Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 825
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 320, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654155

RESUMEN

BACKGROUND: As a newly class of endogenous phytohormones, strigolactones (SLs) regulate crop growth and yield formation by interacting with other hormones. However, the physiological mechanism of SLs affect the yield by regulating the balance of endogenous hormones of Tartary buckwheat is still unclear. RESULTS: In this study, a 2-year field experiment was conducted on Tartary buckwheat (Jinqiao 2) to study the effects of different concentrations (0, 10, and 20 µmol/L) of artificial synthetic analogs of SLs (rac-GR24) and inhibitor of SL synthesis (Tis-108) on the growth, endogenous-hormone content, and yield of Tartary buckwheat. The main-stem branch number, grain number per plant, grain weight per plant, and yield of Tartary buckwheat continuously decreased with increased rac-GR24 concentration, whereas the main-stem diameter and plant height initially increased and then decreased. Rac-GR24 treatment significantly increased the content of SLs and abscisic acid (ABA) in grains, and it decreased the content of Zeatin (Z) + Zeatin nucleoside (ZR). Conversely, Tis-108 treatment decreased the content of SLs and ABA but increased the content of Z + ZR. Results of correlation analysis showed that the content of ABA and SLs, the ratio of SLs/(Z + ZR), SLs/ABA, and ABA/(Z + ZR) were significantly negatively correlated with the yield of Tartary buckwheat, and that Z + ZR content was significantly positively correlated with the yield. Regression analysis further showed that ABA/ (Z + ZR) can explain 58.4% of the variation in yield. CONCLUSIONS: In summary, by adjusting the level of endogenous SLs in Tartary buckwheat, the balance of endogenous hormones in grains can be changed, thereby exerting the effect on yield. The results can provide a new agronomic method for the high-yield cultivation of Tartary buckwheat.


Asunto(s)
Fagopyrum , Lactonas , Reguladores del Crecimiento de las Plantas , Fagopyrum/efectos de los fármacos , Fagopyrum/crecimiento & desarrollo , Fagopyrum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Lactonas/metabolismo , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Ácido Abscísico/metabolismo
2.
BMC Plant Biol ; 24(1): 725, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080537

RESUMEN

BACKGROUND: Abscisic acid (ABA) is a plant hormone that plays an important role in plant resistance to drought, salinity, cold, and pathogens. It is also important for regulating plant growth and development. Pyrabactin resistance/pyr1-like/regulatory components of the ABA receptor (PYL/RCAR) are ABA receptor proteins in plants and the core of ABA signal transduction pathways in plant regulatory factors. At present, there are no reports on the PYL family of Tartary buckwheat. RESULTS: In this study, 19 paralogous form PYL genes in buckwheat were identified at the whole-genome level and named FtPYL1-FtPYL19 according to their positions on chromosomes. We further analyzed the gene structure, conserved motifs, cis-acting elements, gene duplication, phylogenetic relationships, and expression patterns under different stress treatments and during grain development of the 19 paralogous form PYL genes in Tartary buckwheat. The FtPYL gene exhibits a single exonic gene structure for about 68.4% of the duplicated forms from the total paralogous forms. The remaining subfamilies, such as I and II, contain three exons and two exons (e.g., FtPYL19), respectively. Nineteen FtPYL genes were evenly distributed across the eight chromosomes, with at least one FtPYL gene on each chromosome. In the FtPYL gene family, there was one tandem repeat event and five gene duplication events. We investigated the gene expression levels of FtPYL gene under four abiotic stresses and different stages of grain development. Under drought stress (PEG6000), the relative expression levels of FtPYL14 and FtPYL15 increased by fourfold. Under high temperature stress (38℃), the relative expression level of FtPYL16 dropped to 0.12, and that of FtPYL17 fell to 0.22. At different stages of grain development, the gene expression level of FtPY15 is extremely high at 19 D. The relative expression level of FtPYL7 in roots and stems reaches up to approximately 450, and the relative expression level of FtPYL10 in 13 D also reaches up to 248. In this study, the PYL gene family of Tartary buckwheat was identified and analyzed based on the whole genome, and 19 paralogous form FtPYL genes of Tartary buckwheat were bioinformatically analyzed. The expression patterns of 19 paralogous form FtPYL genes in Tartary buckwheat cultivars under different stress treatments and during grain development were analyzed. It was found that the FtPYL gene played an important role in grain development.


Asunto(s)
Fagopyrum , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Fagopyrum/genética , Fagopyrum/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Familia de Multigenes , Genoma de Planta , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Duplicación de Gen , Genes de Plantas , Ácido Abscísico/metabolismo
3.
Mol Genet Genomics ; 299(1): 15, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411753

RESUMEN

Tartary buckwheat protein (BWP) is well known for the wide-spectrum antibacterial activity and the lipid metabolism- regulating property; therefore, BWP can be applied as feed additives to improve the animal's nutritional supply. With the aim to investigate the bioactive actions of the BWP, growth performance, lipid metabolism and systemic immunity of the weaned piglets were measured, and the alterations of pig gut microbiota were also analyzed. According to the results, the growth performances of the weaned piglets which were calculated as the average daily gain (ADG) and the average daily feed intake (ADFI) were significantly increased when compared to the control group. Simultaneously, the serum levels of the total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) were decreased, while the levels of high-density lipoprotein cholesterol (HDL-C) were increased in the BWP group. Moreover, the relative abundances of Lactobacillus, Prevotella_9, Subdoligranulum, Blautia, and other potential probiotics in the gut microbiota of weaned piglets were obviously increased in the BWP group. However, the relative abundances of Escherichia-Shigella, Campylobacter, Rikenellaceae_RC9_gut_group and other opportunistic pathogens were obviously decreased in the BWP group. In all, BWP was proved to be able to significantly improve the growth performance, lipid metabolism, and systemic immunity of the weaned piglets, and the specific mechanism might relate to the alterations of the gut microbiota. Therefore, BWP could be explored as a prospective antibiotic alternative for pig feed additives.


Asunto(s)
Fagopyrum , Microbioma Gastrointestinal , Animales , Porcinos , Metabolismo de los Lípidos , Estudios Prospectivos , Antibacterianos , Colesterol
4.
Plant Biotechnol J ; 22(5): 1206-1223, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38062934

RESUMEN

Rutin, a flavonoid rich in buckwheat, is important for human health and plant resistance to external stresses. The hydrolysis of rutin to quercetin underlies the bitter taste of Tartary buckwheat. In order to identify rutin hydrolysis genes, a 200 genotypes mini-core Tartary buckwheat germplasm resource was re-sequenced with 30-fold coverage depth. By combining the content of the intermediate metabolites of rutin metabolism with genome resequencing data, metabolite genome-wide association analyses (GWAS) eventually identified a glycosyl hydrolase gene FtGH1, which could hydrolyse rutin to quercetin. This function was validated both in Tartary buckwheat overexpression hairy roots and in vitro enzyme activity assays. Mutation of the two key active sites, which were determined by molecular docking and experimentally verified via overexpression in hairy roots and transient expression in tobacco leaves, exhibited abnormal subcellular localization, suggesting functional changes. Sequence analysis revealed that mutation of the FtGH1 promoter in accessions of two haplotypes might be necessary for enzymatic activity. Co-expression analysis and GWAS revealed that FtbHLH165 not only repressed FtGH1 expression, but also increased seed length. This work reveals a potential mechanism behind rutin metabolism, which should provide both theoretical support in the study of flavonoid metabolism and in the molecular breeding of Tartary buckwheat.


Asunto(s)
Fagopyrum , Rutina , Humanos , Quercetina/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Estudio de Asociación del Genoma Completo , Hidrólisis , Simulación del Acoplamiento Molecular , Multiómica , Flavonoides/metabolismo , Hidrolasas/metabolismo
5.
Crit Rev Biotechnol ; : 1-26, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160127

RESUMEN

Buckwheat (Fagopyrum spp.) is a typical pseudocereal, valued for its extensive nutraceutical potential as well as its centuries-old cultivation. Tartary buckwheat and common buckwheat have been used globally and become well-known nutritious foods due to their high quantities of: proteins, flavonoids, and minerals. Moreover, its increasing demand makes it critical to improve nutraceutical, traits and yield. In this review, bioactive compounds accumulated in buckwheat were comprehensively evaluated according to their chemical structure, properties, and physiological function. Biosynthetic pathways of flavonoids, phenolic acids, and fagopyrin were methodically summarized, with the regulation of flavonoid biosynthesis. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these certain compounds are being synthesized in buckwheat still remains uncovered. The functional genes involved in the biosynthesis of flavonols, stress response, and plant development were identified based on multi-omics research. Furthermore, it delves into the applications of multi-omics in improving buckwheat's agronomic traits, including: yield, nutritional content, stress resilience, and bioactive compounds biosynthesis. While pangenomics combined with other omics to mine elite genes, the regulatory network and mechanism of specific agronomic traits and biosynthetic of bioactive components, and developing a more efficient genetic transformation system for genetic engineering require further investigation for the execution of breeding designs aimed at enhancing desirable traits in buckwheat. This critical review will provide a comprehensive understanding of multi-omics for nutraceutical enhancement and traits improvement in buckwheat.


Buckwheat (Fagopyrum spp.) is considered as promising and sustainable nutrient crop for abundant flavonoids, phenolic acids and fagopyrum production with impressive biosynthetic capacity.The chemical structure, properties, physiological function, and biosynthesis pathways of these bioactive components are summarized.The comprehensive information of multi-omics including genome, transcriptome, proteome, and metabolism for buckwheat nutraceutical traits improvement has been concluded.The pangenomics combined with other omics to mine elite genes, and regulatory network and mechanism of specific agronomic traits and biosynthetic of bioactive components are explored.

6.
Curr Allergy Asthma Rep ; 24(9): 549-557, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38976201

RESUMEN

PURPOSE OF REVIEW: Buckwheat (BW) allergy is a significant issue in Asia. This review delves into three types of BW allergy: immediate food allergy; food-dependent, exercise-induced anaphylaxis (FDEIA) as a subset of immediate food allergy; and food protein-induced enterocolitis syndrome (FPIES); by comparing data from Asian and non-Asian countries. RECENT FINDINGS: Most studies on BW have been published in Japan and Korea, and only a few studies on the topic have been done outside Asia. To date, seven components of common BW (Fagopyrum esculentum) and four components of Tartary BW (Fagopyrum tartaricum) have been implicated in BW allergy. Although BW-sIgE has limited utility for evaluating immediate BW allergy, Fag e 3-specific IgE, one of the components of common BW, and the skin prick test are diagnostically useful. The present review aims to shed light on the current state of knowledge, highlight research gaps, and suggest future directions in the management and understanding of BW allergy.


Asunto(s)
Fagopyrum , Hipersensibilidad a los Alimentos , Humanos , Fagopyrum/inmunología , Fagopyrum/efectos adversos , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/diagnóstico , Asia/epidemiología , Inmunoglobulina E/inmunología , Anafilaxia/inmunología , Anafilaxia/diagnóstico , Anafilaxia/etiología , Anafilaxia/epidemiología , Alérgenos/inmunología , Pruebas Cutáneas , Enterocolitis/inmunología , Enterocolitis/diagnóstico , Enterocolitis/etiología
7.
Anal Bioanal Chem ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960939

RESUMEN

A method for the enzymatic determination of atropine has been developed, which is based on a sequence of reactions involving (1) the hydrolysis of atropine to give tropine; (2) the enzymatic oxidation of tropine with NAD (catalysed by tropinone reductase); and (3) an indicator reaction, in which the NADH previously formed reduces the dye iodonitrotetrazolium chloride (INT) to a reddish species, the reaction catalysed by diaphorase. The method was first developed in solution (linear response range from 2.4 × 10-6 M to 1.0 × 10-4 M). It was then implemented in cellulose platforms to develop a rapid test where the determination is made by measuring the RGB coordinates of the platforms using a smartphone-based device. The device is based on the integrating sphere concept and contains a light source to avoid external illumination effects. The smartphone is controlled by an app that allows a calibration line to be generated and the atropine concentration to be quantified; moreover, since the app normalizes the CCD response of the smartphone, the results and calibrations obtained with different smartphones are similar and can be shared. Using the G coordinate, the results were shown to have a linear response with the concentration of atropine ranging from 1.2 × 10-5 M to 3.0 × 10-4 M with an RSD of 1.4% (n = 5). The method has been applied to the determination of atropine in baby food and buckwheat samples with good results.

8.
Mol Biol Rep ; 51(1): 759, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874818

RESUMEN

BACKGROUND: The objective of this research was to elucidate the hypocholesterolemic effects of a bioactive compound extracted from buckwheat, and to delineate its influence on the regulatory mechanisms of cholesterol metabolism. The compound under investigation was identified as quercetin. MATERIAL AND RESULTS: In vitro experiments conducted on HepG2 cells treated with quercetin revealed a significant reduction in intracellular cholesterol accumulation. This phenomenon was rigorously quantified by assessing the transcriptional activity of key genes involved in the biosynthesis and metabolism of cholesterol. A statistically significant reduction in the expression of HMG-CoA reductase (HMGCR) was observed, indicating a decrease in endogenous cholesterol synthesis. Conversely, an upregulation in the expression of cholesterol 7 alpha-hydroxylase (CYP7A1) was also observed, suggesting an enhanced catabolism of cholesterol to bile acids. Furthermore, the study explored the combinatory effects of quercetin and simvastatin, a clinically utilized statin, revealing a synergistic action in modulating cholesterol levels at various dosages. CONCLUSIONS: The findings from this research provide a comprehensive insight into the mechanistic pathways through which quercetin, a phytochemical derived from buckwheat, exerts its hypocholesterolemic effects. Additionally, the observed synergistic interaction between quercetin and simvastatin opens up new avenues for the development of combined therapeutic strategies to manage hyperlipidemia.


Asunto(s)
Colesterol 7-alfa-Hidroxilasa , Colesterol , Fagopyrum , Hidroximetilglutaril-CoA Reductasas , Metabolismo de los Lípidos , Fitoquímicos , Quercetina , Humanos , Fagopyrum/química , Fagopyrum/metabolismo , Células Hep G2 , Colesterol/metabolismo , Quercetina/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Fitoquímicos/farmacología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Anticolesterolemiantes/farmacología , Simvastatina/farmacología , Extractos Vegetales/farmacología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos
9.
BMC Biol ; 21(1): 87, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069628

RESUMEN

BACKGROUND: Two widely cultivated annual buckwheat crops, Fagopyrum esculentum and F. tataricum, differ from each other in both rutin concentration and reproductive system. However, the underlying genetic mechanisms remain poorly elucidated. RESULTS: Here, we report the first haplotype-resolved chromosome-level genome assemblies of the two species. Two haplotype genomes of F. esculentum were assembled as 1.23 and 1.19 Gb with N50 = 9.8 and 12.4 Mb, respectively; the two haplotype genomes of F. tataricum were 453.7 and 446.2 Mb with N50 = 50 and 30 Mb, respectively. We further annotated protein-coding genes of each haplotype genome based on available gene sets and 48 newly sequenced transcriptomes. We found that more repetitive sequences, especially expansion of long terminal repeat retrotransposons (LTR-RTs), contributed to the large genome size of F. esculentum. Based on the well-annotated sequences, gene expressions, and luciferase experiments, we identified the sequence mutations of the promoter regions of two key genes that are likely to have greatly contributed to the high rutin concentration and selfing reproduction in F. tartaricum. CONCLUSIONS: Our results highlight the importance of high-quality genomes to identify genetic mutations underlying phenotypic differences between closely related species. F. tataricum may have been experienced stronger selection than F. esculentum through choosing these two non-coding alleles for the desired cultivation traits. These findings further suggest that genetic manipulation of the non-coding promoter regions could be widely employed for breeding buckwheat and other crops.


Asunto(s)
Fagopyrum , Rutina , Rutina/genética , Rutina/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Haplotipos , Fitomejoramiento , Genitales/metabolismo
10.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125947

RESUMEN

Anthocyanin is one important nutrition composition in Tartary buckwheat (Fagopyrum tataricum) sprouts, a component missing in its seeds. Although anthocyanin biosynthesis requires light, the mechanism of light-induced anthocyanin accumulation in Tartary buckwheat is unclear. Here, comparative transcriptome analysis of Tartary buckwheat sprouts under light and dark treatments and biochemical approaches were performed to identify the roles of one B-box protein BBX22 and ELONGATED HYPOCOTYL 5 (HY5). The overexpression assay showed that FtHY5 and FtBBX22 could both promote anthocyanin synthesis in red-flower tobacco. Additionally, FtBBX22 associated with FtHY5 to form a complex that activates the transcription of MYB transcription factor genes FtMYB42 and FtDFR, leading to anthocyanin accumulation. These findings revealed the regulation mechanism of light-induced anthocyanin synthesis and provide excellent gene resources for breeding high-quality Tartary buckwheat.


Asunto(s)
Antocianinas , Fagopyrum , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas de Plantas , Factores de Transcripción , Fagopyrum/genética , Fagopyrum/metabolismo , Fagopyrum/crecimiento & desarrollo , Fagopyrum/efectos de la radiación , Antocianinas/biosíntesis , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA