabolic effects of Wnt pathway targeting can be made more efficient if multiple antagonists are simultaneously targeted. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

16.
J Bone Miner Res ; 36(10): 1979-1998, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34101904

RESUMEN

Parathyroid hormone (PTH) is produced by the parathyroid glands in response to low serum calcium concentrations where it targets bones, kidneys, and indirectly, intestines. The N-terminus of PTH has been investigated for decades for its ability to stimulate bone formation when administered intermittently (iPTH) and is used clinically as an effective anabolic agent for the treatment of osteoporosis. Despite great interest in iPTH and its clinical use, the mechanisms of PTH action remain complicated and not fully defined. More than 70 gene targets in more than 90 murine models have been utilized to better understand PTH anabolic actions. Because murine studies utilized wild-type mice as positive controls, a variety of variables were analyzed to better understand the optimal conditions under which iPTH functions. The greatest responses to iPTH were in male mice, with treatment starting later than 12 weeks of age, a treatment duration lasting 5-6 weeks, and a PTH dose of 30-60 µg/kg/day. This comprehensive study also evaluated these genetic models relative to the bone formative actions with a primary focus on the trabecular compartment revealing trends in critical genes and gene families relevant for PTH anabolic actions. The summation of these data revealed the gene deletions with the greatest increase in trabecular bone volume in response to iPTH. These included PTH and 1-α-hydroxylase (Pth;1α(OH)ase, 62-fold), amphiregulin (Areg, 15.8-fold), and PTH related protein (Pthrp, 10.2-fold). The deletions with the greatest inhibition of the anabolic response include deletions of: proteoglycan 4 (Prg4, -9.7-fold), low-density lipoprotein receptor-related protein 6 (Lrp6, 1.3-fold), and low-density lipoprotein receptor-related protein 5 (Lrp5, -1.0-fold). Anabolic actions of iPTH were broadly affected via multiple and diverse genes. This data provides critical insight for future research and development, as well as application to human therapeutics. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osteoporosis , Hormona Paratiroidea , Animales , Huesos , Masculino , Ratones , Osteogénesis , Receptor de Hormona Paratiroídea Tipo 1
17.
Endocrinology ; 162(5)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33640975

RESUMEN

Sphingosine-1-phosphate (S1P) is an anabolic clastokine. Sphingosine kinase (SPHK) is the rate-limiting enzyme in S1P production and has 2 isoforms. To evaluate the roles of SPHK1 and SPHK2 in bone, we examined the skeletal phenotype of mice with selective deletion of SPHK1 in osteoclasts (SPHK1-Oc-/-) and mice in which the SPHK2 gene was deleted in all tissues (SPHK2-/-). SPHK1-Oc-/- had normal bone mass. By contrast, SPHK2-/- female mice had a 14% lower spinal bone mineral density (BMD; P < 0.01) and males a 22% lower BMD at the same site (P < 0.001). SPHK2-/- and control mice were subsequently treated either with daily parathyroid hormone [PTH](1-34) or vehicle for 29 days. The response to PTH was significantly attenuated in the SPHK2-/-mice. The mean femoral bone volume to total volume fraction (BV/TV) increased by 24.8% in the PTH-treated female control animals vs 10.6% in the vehicle-treated female controls (P < 0.01). In contrast, in the SPHK2-/- female mice the difference in femoral trabecular BV/TV at the end of treatment was not significant (20.5 vs13.3%, PTH vs vehicle, P = NS). The anabolic response to PTH was significantly attenuated in the spine of male SPHK2-/- mice (29.7% vs 23.1%, PTH vs vehicle, in controls, P < 0.05; 26.9% vs 19.5% PTH vs vehicle in SPHK2-/- mice, P = NS). The spine responded normally in the SPHK2-/- female mice. Interestingly, suppression of sclerostin was blunted in the SPHK2-/- mice when those animals were treated with an anabolic PTH regimen. We conclude that SPHK2 has an important role in mediating both normal bone remodeling and the anabolic response to PTH.


Asunto(s)
Anabolizantes/metabolismo , Fémur/metabolismo , Hormona Paratiroidea/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Columna Vertebral/metabolismo , Animales , Densidad Ósea , Femenino , Fémur/química , Masculino , Ratones , Ratones Noqueados , Osteoclastos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Columna Vertebral/química
18.
Bol Med Hosp Infant Mex ; 78(4): 293-300, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34077409

RESUMEN

BACKGROUND: At present, parathyroid hormone is the only existing anabolic bone therapy but produces hypercalcemia. Prostaglandin E1 (PGE1) has been suggested as a bone anabolic agent that allows bone modeling formation without producing hypercalcemia. This study aimed to corroborate these PGE1 properties. METHODS: For 22 days, rabbits (n = 30) were divided into three groups (n = 10 each group) and received intravenous solutions: vehicle (control group), palate disjunction + vehicle (sham group), and palate disjunction + 50 µg of PGE1 (PGE1 group). On days 1, 3, and 22, palatine suture X-rays weretaken. On day 22, bone formation markers were analyzed, and the rabbits were sacrificed. Bone palate undecalcified samples were processed. Histomorphometry software was used to analyze bone parameters, and the mineralization front was stained with toluidine blue. Scalloped lines reflect remodeling-based bone formation (RBF), and smooth lines reflect modeling-based formation (MBF). RESULTS: X-rays showed more significant palatal disjunction in the PGE1 group; this group exhibited significant calcitriol serum increments. Hypercalciuria was observed in the PGE1 group, and resorption markers (N-telopeptides) remained stable. Sutural bones in the PGE1 group exhibited significant anabolism in structural parameters. RBF was 20%, and MBF was 6% in the sham group; in the PGE1 group, RBF was 8.6%, and MBF was 17%. In the PGE1 group, mineralization was significantly accelerated, but resorption remained stable. CONCLUSIONS: This model suggests that PGE1 favors palate disjunction, calcitriol synthesis, and shortens the mineralization. Therefore, PGE1 is an important bone anabolic molecule predominantly of modeling-based form and no hypercalcemia.


Asunto(s)
Hipercalcemia , Osteogénesis , Alprostadil , Animales , Huesos , Humanos , Conejos
19.
Bone ; 131: 115054, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31521827

RESUMEN

A viable Dkk1 knockout (KO) mouse strain in which embryonic lethality is rescued by developmental Wnt3 heterozygosity (Dkk1-/-:Wnt3+/-) exhibits increased bone formation and a high bone mass phenotype. We hypothesized that in vivo mechanical loading would further augment the bone formation response in Dkk1 KO mice, comparable to results from Sost KO mice. A cyclic loading protocol was applied to Dkk1 KO mice, wild type mice (WT; Dkk1+/+:Wnt3+/+), and Wnt3 heterozygote (Wnt3+/-; Dkk1+/+:Wnt3+/-) controls. The left tibiae of 10-week-old female mice were dynamically loaded in vivo with 7N maximum compressive force 5 days/week for 2 weeks. Dkk1 KO bones were significantly stiffer, and so an additional group of Dkk1 KO received 12N maximum compressive force to achieve an equivalent +1200µÎµ strain at the mid-diaphysis. MicroCT and bone histomorphometry analyses were subsequently performed. All groups responded to tibial loading with increased mid-diaphyseal bone volume. The largest effect size was in the Dkk1 KO -12N group. Thus, Dkk1 KO animals had enhanced sensitivity to mechanical loading. Increases in cortical bone volume reflected increased periosteal bone formation. Bone volume and formation were not altered between WT and Wnt3+/- controls. These data support the concept that agonists of Wnt/ß-catenin signaling can act synergistically with load-bearing exercise. Notably, Sost expression decreased with loading in Dkk1 KO and WT mice, independent of genotype. These data suggest that a compensatory downregulation of Sost in Dkk1 KO mice is not likely the primary mechanism for the augmented response to mechanical load.


Asunto(s)
Glicoproteínas , Péptidos y Proteínas de Señalización Intercelular , Proteínas Adaptadoras Transductoras de Señales , Animales , Femenino , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis
20.
Bone ; 133: 115266, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32044333

RESUMEN

Long-term glucocorticoid therapy is known to induce increased bone fragility and impaired skeletal regeneration potential. Growing evidence suggests that pulsed electromagnetic fields (PEMF) can accelerate fracture healing and increase bone mass both experimentally and clinically. However, how glucocorticoid-treated bone and bone cells respond to PEMF stimulation remains poorly understood. Here we tested the effects of PEMF on bone quantity/quality, bone metabolism, and porous implant osseointegration in rabbits treated with dexamethasone (0.5 mg/kg/day, 6 weeks). The micro-CT, histologic and nanoindentation results showed that PEMF ameliorated the glucocorticoid-mediated deterioration of cancellous and cortical bone architecture and intrinsic material properties. Utilizing the new porous titanium implant (Ti2448) with low toxicity and low elastic modulus, we found that PEMF stimulated bone ingrowth into the pores of implants and enhanced peri-implant bone material quality during osseous defect repair in glucocorticoid-treated rabbits. Dynamic histomorphometric results revealed that PEMF reversed the adverse effects of glucocorticoids on bone formation, which was confirmed by increased circulating osteocalcin and P1NP. PEMF also significantly attenuated osteocyte apoptosis, promoted osteoblast-related osteocalcin, Runx2 and Osx expression, and inhibited osteocyte-specific DKK1 and Sost expression (negative regulators of osteoblasts) in glucocorticoid-treated skeletons, revealing improved functional activities of osteoblasts and osteocytes. Nevertheless, PEMF exerted no effect on circulating bone-resorbing cytokines (serum TRAcP5b and CTX-1) or skeletal gene expression of osteoclast-specific markers (TRAP and cathepsin K). PEMF also significantly upregulated skeletal gene expression of canonical Wnt ligands (Wnt1, Wnt3a and Wnt10b), whereas PEMF did not alter non-canonical Wnt5a expression. This study demonstrates that PEMF treatment improves bone mass, strength and porous implant osseointegration in glucocorticoid-treated rabbits by promoting potent bone-anabolic action, which is associated with canonical Wnt-mediated improvement in osteoblast and osteocyte functions. This study provides a new treatment alternative for glucocorticoid-related bone disorders in a convenient and non-invasive manner.


Asunto(s)
Glucocorticoides , Oseointegración , Animales , Huesos , Campos Electromagnéticos , Glucocorticoides/efectos adversos , Porosidad , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA