Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Glob Chang Biol ; 30(3): e17187, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38456203

RESUMEN

Body size is a key component of individual fitness and an important factor in the structure and functioning of populations and ecosystems. Disentangling the effects of environmental change, harvest and intra- and inter-specific trophic effects on body size remains challenging for populations in the wild. Herring in the Northwest Atlantic provide a strong basis for evaluating hypotheses related to these drivers given that they have experienced significant warming and harvest over the past century, while also having been exposed to a wide range of other selective constraints across their range. Using data on mean length-at-age 4 for the sixteen principal populations over a period of 53 cohorts (1962-2014), we fitted a series of empirical models for temporal and between-population variation in the response to changes in sea surface temperature. We find evidence for a unified cross-population response in the form of a parabolic function according to which populations in naturally warmer environments have responded more negatively to increasing temperature compared with those in colder locations. Temporal variation in residuals from this function was highly coherent among populations, further suggesting a common response to a large-scale environmental driver. The synchrony observed in this study system, despite strong differences in harvest and ecological histories among populations and over time, clearly indicates a dominant role of environmental change on size-at-age in wild populations, in contrast to commonly reported effects of fishing. This finding has important implications for the management of fisheries as it indicates that a key trait associated with population productivity may be under considerably less short-term management control than currently assumed. Our study, overall, illustrates the need for a comparative approach within species for inferences concerning the many possible effects on body size of natural and anthropogenic drivers in the wild.


Asunto(s)
Ecosistema , Peces , Animales , Explotaciones Pesqueras , Temperatura , Tamaño Corporal
2.
Oecologia ; 204(4): 975-984, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597960

RESUMEN

Seabirds create fluxes of nutrients from marine to terrestrial ecosystems that influence the food webs of small islands. We investigated how guano inputs shape terrestrial food webs by comparing species of selected plant and animal species in a red-footed booby colony in Mona Island (Puerto Rico, Caribbean Sea), to sites of the island lacking guano inputs. We quantified guano deposition and its relationship to plant biomass production, fecundity and density, as well as the activity of native and introduced animal species. In general, guano inputs increased the gross primary plant productivity, size, and fecundity by twofold. Guano inputs were also associated with twofold increases in density of Anole lizards, but also to increases in the activity of introduced pigs (> 500%), goats (> 30%), and cats (> 500%), which negatively impact native species. In particular, elevated pig and cat activity within the booby colony was correlated with lower activity of endemic ground lizards and of introduced rats. Our results also suggest that severe droughts associated with climate change exacerbate the negative effects that introduced species have on vegetation and reduce the positive effects of seabird guano inputs. Our findings underscore the importance of allochthonous guano inputs in subsidizing plant productivity and native and endemic species in small oceanic islands, but also in increasing the negative impacts of introduced mammals. Management and conservation efforts should focus on the exclusion (or eradication) of introduced mammals, particularly pigs and goats, from remnant seabird colonies in Mona Island.


Asunto(s)
Aves , Especies Introducidas , Islas , Mamíferos , Animales , Cadena Alimentaria , Ecosistema , Plantas , Heces
3.
J Phycol ; 60(2): 363-379, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38147464

RESUMEN

Species interactions can influence key ecological processes that support community assembly and composition. For example, coralline algae encompass extensive diversity and may play a major role in regime shifts from kelp forests to urchin-dominated barrens through their role in inducing invertebrate larval metamorphosis and influencing kelp spore settlement. In a series of laboratory experiments, we tested the hypothesis that different coralline communities facilitate the maintenance of either ecosystem state by either promoting or inhibiting early recruitment of kelps or urchins. Coralline algae significantly increased red urchin metamorphosis compared with a control, while they had varying effects on kelp settlement. Urchin metamorphosis and density of juvenile canopy kelps did not differ significantly across coralline species abundant in both kelp forests and urchin barrens, suggesting that recruitment of urchin and canopy kelps does not depend on specific corallines. Non-calcified fleshy red algal crusts promoted the highest mean urchin metamorphosis percentage and showed some of the lowest canopy kelp settlement. In contrast, settlement of one subcanopy kelp species was reduced on crustose corallines, but elevated on articulated corallines, suggesting that articulated corallines, typically absent in urchin barrens, may need to recover before this subcanopy kelp could return. Coralline species differed in surface bacterial microbiome composition; however, urchin metamorphosis was not significantly different when microbiomes were removed with antibiotics. Our results clarify the role played by coralline algal species in kelp forest community assembly and could have important implications for kelp forest recovery.


Asunto(s)
Kelp , Microbiota , Rhodophyta , Animales , Ecosistema , Bosques , Erizos de Mar
4.
Bull Entomol Res ; 114(4): 473-481, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39295446

RESUMEN

Plant-soil interactions have bottom-up and top-down effects within a plant community. Heavy metal pollution can change plant-soil interactions, directly influence bottom-up effects and indirectly affect herbivores within the community. In turn, herbivores can affect plant-soil interactions through top-down effects. However, the combined effects of heavy metals and herbivores on soil enzymes, plants and herbivores have rarely been reported. Therefore, the effects of lead (Pb), Spodoptera litura and their combined effects on soil enzyme activities, pakchoi nutrition, defence compounds and S. litura fitness were examined here. Results showed that Pb, S. litura and their combined effects significantly affected soil enzymes, pakchoi and S. litura. Specifically, exposure to double stress (Pb and S. litura) decreased soil urease, phosphatase and sucrase activities compared with controls. Furthermore, the soluble protein and sugar contents of pakchoi decreased, and the trypsin inhibitor content and antioxidant enzyme activity increased. Finally, the S. litura development period was extended, and survival, emergence rates and body weight decreased after exposure to double stress. The combined stress of Pb and S. litura significantly decreased soil enzyme activities. Heavy metal accumulation in plants may create a superposition or synergistic effect with heavy metal-mediated plant chemical defence, further suppressing herbivore development. Pb, S. litura and their combined effects inhibited soil enzyme activities, improved pakchoi resistance and reduced S. litura development. The results reveal details of soil-plant-herbivore interactions and provide a reference for crop pest control management in the presence of heavy metal pollution.


Asunto(s)
Plomo , Suelo , Spodoptera , Animales , Spodoptera/efectos de los fármacos , Spodoptera/crecimiento & desarrollo , Spodoptera/enzimología , Plomo/toxicidad , Suelo/química , Herbivoria , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/enzimología
5.
Ecotoxicol Environ Saf ; 286: 117218, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39426108

RESUMEN

The heavy metal, cadmium (Cd) is an increasingly serious issue in agricultural ecosystems, mediating bottom-up effects on plants, herbivores and natural enemies. We measured how Cd modifies interactions between tomato Solanum lycopersicum, western flower thrips Frankliniella occidentalis, and the predatory bug Orius sauteri by examining Cd effects on the growth of tomato, the fitness of western flower thrips, and the survival and behavior of predators. The photosynthetic parameters of Pn (net photosynthetic rate), Gs (stomatal conductance), Ci (intercellular CO2 concentration), and Tr (transpiration rate) of tomato plants significantly decreased with the increase of Cd concentration. The total survival number of western flower thrips fed on tomato plants treated with different concentrations of Cd was significantly lower than that of the control, and sex ratios (female/male) gradually increased with the increase of Cd concentration. The numbers of thrips predated by O. sauteri on tomato plants treated with high concentrations of Cd (2.0 or 4.0 mg/L) were significantly reduced by the second day. Cadmium was accumulated and bioconcentrated in the roots, stems, leaves of tomato plants, and transferred to F. occidentalis, and O. sauteri. Cadmium translocated in significant quantities from roots to the stems and leaves of tomato plants, and from the tomato leaf to F. occidentalis. However, there was minimal (non-significant) transfer of Cd from F. occidentalis to O. sauteri. The presence of Cd significantly reduced the growth of tomato plants, the fitness of F. occidentalis, and the predation efficiency of O. sauteri. Collectively, Cd can mediate bottom-up effects on tomato, thrip, and predatory bug along food chain, potentially interrupting pest biological control in tomato in heavy metal-contaminated ecosystems.

6.
Glob Chang Biol ; 29(15): 4234-4258, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37265254

RESUMEN

Phytoplankton growth is controlled by multiple environmental drivers, which are all modified by climate change. While numerous experimental studies identify interactive effects between drivers, large-scale ocean biogeochemistry models mostly account for growth responses to each driver separately and leave the results of these experimental multiple-driver studies largely unused. Here, we amend phytoplankton growth functions in a biogeochemical model by dual-driver interactions (CO2 and temperature, CO2 and light), based on data of a published meta-analysis on multiple-driver laboratory experiments. The effect of this parametrization on phytoplankton biomass and community composition is tested using present-day and future high-emission (SSP5-8.5) climate forcing. While the projected decrease in future total global phytoplankton biomass in simulations with driver interactions is similar to that in control simulations without driver interactions (5%-6%), interactive driver effects are group-specific. Globally, diatom biomass decreases more with interactive effects compared with the control simulation (-8.1% with interactions vs. no change without interactions). Small-phytoplankton biomass, by contrast, decreases less with on-going climate change when the model accounts for driver interactions (-5.0% vs. -9.0%). The response of global coccolithophore biomass to future climate conditions is even reversed when interactions are considered (+33.2% instead of -10.8%). Regionally, the largest difference in the future phytoplankton community composition between the simulations with and without driver interactions is detected in the Southern Ocean, where diatom biomass decreases (-7.5%) instead of increases (+14.5%), raising the share of small phytoplankton and coccolithophores of total phytoplankton biomass. Hence, interactive effects impact the phytoplankton community structure and related biogeochemical fluxes in a future ocean. Our approach is a first step to integrate the mechanistic understanding of interacting driver effects on phytoplankton growth gained by numerous laboratory experiments into a global ocean biogeochemistry model, aiming toward more realistic future projections of phytoplankton biomass and community composition.


Asunto(s)
Diatomeas , Fitoplancton , Fitoplancton/fisiología , Cambio Climático , Dióxido de Carbono , Diatomeas/fisiología , Biomasa , Océanos y Mares
7.
J Anim Ecol ; 92(7): 1388-1403, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37248620

RESUMEN

The potential for animals to modify spatial patterns of nutrient limitation for autotrophs and habitat availability for other members of their communities is increasingly recognized. However, net trophic effects of consumers acting as ecosystem engineers remain poorly known. The American Alligator Alligator mississippiensis is an abundant predator capable of dramatic modifications of physical habitat through the creation and maintenance of pond-like basins, but its role in influencing community structure and nutrient dynamics is less appreciated. We investigated if alligators engineer differences in nutrient availability and changes to community structure by their creation of 'alligator ponds' compared to the surrounding phosphorus (P)-limited oligotrophic marsh. We used a halo sampling design of three distinct habitats extending outward from 10 active alligator ponds across a hydrological gradient in the Everglades, USA. We performed nutrient analysis on basal food-web resources and quantitative community analyses, and stoichiometric analyses on plants and animals. Our findings demonstrate that alligators act as ecosystem engineers and enhance food-web heterogeneity by increasing nutrient availability, manipulating physical structure and altering algal, plant and animal communities. Flocculent detritus, an unconsolidated layer of particulate organic matter and soil, showed strong patterns of P enrichment in ponds. Higher P availability in alligator ponds also resulted in bottom-up trophic transfer of nutrients as evidenced by higher growth rates (lower N:P) for plants and aquatic consumers. Edge habitats surrounding alligator ponds contained the most diverse communities of invertebrates and plants, but low total abundance of fishes, likely driven by high densities of emergent macrophytes. Pond communities exhibited higher abundance of fish compared to edge habitat and were dominated by compositions of small invertebrates that track high nutrient availability in the water column. Marshes contained high numbers of animals that are closely tied to periphyton mats, which were absent from other habitats. Alligator-engineered habitats are ecologically important by providing nutrient-enriched 'hotspots' in an oligotrophic system, habitat heterogeneity to marshes, and refuges for other fauna during seasonal disturbances. This work adds to growing evidence that efforts to model community dynamics should routinely consider animal-mediated bottom-up processes like ecosystem engineering.


Asunto(s)
Ecosistema , Humedales , Animales , Cadena Alimentaria , Invertebrados , Plantas , Peces , Nutrientes
8.
J Anim Ecol ; 91(10): 2125-2134, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35974677

RESUMEN

The direct and indirect effects of climate change can affect, and are mediated by, changes in animal behaviour. However, we often lack sufficient empirical data to assess how large-scale disturbances affect the behaviour of individuals, which scales up to influence communities. Here, we investigate these patterns by focusing on the foraging behaviour of butterflyfishes, prominent coral-feeding fishes on coral reefs, before and after a mass coral bleaching event in Iriomote, Japan. In response to 65% coral mortality, coral-feeding fishes broadened their diets, showing a significant weakening of dietary preferences across species. Multiple species reduced their consumption of bleaching-sensitive Acropora corals, while expanding their diets to consume a variety of other coral genera. This resulted in decreased dietary overlap among butterflyfishes. Behavioural changes in response to bleaching may increase resilience of coral reef fishes in the short term. However, coral mortality has reduced populations of coral-feeders world-wide, indicating the changes in feeding behaviour we document here may not be sufficient to ensure long-term resilience of butterflyfishes on coral reefs.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Cambio Climático , Arrecifes de Coral , Dieta/veterinaria , Peces/fisiología
9.
J Anim Ecol ; 91(3): 643-654, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34910305

RESUMEN

Protective symbionts can provide effective and specific protection to their hosts. This protection can differ between different symbiont strains with each strain providing protection against certain components of the parasite and pathogen community their host faces. Protective symbionts are especially well known from aphids where, among other functions, they provide protection against different parasitoid wasps. However, most of the evidence for this protection comes from laboratory experiments. Our aim was to understand how consistent protection is across different symbiont strains under natural field conditions and whether symbiont diversity enhanced the species diversity of colonizing parasitoids, as could be expected from the specificity of their protection. We used experimental colonies of the black bean aphid Aphis fabae to investigate symbiont-conferred protection under natural field conditions over two seasons. Colonies differed only in their symbiont composition, carrying either no symbionts, a single strain of the protective symbiont Hamiltonella defensa, or a mixture of three H. defensa strains. These aphid colonies were exposed to natural parasitoid communities in the field. Subsequently, we determined the parasitoids hatched from each aphid colony. The evidence for a protective effect of H. defensa was limited and inconsistent between years, and aphid colonies harbouring multiple symbiont strains did not support a more diverse parasitoid community. Instead, parasitoid diversity tended to be highest in the absence of H. defensa. Symbiont-conferred protection, although a strong and repeatable effect under laboratory conditions may not always cause the predicted bottom-up effects under natural conditions in the field.


Asunto(s)
Áfidos , Avispas , Animales , Áfidos/parasitología , Enterobacteriaceae , Simbiosis
10.
J Exp Biol ; 224(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795419

RESUMEN

Hauser's engraver beetle, Ips hauseri, is a serious pest in spruce forest ecosystems in Central Asia. Its monoterpenoid signal production, transcriptome responses and potential regulatory mechanisms remain poorly understood. The quality and quantity of volatile metabolites in hindgut extracts of I. hauseri were found to differ between males and females and among three groups: beetles that were newly emerged, those with a topical application of juvenile hormone III (JHIII) and those that had been feeding for 24 h. Feeding males definitively dominated monoterpenoid signal production in I. hauseri, which uses (4S)-(-)-ipsenol and (S)-(-)-cis-verbenol to implement reproductive segregation from Ipstypographus and Ipsshangrila. Feeding stimulation induced higher expression of most genes related to the biosynthesis of (4S)-(-)-ipsenol than JHIII induction, and showed a male-specific mode in I. hauseri. JHIII stimulated males to produce large amounts of (-)-verbenone and also upregulated the expression of several CYP6 genes, to a greater extent in males than in females. The expression of genes involved in the metabolism of JHIII in females and males was also found to be upregulated. Our results indicate that a species-specific aggregation pheromone system for I. hauseri, consisting of (4S)-(-)-ipsenol and S-(-)-cis-verbenol, can be used to monitor population dynamics or mass trap killing. Our results also enable a better understanding of the bottom-up role of feeding behaviors in mediating population reproduction/aggregation and interspecific interactions.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Ecosistema , Femenino , Hormonas Juveniles , Masculino , Monoterpenos , Feromonas , Corteza de la Planta
11.
J Anim Ecol ; 90(8): 1844-1853, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33844857

RESUMEN

The main objective of this long-term study (1978-2016) was to find the underlying factors behind the declining trends of eider Somateria mollissima in the Baltic/Wadden Sea. Specifically, we aimed at quantifying the bottom-up effect of nutrients, through mussel stocks, on reproduction and abundance of eider, and the top-down effects caused by white-tailed eagle Haliaeetus albicilla predation. Bottom-up effects increase marine primary productivity with subsequent effects on food availability for a major mussel predator. Top-down effects may also regulate eider populations because during incubation female eiders are vulnerable to predation by eagles. Our structural equation modelling explained a large percentage of the variance in eider abundance. We conclude that the Baltic/Wadden Sea eider population was regulated directly by white-tailed sea eagle predation on incubating females and indirectly by the amount of nutrients in seawater affecting both mussel stocks and the breeding success of eiders, reflecting density dependence. These findings may explain the decreasing trend in the Baltic/Wadden Sea eider population during the last decades as an additive effect of top-down and bottom-up factors, and likely as an interaction between them.


Asunto(s)
Águilas , Animales , Patos , Femenino , Nutrientes , Dinámica Poblacional , Conducta Predatoria
12.
Am J Bot ; 108(3): 388-401, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33792047

RESUMEN

PREMISE: Leaf economic spectrum (LES) theory has historically been employed to inform vegetation models of ecosystem processes, but largely neglects intraspecific variation and biotic interactions. We attempt to integrate across environment-plant trait-herbivore interactions within a species at a range-wide scale. METHODS: We measured traits in 53 populations spanning the range of common milkweed (Asclepias syriaca) and used a common garden to determine the role of environment in driving patterns of intraspecific variation. We used a feeding trial to determine the role of plant traits in monarch (Danaus plexippus) larval development. RESULTS: Trait-trait relationships largely followed interspecific patterns in LES theory and persisted in a common garden when individual traits change. Common milkweed showed intraspecific variation and biogeographic clines in traits. Clines did not persist in a common garden. Larvae ate more and grew larger when fed plants with more nitrogen. A longitudinal environmental gradient in precipitation corresponded to a resource gradient in plant nitrogen, which produces a gradient in larval performance. CONCLUSIONS: Biogeographic patterns in common milkweed traits can sometimes be predicted from LES, are largely driven by environmental conditions, and have consequences for monarch larval performance. Changes to nutrient dynamics of landscapes with common milkweed could potentially influence monarch population dynamics. We show how biogeographic trends in intraspecific variation can influence key ecological interactions, especially in common species with large distributions.


Asunto(s)
Asclepias , Mariposas Diurnas , Animales , Ecosistema , Herbivoria , Larva
13.
Environ Sci Technol ; 55(21): 14699-14709, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34677949

RESUMEN

Herbicides are well known for unintended effects on freshwater periphyton communities. Large knowledge gaps, however, exist regarding indirect herbicide impacts on primary consumers through changes in the quality of periphyton as a food source (i.e., diet-related effects). To address this gap, the grazer Physella acuta (Gastropoda) was fed for 21 days with periphyton that grew for 15 days in the presence or absence of the herbicide diuron (8 µg/L) to quantify changes in the feeding rate, growth rate, and energy storage (neutral lipid fatty acids; NLFAs) of P. acuta. Periphyton biomass, cell viability, community structure, and FAs served as proxies for food quality that support a mechanistic interpretation of the grazers' responses. Diuron changed the algae periphyton community and fatty acid profiles, indicating alterations in the food quality, which could explain differences in the snails' feeding rate compared to the control. While the snails' growth rate was, despite an effect size of 55%, not statistically significantly changed, NLFA profiles of P. acuta were altered. These results indicate that herbicides can change the food quality of periphyton by shifts in the algae composition, which may affect the physiology of grazers.


Asunto(s)
Herbicidas , Perifiton , Animales , Biomasa , Diurona , Herbicidas/toxicidad , Caracoles
14.
Ecology ; 99(11): 2575-2582, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30182480

RESUMEN

The predator satiation hypothesis posits that masting helps plants escape seed predation through starvation of predators in lean years, followed by satiation of predators in mast years. Importantly, successful satiation requires sufficiently delayed bottom-up effects of seed availability on seed consumers. However, some seed consumers may be capable of quick aggregative and reproductive responses to masting, which may jeopardize positive density dependence of seed survival. We used a 17-yr data set on seed production and insect (Curculio weevils) infestation of three North American oaks species (northern red Quercus rubra, white Q. alba, and chestnut oak Q. montana) to test predictions of the predation satiation hypothesis. Furthermore, we tested for the unlagged numerical response of Curculio to acorn production. We found that masting results in a bottom-up effect on the insect population; both through increased reproductive output and aggregation at seed-rich trees. Consequently, mast seeding in two out of three studied oaks (white and chestnut oak) did not help to escape insect seed predation, whereas, in the red oak, the escape depended on the synchronization of mast crops within the population. Bottom-up effects of masting on seed consumer populations are assumed to be delayed, and therefore to have negligible effects on seed survival in mast years. Our research suggests that insect populations may be able to mount rapid reproductive and aggregative responses when seed availability increases, possibly hindering satiation effects of masting. Many insect species are able to quickly benefit from pulsed resources, making mechanisms described here potentially relevant in many other systems.


Asunto(s)
Quercus , Gorgojos , Animales , Montana , Reproducción , Saciedad , Semillas , Estados Unidos
15.
Glob Chang Biol ; 24(1): e352-e364, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28944532

RESUMEN

Phytoplankton primary production is at the base of the marine food web; changes in primary production have direct or indirect effects on higher trophic levels, from zooplankton organisms to marine mammals and seabirds. Here, we present a new time-series on gross primary production in the North Sea, from 1988 to 2013, estimated using in situ measurements of chlorophyll and underwater light. This shows that recent decades have seen a significant decline in primary production in the North Sea. Moreover, primary production differs in magnitude between six hydrodynamic regions within the North Sea. Sea surface warming and reduced riverine nutrient inputs are found to be likely contributors to the declining levels of primary production. In turn, significant correlations are found between observed changes in primary production and the dynamics of higher trophic levels including (small) copepods and a standardized index of fish recruitment, averaged over seven stocks of high commercial significance in the North Sea. Given positive (bottom-up) associations between primary production, zooplankton abundance and fish stock recruitment, this study provides strong evidence that if the decline in primary production continues, knock-on effects upon the productivity of fisheries are to be expected unless these fisheries are managed effectively and cautiously.


Asunto(s)
Peces/fisiología , Cadena Alimentaria , Zooplancton/fisiología , Animales , Copépodos , Explotaciones Pesqueras , Mar del Norte , Fitoplancton , Dinámica Poblacional
16.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28931733

RESUMEN

Trophic interactions and ecosystem engineering are ubiquitous and powerful forces structuring ecosystems, yet how these processes interact to shape natural systems is poorly understood. Moreover, trophic effects can be driven by both density- and trait-mediated interactions. Microcosm studies demonstrate that trait-mediated interactions may be as strong as density-mediated interactions, but the relative importance of these pathways at natural spatial and temporal scales is underexplored. Here, we integrate large-scale field experiments and microcosms to examine the effects of ecosystem engineering on trophic interactions while also exploring how ecological scale influences density- and trait-mediated interaction pathways. We demonstrate that (i) ecosystem engineering can shift the balance between top-down and bottom-up interactions, (ii) such effects can be driven by cryptic trait-mediated interactions, and (iii) the relative importance of density- versus trait-mediated interaction pathways can be scale dependent. Our findings reveal the complex interplay between ecosystem engineering, trophic interactions, and ecological scale in structuring natural systems.


Asunto(s)
Saltamontes , Pradera , Herbivoria , Poaceae , Arañas , Animales , Microclima , Fenotipo , Dinámica Poblacional , Ovinos
17.
Ecology ; 98(5): 1409-1418, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28273331

RESUMEN

Many factors can promote exotic plant success. Three of these factors-greater pressure from natural enemies on natives, increased soil nutrient supply, and low native species richness-may interact during invasions. To test for independent and interactive effects of these drivers, we planted herbaceous perennial communities at two levels of native richness (monocultures and five-species polycultures). We then factorially manipulated soil nutrient supply and access to these communities by aboveground foliar enemies (fungal pathogens and insect herbivores), and allowed natural colonization to proceed for four years. We predicted that nutrient addition would increase exotic success, while enemy exclusion and increasing native richness would reduce exotic success. Additionally, we expected that enemy exclusion would reduce the benefits of nutrient addition to exotic species most in species-poor communities, and that this effect would be weaker in species-rich communities. In total, we found no evidence that nutrient supply, enemy access, and native richness interacted to influence exotic success. Furthermore, native richness had no effect on exotic success. Instead, nutrient addition increased, and enemy exclusion decreased, exotic success independently. As predicted, enemy exclusion reduced exotic success, primarily by slowing the decline in abundance of planted native species. Together, these results demonstrate that multiple drivers of exotic success can act independently within a single system.


Asunto(s)
Biodiversidad , Ecosistema , Especies Introducidas , Plantas , Suelo/química , Animales , Nitrógeno/análisis , Fósforo/análisis
18.
Ecology ; 98(4): 961-970, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28112395

RESUMEN

Both bottom-up (e.g., nutrients) and top-down (e.g., herbivory) forces structure plant communities, but it remains unclear how they affect the relative importance of stochastic and deterministic processes in plant community assembly. Moreover, different-sized herbivores have been shown to have contrasting effects on community structure and function, but their effects on the processes governing community assembly (i.e., how they generate the impacts on structure) remain largely unknown. We evaluated the influence of bottom-up and top-down forces on the relative importance of deterministic and stochastic processes during plant community assembly. We used the data of a 7-yr factorial experiment manipulating nutrient availability (ambient and increased) and the presence of vertebrate herbivores (>1 kg) of different body size in a floodplain grassland in The Netherlands. We used a null model that describes a community composition expected by chance (i.e., stochastic assembly) and compared the plant community composition in the different treatments with this null model (the larger the difference, the more deterministically assembled). Our results showed that herbivore exclusion promoted a more stochastic plant community assembly, whereas increased nutrients played a relatively minor role in determining the relative importance of stochasticity in community assembly. Large herbivores facilitated intermediate-sized mammal herbivores, resulting in synergistic effects of enhanced grazing pressure and a more deterministic and convergent plant community assembly. We conclude that herbivores can act as strong deterministic forces during community assembly in natural systems. Our results also reveal that although large- and intermediate-sized mammal herbivores often have contrasting effects on many community and ecosystem properties, they can also synergistically homogenize plant communities.


Asunto(s)
Biodiversidad , Pradera , Herbivoria , Plantas/clasificación , Animales , Ecosistema , Países Bajos
19.
Ecology ; 97(12): 3379-3388, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27861790

RESUMEN

Direct and indirect effects of predators are highly variable in complex communities, and understanding the sources of this variation is a research priority in community ecology. Recent evidence indicates that herbivore community structure is a primary determinant of predation strength and its cascading impacts on plants. In this study, we use variation in herbivore community structure among plant species to experimentally test two hypotheses in a temperate forest food web. First, variation in the strength of predator effects, such as ant predation of caterpillars, is predicted to be density dependent, exhibiting stronger effects when prey abundance is high (density-dependent predation hypothesis). Second, mutualistic interactions between ants and sap-feeding herbivores are expected to increase the abundance of predatory ants, strengthening predation effects on herbivores with cascading effects on host plants (keystone mutualism hypothesis). Using a large-scale predator exclusion experiment across eight dominant tree species, we tracked changes in insect density on 862 plants across two years, recording 2,322 ants, 1,062 sap-feeders, 5,322 caterpillars, and quantifying herbivory on 199, 338 leaves. In this experiment, density-dependent predation did not explain variation in the direct or indirect effects of ants on caterpillars and herbivory. In partial support of the keystone mutualism hypothesis, sap-feeders strengthened top-down effects of ants on caterpillars under some conditions. However, stronger ant predation of caterpillars did not lead to measurable trophic cascades on trees occupied by sap-feeders. Instead, the presence of sap-feeders was associated with increased per capita feeding damage by caterpillars, and this bottom-up effect attenuated the indirect effects of ants on host plants. These findings demonstrate that examining the multi-trophic impacts of mutualisms and predation in the context of the broader community can reveal patterns otherwise masked by compensatory interactions.


Asunto(s)
Hormigas/fisiología , Bosques , Insectos/fisiología , Conducta Predatoria/fisiología , Animales , Cadena Alimentaria , Herbivoria , Larva/fisiología , Hojas de la Planta
20.
Ecology ; 97(11): 3154-3166, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27870030

RESUMEN

Decades of ecological study have demonstrated the importance of top-down and bottom-up controls on food webs, yet few studies within this context have quantified the magnitude of energy and material fluxes at the whole-ecosystem scale. We examined top-down and bottom-up effects on food web fluxes using a field experiment that manipulated the presence of a consumer, the Trinidadian guppy Poecilia reticulata, and the production of basal resources by thinning the riparian forest canopy to increase incident light. To gauge the effects of these reach-scale manipulations on food web fluxes, we used a nitrogen (15 N) stable isotope tracer to compare basal resource treatments (thinned canopy vs. control) and consumer treatments (guppy introduction vs. control). The thinned canopy stream had higher primary production than the natural canopy control, leading to increased N fluxes to invertebrates that feed on benthic biofilms (grazers), fine benthic organic matter (collector-gatherers), and organic particles suspended in the water column (filter feeders). Stream reaches with guppies also had higher primary productivity and higher N fluxes to grazers and filter feeders. In contrast, N fluxes to collector-gatherers were reduced in guppy introduction reaches relative to upstream controls. N fluxes to leaf-shredding invertebrates, predatory invertebrates, and the other fish species present (Hart's killifish, Anablepsoides hartii) did not differ across light or guppy treatments, suggesting that effects on detritus-based linkages and upper trophic levels were not as strong. Effect sizes of guppy and canopy treatments on N flux rates were similar for most taxa, though guppy effects were the strongest for filter feeding invertebrates while canopy effects were the strongest for collector-gatherer invertebrates. Combined, these results extend previous knowledge about top-down and bottom-up controls on ecosystems by providing experimental, reach-scale evidence that both pathways can act simultaneously and have equally strong influence on nutrient fluxes from inorganic pools through primary consumers.


Asunto(s)
Peces/fisiología , Cadena Alimentaria , Luz , Ríos , Animales , Biomasa , Dinámica Poblacional , Trinidad y Tobago , Clima Tropical , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA