Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 855
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 168(6): 1041-1052.e18, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28283060

RESUMEN

Most secreted growth factors and cytokines are functionally pleiotropic because their receptors are expressed on diverse cell types. While important for normal mammalian physiology, pleiotropy limits the efficacy of cytokines and growth factors as therapeutics. Stem cell factor (SCF) is a growth factor that acts through the c-Kit receptor tyrosine kinase to elicit hematopoietic progenitor expansion but can be toxic when administered in vivo because it concurrently activates mast cells. We engineered a mechanism-based SCF partial agonist that impaired c-Kit dimerization, truncating downstream signaling amplitude. This SCF variant elicited biased activation of hematopoietic progenitors over mast cells in vitro and in vivo. Mouse models of SCF-mediated anaphylaxis, radioprotection, and hematopoietic expansion revealed that this SCF partial agonist retained therapeutic efficacy while exhibiting virtually no anaphylactic off-target effects. The approach of biasing cell activation by tuning signaling thresholds and outputs has applications to many dimeric receptor-ligand systems.


Asunto(s)
Anafilaxia/metabolismo , Células Madre Hematopoyéticas/inmunología , Mastocitos/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal , Factor de Células Madre/metabolismo , Anafilaxia/inmunología , Animales , Dimerización , Humanos , Mastocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Ingeniería de Proteínas , Proteínas Proto-Oncogénicas c-kit/agonistas , Proteínas Proto-Oncogénicas c-kit/química , Factor de Células Madre/química , Factor de Células Madre/genética
2.
Mol Cell ; 72(3): 413-425.e5, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30293784

RESUMEN

c-Kit is a classic proto-oncogene either mutated or upregulated in cancer cells, and this leads to its constitutive kinase activation and, thus, to uncontrolled proliferation. Although the pro-oncogenic role of c-Kit is of no doubt, some observations do not fit well with c-Kit solely as a tumor-promoting moiety. We show here that c-Kit actively triggers cell death in various cancer cell lines unless engaged by its ligand stem cell factor (SCF). This pro-death activity is enhanced when the kinase activation of c-Kit is silenced and is due to c-Kit intracellular cleavage by caspase-like protease at D816. Moreover, in vivo, overexpression of a c-Kit kinase-dead mutant inhibits tumor growth, and this intrinsic c-Kit tumor-suppressive activity is dependent on the D816 cleavage. Thus, c-Kit acts both as a proto-oncogene via its kinase activity and as a tumor suppressor via its dependence receptor activity.


Asunto(s)
Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/fisiología , Animales , Apoptosis , División Celular , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones SCID , Fosforilación , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proto-Oncogenes , Factor de Células Madre/metabolismo
3.
Mol Cell Proteomics ; 22(3): 100503, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682716

RESUMEN

Acute myeloid leukemia (AML) is the most common and aggressive form of acute leukemia, with a 5-year survival rate of just 24%. Over a third of all AML patients harbor activating mutations in kinases, such as the receptor tyrosine kinases FLT3 (receptor-type tyrosine-protein kinase FLT3) and KIT (mast/stem cell growth factor receptor kit). FLT3 and KIT mutations are associated with poor clinical outcomes and lower remission rates in response to standard-of-care chemotherapy. We have recently identified that the core kinase of the non-homologous end joining DNA repair pathway, DNA-PK (DNA-dependent protein kinase), is activated downstream of FLT3; and targeting DNA-PK sensitized FLT3-mutant AML cells to standard-of-care therapies. Herein, we investigated DNA-PK as a possible therapeutic vulnerability in KIT mutant AML, using isogenic FDC-P1 mouse myeloid progenitor cell lines transduced with oncogenic mutant KIT (V560G and D816V) or vector control. Targeted quantitative phosphoproteomic profiling identified phosphorylation of DNA-PK in the T2599/T2605/S2608/S2610 cluster in KIT mutant cells, indicative of DNA-PK activation. Accordingly, proliferation assays revealed that KIT mutant FDC-P1 cells were more sensitive to the DNA-PK inhibitors M3814 or NU7441, compared with empty vector controls. DNA-PK inhibition combined with inhibition of KIT signaling using the kinase inhibitors dasatinib or ibrutinib, or the protein phosphatase 2A activators FTY720 or AAL(S), led to synergistic cell death. Global phosphoproteomic analysis of KIT-D816V cells revealed that dasatinib and M3814 single-agent treatments inhibited extracellular signal-regulated kinase and AKT (RAC-alpha serine/threonine-protein kinase)/MTOR (serine/threonine-protein kinase mTOR) activity, with greater inhibition of both pathways when used in combination. Combined dasatinib and M3814 treatment also synergistically inhibited phosphorylation of the transcriptional regulators MYC and MYB. This study provides insight into the oncogenic pathways regulated by DNA-PK beyond its canonical role in DNA repair and demonstrates that DNA-PK is a promising therapeutic target for KIT mutant cancers.


Asunto(s)
Proteína Quinasa Activada por ADN , Leucemia Mieloide Aguda , Animales , Ratones , Apoptosis , Línea Celular Tumoral , Dasatinib , ADN , Proteína Quinasa Activada por ADN/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras , Serina , Transducción de Señal , Treonina , Serina-Treonina Quinasas TOR , Tirosina
4.
Curr Issues Mol Biol ; 46(4): 2946-2960, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38666914

RESUMEN

Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML.

5.
Mol Cell Biochem ; 479(3): 603-615, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37129768

RESUMEN

Stem cell-based therapy has been proposed as a novel therapeutic strategy for diabetic nephropathy. This study was designed to evaluate the effect of systemic administration of rat bone marrow-derived c-kit positive (c-kit+) cells on diabetic nephropathy in male rats, focusing on PI3K/AKT/GSK-3ß pathway and apoptosis as a possible therapeutic mechanism. Twenty-eight animals were randomly classified into four groups: Control group (C), diabetic group (D), diabetic group, intravenously received 50 µl phosphate-buffered saline (PBS) containing 3 × 105 c-kit- cells (D + ckit-); and diabetic group, intravenously received 50 µl PBS containing 3 × 105 c-Kit positive cells (D + ckit+). Control and diabetic groups intravenously received 50 µl PBS. C-kit+ cell therapy could reduce renal fibrosis, which was associated with attenuation of inflammation as indicated by decreased TNF-α and IL-6 levels in the kidney tissue. In addition, c-kit+ cells restored the expression levels of PI3K, pAKT, and GSK-3ß proteins. Furthermore, renal apoptosis was decreased following c-kit+ cell therapy, evidenced by the lower apoptotic index in parallel with the increased Bcl-2 and decreased Bax and Caspase-3 levels. Our results showed that in contrast to c-kit- cells, the administration of c-kit+ cells ameliorate diabetic nephropathy and suggested that c-kit+ cells could be an alternative cell source for attenuating diabetic nephropathy.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Nefropatías Diabéticas , Animales , Masculino , Ratas , Apoptosis , Médula Ósea/metabolismo , Nefropatías Diabéticas/terapia , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Células Madre/metabolismo , Proteínas Proto-Oncogénicas c-kit , Complicaciones de la Diabetes/metabolismo , Células Madre Mesenquimatosas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos/métodos
6.
Ecotoxicol Environ Saf ; 279: 116504, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795418

RESUMEN

Cranial radiotherapy is a major treatment for leukemia and brain tumors. Our previous study found abscopal effects of cranial irradiation could cause spermatogenesis disorder in mice. However, the exact mechanisms are not yet fully understood. In the study, adult male C57BL/6 mice were administrated with 20 Gy X-ray cranial irradiation (5 Gy per day for 4 days consecutively) and sacrificed at 1, 2 and 4 weeks. Tandem Mass Tag (TMT) quantitative proteomics of testis was combined with bioinformatics analysis to identify key molecules and signal pathways related to spermatogenesis at 4 weeks after cranial irradiation. GO analysis showed that spermatogenesis was closely related to oxidative stress and inflammation. Severe oxidative stress occurred in testis, serum and brain, while serious inflammation also occurred in testis and serum. Additionally, the sex hormones related to hypothalamic-pituitary-gonadal (HPG) axis were disrupted. PI3K/Akt pathway was activated in testis, which upstream molecule SCF/C-Kit was significantly elevated. Furthermore, the proliferation and differentiation ability of spermatogonial stem cells (SSCs) were altered. These findings suggest that cranial irradiation can cause spermatogenesis disorder through brain-blood-testicular cascade oxidative stress, inflammation and the secretory dysfunction of HPG axis, and SCF/C-kit drive this process through activating PI3K/Akt pathway.


Asunto(s)
Irradiación Craneana , Ratones Endogámicos C57BL , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-kit , Espermatogénesis , Animales , Masculino , Espermatogénesis/efectos de la radiación , Ratones , Proteínas Proto-Oncogénicas c-kit/metabolismo , Estrés Oxidativo/efectos de la radiación , Irradiación Craneana/efectos adversos , Testículo/efectos de la radiación , Testículo/patología , Transducción de Señal/efectos de la radiación , Factor de Células Madre/metabolismo , Inflamación
7.
Odontology ; 112(1): 83-90, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37002433

RESUMEN

Salivary gland hypofunction adversely affects the oral environment and daily life by causing dry mouth (xerostomia). Senescence-related atrophy of salivary gland tissues is one cause of xerostomia, and it is particularly common among the elderly. However, the underlying mechanism is poorly understood, and no treatment has been established. Therefore, we examined age-related changes in senescence-associated secretory phenotype (SASP) factors, which regulate stemness and cellular senescence, in mouse submandibular glands. We analyzed the submandibular glands of 6-week-old (young group, n = 6) and 82-week-old mice (aged group, n = 6). We performed salivary flow rate measurements, histological analysis including immunohistochemistry, and quantitative real-time PCR. The salivary flow rate was significantly lower in the aged group than in the young group. In addition, immunostaining and quantitative real-time PCR illustrated that aquaporin-5 and α-amylase expressions were significantly decreased in aged mice, indicating salivary gland hypofunction. c-Kit and cytokeratin 5 expressions were also significantly decreased in this group, suggesting that the regenerative abilities of the submandibular glands were reduced because of decreased stem and progenitor cell counts. Furthermore, the levels of p16INK4a and p21 (the senescence markers) and TGF-ß1 and IL-6 (SASP factors) were significantly increased in mice, suggesting that senescence had been promoted. The decreased numbers of stem and progenitor cells and increased levels of SASP factors might be associated with age-related changes in mouse submandibular glands. These results might facilitate the development of treatments for senescence-related submandibular gland hypofunction.


Asunto(s)
Glándula Submandibular , Xerostomía , Humanos , Anciano , Ratones , Masculino , Animales , Glándula Submandibular/metabolismo , Glándula Submandibular/patología , Senescencia Celular , Células Madre
8.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396931

RESUMEN

A series of novel echinatin derivatives with 1,3,4-oxadiazole moieties were designed and synthesized. Most of the newly synthesized compounds exhibited moderate antiproliferative activity against the four cancer cell lines. Notably, Compound T4 demonstrated the most potent activity, with IC50 values ranging from 1.71 µM to 8.60 µM against the four cancer cell lines. Cell colony formation and wound healing assays demonstrated that T4 significantly inhibited cell proliferation and inhibited migration. We discovered that T4 exhibited moderate binding affinity with the c-KIT protein through reverse docking. The results were effectively validated through subsequent molecular docking and c-KIT enzyme activity assays. In addition, Western blot analysis revealed that T4 inhibits the phosphorylation of downstream proteins of c-KIT. The results provide valuable inspiration for exploring novel insights into the design of echinatin-related hybrids as well as their potential application as c-KIT inhibitors to enhance the efficacy of candidates.


Asunto(s)
Antineoplásicos , Chalconas , Neoplasias , Oxadiazoles , Humanos , Relación Estructura-Actividad , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Proliferación Celular , Estructura Molecular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga
9.
Arerugi ; 73(2): 189-195, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38522933

RESUMEN

A 2-year-old, male patient presented with an 18-month history of scattered, brown macules and nodules up to 2 cm in size on his trunk and extremities. These macules were accompanied by pruritus and were positive for Darier's sign. A skin biopsy of a brown macule on the left thigh revealed a dense accumulation of CD117-positive, round or oval cells with amphophilic cytoplasm within the upper to middle dermis. The patient was otherwise healthy and had normal laboratory and imaging test results. Sequence analysis of genomic DNA from a skin biopsy demonstrated the presence of an Asp419del mutation in exon 8 of the KIT gene. Based on these findings, maculopapular cutaneous mastocytosis (MPCM) was diagnosed. The patient received H 1-antihistamine. Although the pruritus resolved, the brown macules remained for one year after the initial treatment. To the best of our knowledge, only three cases of cutaneous mastocytosis (CM) with an Asp419del mutation, including the present case, have been reported in the Japanese literature to date; moreover, while the previous two cases were of DCM, the present case was the first instance of MPCM. Normally, the symptoms of childhood-onset MPCM are dormant until puberty. However, a recent study reported that many MPCM patients may experience persistent or exacerbated symptoms. The present study therefore evaluated 53 Japanese cases of childhood onset MPCM with a KIT gene mutation and discussed the patients' clinical outcomes.


Asunto(s)
Mastocitosis Cutánea , Urticaria Pigmentosa , Humanos , Masculino , Preescolar , Urticaria Pigmentosa/diagnóstico , Urticaria Pigmentosa/genética , Urticaria Pigmentosa/patología , Mastocitosis Cutánea/diagnóstico , Mastocitosis Cutánea/genética , Mastocitosis Cutánea/patología , Piel/patología , Mutación , Prurito
10.
Breast Cancer Res ; 25(1): 6, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653787

RESUMEN

BACKGROUND: A challenge in human mammary epithelial cell (HMEC) culture is sustaining the representation of competing luminal, myoepithelial, and progenitor lineages over time. As cells replicate in culture, myoepithelial cells come to dominate the composition of the culture with serial passaging. This drift in composition presents a challenge for studying luminal and progenitor cells, which are prospective cells of origin for most breast cancer subtypes. METHODS: We demonstrate the use of postconfluent culture on HMECs. Postconfluent culture entails culturing HMECs for 2-5 weeks without passaging but maintaining frequent feedings in low-stress M87A culture medium. In contrast, standard HMEC culture entails enzymatic subculturing every 3-5 days to maintain subconfluent density. RESULTS: When compared to standard HMEC culture, postconfluent culture yields increased proportions of luminal cells and c-Kit+ progenitor cells. Postconfluent cultures develop a distinct multilayered morphology with individual cells showing decreased physical deformability as compared to cells in standard culture. Gene expression analysis of postconfluent cells shows increased expression of lineage-specific markers and extracellular matrix components. CONCLUSIONS: Postconfluent culture is a novel, useful strategy for altering the lineage composition of HMECs, by increasing the proportional representation of luminal and progenitor cells. We speculate that postconfluent culture creates a microenvironment with cellular composition closer to the physiological state and eases the isolation of scarce cell subtypes. As such, postconfluent culture is a valuable tool for researchers using HMECs for breast cancer research.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Mama , Células Epiteliales/metabolismo , Microambiente Tumoral
11.
Curr Issues Mol Biol ; 45(9): 7557-7571, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37754260

RESUMEN

The main function of interstitial cells of Cajal (ICCs) is to regulate gastrointestinal peristalsis by acting as a "pacemaker" cell by generating spontaneous slow electrical waves. In 2005, electron microscopy revealed a cell type similar to ICCs (ICC-like) outside the gastrointestinal tract, with contractile activity and c-Kit+ immunohistochemistry shared with ICCs. Among the locations where ICC-like cells have been observed, it is in the uterus where they have a significant functional and pathophysiological role. These cells are involved in obstetric phenomena of contractile action, such as ascending sperm transport, embryo implantation, pregnancy, delivery, and the expulsion of menstrual debris. Within the pathophysiology related to these cells, we find obstetric alterations such as recurrent miscarriages, premature deliveries, abolition of uterine contractions, and failures of embryo implantation, in addition to other common conditions in the fertile age, such as endometriosis and leiomyoma.

12.
Curr Issues Mol Biol ; 45(9): 7011-7026, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37754227

RESUMEN

Targeting the molecular chaperone HSP90 and the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The HSP90 inhibitor PU-H71, MCL1 inhibitor S63845, and BCL2 inhibitor venetoclax were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells. AML cells represented all major morphologic and molecular subtypes including FLT3-ITD and TP53 mutant AML cell lines and a variety of patient-derived AML cells. Results: PU-H71 and combination treatments with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in susceptible AML cell lines and primary AML. The majority of the primary AML samples were responsive to PU-H71 in combination with BH3 mimetics. Elevated susceptibility to PU-H71 and S63845 was associated with FLT3 mutated AML with CD34 < 20%. Elevated susceptibility to PU-H71 and venetoclax was associated with primary AML with CD117 > 80% and CD11b < 45%. The combination of HSP90 inhibitor PU-H71 and MCL1 inhibitor S63845 may be a candidate treatment for FLT3-mutated AML with moderate CD34 positivity while the combination of HSP90 inhibitor PU-H71 and BCL2 inhibitor venetoclax may be more effective in the treatment of primitive AML with high CD117 and low CD11b positivity.

13.
Mol Med ; 29(1): 38, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959556

RESUMEN

BACKGROUND: Chronic inflammation, mainly derived from fibroblast-like synoviocytes (FLSs), plays a central role in the pathomechanism of osteoarthritis (OA). Recently, epithelial-mesenchymal transition (EMT) signaling was found to be activated in OA-derived FLSs with a pro-inflammatory phenotype. However, the role of EMT signaling in regulating FLS function and OA-related inflammation remains unknown. METHODS: The synovium of OA patients were evaluated for EMT and inflammation markers. The FLSs with activated EMT signaling were co-cultured with chondrocytes (chond). Gene expression of OA synovial samples were analyzed. The role of receptor tyrosine kinase C-kit was investigated in OA-FLSs and an OA rat model. The downstream pathways driven by C-kit were explored in OA-FLSs. RESULTS: EMT marker N-cadherin (N-CDH) was upregulated in 40.0% of the OA samples. These N-CDH+ OA samples showed higher expression of pro-inflammatory factors. In co-culture, FLSs derived from N-CDH+ OA samples induced a typical degenerative phenotype of chonds and stimulated their production of matrix degrading enzymes. C-kit was significantly upregulated and spatially co-localized with N-CDH in N-CDH+ OA samples. In OA-FLSs, C-kit activated intracellular EMT signaling and induced destructive features of OA-FLSs. In OA rat model, C-kit largely promoted synovial inflammation and cartilage destruction, whereas knocking-down C-kit significantly restored the health of OA joints. Using GSK3ß S9A mutant, we demonstrated that C-kit drives EMT signaling in OA-FLS by promoting phosphorylation of GSK3ß and nuclear retention of the EMT transcription factor Snail. CONCLUSION: C-kit drives EMT signaling in OA-FLSs and promotes a destructive FLS phenotype, leading to synovial inflammation and cartilage destruction.


Asunto(s)
Transición Epitelial-Mesenquimal , Osteoartritis , Ratas , Animales , Glucógeno Sintasa Quinasa 3 beta/genética , Osteoartritis/metabolismo , Membrana Sinovial/metabolismo , Inflamación/metabolismo , Fenotipo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Fibroblastos/metabolismo , Células Cultivadas
14.
Biochem Biophys Res Commun ; 672: 10-16, 2023 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-37331166

RESUMEN

PURPOSE: The study was conducted to investigate the effect of the treatment with imatinib, a c-kit specific inhibitor, on the neointimal hyperplasia (NIH) of aortocaval fistula (ACF) in adenine-induced renal failure rats. MATERIALS AND METHODS: All rats were randomly assigned to 4 groups: rats were fed on a normal diet (normal group); rats were fed on a 0.75% adenine-rich diet (renal failure group). The remaining rats underwent ACF after receiving a 0.75% adenine-rich diet and received daily saline gavage (model group) or imatinib gavage (imatinib group) for 7 days after surgery. Immunohistochemical method was used to detect c-kit expression, and Elastomeric Verhoeff-Van Gieson (EVG) staining was used to observe morphological changes of the ACF. The Pearson correlation analysis was used to evaluate the correlations of c-kit expression with intimal thickness and the percentage of stenosis, respectively. RESULTS: The renal failure group showed positive c-kit expression on the intima of the inferior vena cava (IVC), whereas the normal group did not. Compared to the model group, intimal thickness (P = 0.001), the percentage of stenosis (P = 0.006) and c-kit expression (P = 0.04) were decreased in the imatinib group at 8 weeks postoperatively. C-kit expression was positively correlated with both intimal thickness and percentage of stenosis (intimal thickness: R = 0.650, P = 0.003; the percentage of stenosis: R = 0.581, P = 0.011) in both the model and imatinib groups. CONCLUSION: Treatment with imatinib, a c-kit specific inhibitor, was useful to delay the NIH of ACF in adenine-induced renal failure rats.


Asunto(s)
Fístula , Insuficiencia Renal , Ratas , Animales , Mesilato de Imatinib , Hiperplasia , Constricción Patológica , Neointima , Proteínas Proto-Oncogénicas c-kit
15.
FASEB J ; 36(10): e22562, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36125067

RESUMEN

Oncoprotein AML1-ETO (AE) derived from t(8;21)(q22;q22) translocation is typically present in a portion of French-American-British-M2 subtype of acute myeloid leukemia (AML). Although these patients have relatively favorable prognoses, substantial numbers of them would relapse after conventional therapy. Here, we explored whether reinforcing the endogenous differentiation potential of t(8;21) AML cells would diminish the associated malignancy. In doing so, we noticed an expansion of immature erythroid blasts featured in both AML1-ETO9a (AE9a) and AE plus c-KIT (N822K) (AK) murine leukemic models. Interestingly, in the AE9a murine model, a spontaneous step-wise erythroid differentiation path, as characterized by the differential expression of CD43/c-Kit and the upregulation of several key erythroid transcription factors (TFs), accompanied the decline or loss of leukemia-initiating potential. Notably, overexpression of one of the key erythroid TFs, Ldb1, potently disrupted the repopulation of AE9a leukemic cells in vivo, suggesting a new promising intervention strategy of t(8;21) AML through enforcing their erythroid differentiation.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas de Fusión Oncogénica , Animales , Cromosomas Humanos Par 21 , Cromosomas Humanos Par 8 , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas con Dominio LIM , Proteínas con Homeodominio LIM , Leucemia Mieloide Aguda/metabolismo , Ratones , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/genética , Translocación Genética
16.
Mol Cell Biochem ; 478(4): 861-873, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36107283

RESUMEN

Given that mast cells are pivotal contributors to allergic diseases, various allergy treatments have been developed to inhibit them. Omalizumab, an anti-immunoglobulin E antibody, is a representative therapy that can alleviate allergy symptoms by inhibiting mast cell degranulation. However, omalizumab cannot reduce the proliferation and accumulation of mast cells, which is a fundamental cause of allergic diseases. c-Kit is essential for the proliferation, survival, and differentiation of mast cells. Excessive c-Kit activation triggers various mast cell diseases, such as asthma, chronic spontaneous urticaria, and mastocytosis. Herein, we generated 2G4, an anti-c-Kit antibody, to develop a therapeutic agent for mast cell diseases. The therapeutic efficacy of 2G4 antibody was evaluated in LAD2, a human mast cell line. 2G4 antibody completely inhibited c-Kit signaling by blocking the binding of stem cell factor, known as the c-Kit ligand. Inhibition of c-Kit signaling led to the suppression of proliferation, migration, and degranulation in LAD2 cells. Moreover, 2G4 antibody suppressed the secretion of pro-inflammatory cytokines, including granulocyte-macrophage colony-stimulating factor, vascular endothelial growth factor, C-C motif chemokine ligand 2, brain-derived neurotrophic factor, and complement component C5/C5a, which can exacerbate allergy symptoms. Taken together, these results suggest that 2G4 antibody has potential as a novel therapeutic agent for mast cell diseases.


Asunto(s)
Hipersensibilidad , Trastornos de la Activación de los Mastocitos , Humanos , Mastocitos/metabolismo , Omalizumab/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Factor de Células Madre/metabolismo , Hipersensibilidad/metabolismo , Proliferación Celular , Degranulación de la Célula
17.
Mol Biol Rep ; 50(1): 641-653, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36371552

RESUMEN

AIM: was to assess the role of C-KIT, TET1 and TET2 expression in the diagnosis and prognosis of acute myeloblastic leukemia (AML). METHODS: The expression levels of C-KIT, TET1 and TET2 were assessed in the bone marrow (BM) aspirate of 152 AML patients compared to 20 healthy control using quantitative real-time polymerase chain reaction (qRT-PCR). Data were correlated with the clinico-pathological features of the patients, response to treatment, disease-free survival (DFS), and overall survival (OS) rates. RESULTS: C-KIT, TET1 and TET2 were significantly upregulated in AML patients [0.25 (0-11.6), 0.0113 (0-3.301), and 0.07 (0-4); respectively], compared to the control group [0.013 (0.005-0.250), P < 0.001, 0.001 (0-0.006), P < 0.001, and 0.02 (0.008-0.055), P = 0.019; respectively]. The sensitivity, specificity, and area under curve of of C-KIT were (48.7%, 100%, 0.855; respectively, P = 0.001), and that of TET1 were (63.4%, 100%, 0.897; respectively, P = 0.001), while that of TET2 were (56.8%, 100%, 0.766; respectively, P = 0.019). When combining the three markers, the sensitivity was 77.5%, however it reached the highest sensitivity (78.6%) and specificity (100%) when combining both c-KIT + TET1 together for the diagnosis of AML. C-KIT overexpression associated with shorter DFS (P = 0.05) and increased incidence of relapse (P = 0.019). Lymph nodes involvement [HR = 2.200, P = 0.005] is an independent risk factor for shorter OS rate of AML patients. Increased BM blast % [HR = 7.768, P = 0.002], and FLT3-ITD mutation [HR = 2.989, P = 0.032] are independent risk factors for shorter DSF rate of the patients. CONCLUSION: C-KIT, TET1, and TET2 could be used as possible useful biomarkers for the diagnosis of AML.


Asunto(s)
Dioxigenasas , Leucemia Mieloide Aguda , Humanos , Pronóstico , Mutación , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Tirosina Quinasas Receptoras/genética , Expresión Génica , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al ADN/genética , Dioxigenasas/genética
18.
J Cutan Pathol ; 50(8): 723-729, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37127848

RESUMEN

Extragastrointestinal stromal tumors (EGISTs) carry the same morphological, immunohistochemical and molecular features as gastrointestinal stromal tumors (GISTs) and involve extragastrointestinal tract soft tissue. The majority of reported EGIST cases arise from intraabdominal, retroperitoneal, or pelvic soft tissue. A significant subset of such tumors originates from the gastrointestinal muscle layer, grows in an exophytic manner, then loses attachment to the gastrointestinal tract. Consequently, true EGISTs are exceedingly rare. Herein, we are reporting a case of a vulvar EGIST. A 77-year-old woman presented with a painless subcutaneous nodule on the right perineum. An excisional biopsy showed a fairly circumscribed bland spindle cell lesion in the dermis. The tumor cells were positive for CD117 and ANO1/DOG-1 and negative for smooth muscle myosin, smooth muscle actin, STAT6, low- and high-molecular-weight cytokeratins, SOX10, MART-1, CD10, S-100 protein, and estrogen and progesterone receptors. A diagnosis of EGIST was made and complete excision was recommended. Superficial/subcutaneous EGISTs are extremely rare, and it is important for dermatopathologists to be aware of this entity as it can be misdiagnosed as more common spindle cell neoplasms, both benign and malignant, including but not limited to smooth muscle neoplasms (leiomyoma/leiomyosarcoma), spindle cell melanoma, and sarcomatoid squamous cell carcinoma.


Asunto(s)
Tumores del Estroma Gastrointestinal , Leiomiosarcoma , Humanos , Tumores del Estroma Gastrointestinal/diagnóstico , Tumores del Estroma Gastrointestinal/patología , Inmunohistoquímica , Proteínas Proto-Oncogénicas c-kit
19.
Cell Mol Life Sci ; 79(8): 424, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35841449

RESUMEN

Cardiac fibroblast (CF) population heterogeneity and plasticity present a challenge for categorization of biological and functional properties. Distinct molecular markers and associated signaling pathways provide valuable insight for CF biology and interventional strategies to influence injury response and aging-associated remodeling. Receptor tyrosine kinase c-Kit mediates cell survival, proliferation, migration, and is activated by pathological injury. However, the biological significance of c-Kit within CF population has not been addressed. An inducible reporter mouse detects c-Kit promoter activation with Enhanced Green Fluorescent Protein (EGFP) expression in cardiac cells. Coincidence of EGFP and c-Kit with the DDR2 fibroblast marker was confirmed using flow cytometry and immunohistochemistry. Subsequently, CFs expressing DDR2 with or without c-Kit was isolated and characterized. A subset of DDR2+ CFs also express c-Kit with coincidence in ~ 8% of total cardiac interstitial cells (CICs). Aging is associated with decreased number of c-Kit expressing DDR2+ CFs, whereas pathological injury induces c-Kit and DDR2 as well as the frequency of coincident expression in CICs. scRNA-Seq profiling reveals the transcriptome of c-Kit expressing CFs as cells with transitional phenotype. Cultured cardiac DDR2+ fibroblasts that are c-Kit+ exhibit morphological and functional characteristics consistent with youthful phenotypes compared to c-Kit- cells. Mechanistically, c-Kit expression correlates with signaling implicated in proliferation and cell migration, including phospho-ERK and pro-caspase 3. The phenotype of c-kit+ on DDR2+ CFs correlates with multiple characteristics of 'youthful' cells. To our knowledge, this represents the first evaluation of c-Kit biology within DDR2+ CF population and provides a fundamental basis for future studies to influence myocardial biology, response to pathological injury and physiological aging.


Asunto(s)
Animales , Fibroblastos/metabolismo , Ratones , Fenotipo , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo
20.
Pediatr Surg Int ; 39(1): 188, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37101012

RESUMEN

Interstitial cells of Cajal (ICCs) are pacemaker cells of gastrointestinal motility that generate and transmit electrical slow waves to smooth muscle cells in the gut wall, thus inducing phasic contractions and coordinated peristalsis. Traditionally, tyrosine-protein kinase Kit (c-kit), also known as CD117 or mast/stem cell growth factor receptor, has been used as the primary marker of ICCs in pathology specimens. More recently, the Ca2+-activated chloride channel, anoctamin-1, has been introduced as a more specific marker of ICCs. Over the years, various gastrointestinal motility disorders have been described in infants and young children in which symptoms of functional bowel obstruction arise from ICC-related neuromuscular dysfunction of the colon and rectum. The current article provides a comprehensive overview of the embryonic origin, distribution, and functions of ICCs, while also illustrating the absence or deficiency of ICCs in pediatric patients with Hirschsprung disease intestinal neuronal dysplasia, isolated hypoganglionosis, internal anal sphincter achalasia, and congenital smooth muscle cell disorders such as megacystis microcolon intestinal hypoperistalsis syndrome.


Asunto(s)
Enfermedad de Hirschsprung , Células Intersticiales de Cajal , Lactante , Niño , Humanos , Preescolar , Células Intersticiales de Cajal/metabolismo , Relevancia Clínica , Enfermedad de Hirschsprung/metabolismo , Motilidad Gastrointestinal/fisiología , Canal Anal/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA