Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107474, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879011

RESUMEN

Hearing, the ability to sense sounds, and the processing of auditory information are important for perception of the world. Mice lacking expression of neuroplastin (Np), a type-1 transmembrane glycoprotein, display deafness, multiple cognitive deficiencies, and reduced expression of plasma membrane calcium (Ca2+) ATPases (PMCAs) in cochlear hair cells and brain neurons. In this study, we transferred the deafness causing missense mutations pitch (C315S) and audio-1 (I122N) into human Np (hNp) constructs and investigated their effects at the molecular and cellular levels. Computational molecular dynamics show that loss of the disulfide bridge in hNppitch causes structural destabilization of immunoglobulin-like domain (Ig) III and that the novel asparagine in hNpaudio-1 results in steric constraints and an additional N-glycosylation site in IgII. Additional N-glycosylation of hNpaudio-1 was confirmed by PNGaseF treatment. In comparison to hNpWT, transfection of hNppitch and hNpaudio-1 into HEK293T cells resulted in normal mRNA levels but reduced the Np protein levels and their cell surface expression due to proteasomal/lysosomal degradation. Furthermore, hNppitch and hNpaudio-1 failed to promote exogenous PMCA levels in HEK293T cells. In hippocampal neurons, expression of additional hNppitch or hNpaudio-1 was less efficient than hNpWT to elevate endogenous PMCA levels and to accelerate the restoration of basal Ca2+ levels after electrically evoked Ca2+ transients. We propose that mutations leading to pathological Np variants, as exemplified here by the deafness causing Np mutants, can affect Np-dependent Ca2+ regulatory mechanisms and may potentially cause intellectual and cognitive deficits in humans.


Asunto(s)
Encéfalo , Calcio , Sordera , Glicoproteínas de Membrana , Mutación Missense , Neuronas , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Humanos , Sordera/metabolismo , Sordera/genética , Sordera/patología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Neuronas/metabolismo , Células HEK293 , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Calcio/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Membrana Celular/metabolismo , Ratones , Glicosilación
2.
J Biol Chem ; 300(5): 107267, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583863

RESUMEN

Phospholamban (PLB) is a transmembrane micropeptide that regulates the sarcoplasmic reticulum Ca2+-ATPase (SERCA) in cardiac muscle, but the physical mechanism of this regulation remains poorly understood. PLB reduces the Ca2+ sensitivity of active SERCA, increasing the Ca2+ concentration required for pump cycling. However, PLB does not decrease Ca2+ binding to SERCA when ATP is absent, suggesting PLB does not inhibit SERCA Ca2+ affinity. The prevailing explanation for these seemingly conflicting results is that PLB slows transitions in the SERCA enzymatic cycle associated with Ca2+ binding, altering transport Ca2+ dependence without actually affecting the equilibrium binding affinity of the Ca2+-coordinating sites. Here, we consider another hypothesis, that measurements of Ca2+ binding in the absence of ATP overlook important allosteric effects of nucleotide binding that increase SERCA Ca2+ binding affinity. We speculated that PLB inhibits SERCA by reversing this allostery. To test this, we used a fluorescent SERCA biosensor to quantify the Ca2+ affinity of non-cycling SERCA in the presence and absence of a non-hydrolyzable ATP-analog, AMPPCP. Nucleotide activation increased SERCA Ca2+ affinity, and this effect was reversed by co-expression of PLB. Interestingly, PLB had no effect on Ca2+ affinity in the absence of nucleotide. These results reconcile the previous conflicting observations from ATPase assays versus Ca2+ binding assays. Moreover, structural analysis of SERCA revealed a novel allosteric pathway connecting the ATP- and Ca2+-binding sites. We propose this pathway is disrupted by PLB binding. Thus, PLB reduces the equilibrium Ca2+ affinity of SERCA by interrupting allosteric activation of the pump by ATP.


Asunto(s)
Proteínas de Unión al Calcio , Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , Humanos , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/química , Miocardio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Perros , Células HEK293 , Modelos Moleculares , Estructura Terciaria de Proteína
3.
J Mol Cell Cardiol ; 193: 113-124, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960316

RESUMEN

The sarcolemmal Ca2+ efflux pathways, Na+-Ca2+-exchanger (NCX) and Ca2+-ATPase (PMCA), play a crucial role in the regulation of intracellular Ca2+ load and Ca2+ transient in cardiomyocytes. The distribution of these pathways between the t-tubular and surface membrane of ventricular cardiomyocytes varies between species and is not clear in human. Moreover, several studies suggest that this distribution changes during the development and heart diseases. However, the consequences of NCX and PMCA redistribution in human ventricular cardiomyocytes have not yet been elucidated. In this study, we aimed to address this point by using a mathematical model of the human ventricular myocyte incorporating t-tubules, dyadic spaces, and subsarcolemmal spaces. Effects of various combinations of t-tubular fractions of NCX and PMCA were explored, using values between 0.2 and 1 as reported in animal experiments under normal and pathological conditions. Small variations in the action potential duration (≤ 2%), but significant changes in the peak value of cytosolic Ca2+ transient (up to 17%) were observed at stimulation frequencies corresponding to the human heart rate at rest and during activity. The analysis of model results revealed that the changes in Ca2+ transient induced by redistribution of NCX and PMCA were mainly caused by alterations in Ca2+ concentrations in the subsarcolemmal spaces and cytosol during the diastolic phase of the stimulation cycle. The results suggest that redistribution of both transporters between the t-tubular and surface membranes contributes to changes in contractility in human ventricular cardiomyocytes during their development and heart disease and may promote arrhythmogenesis.


Asunto(s)
Calcio , Ventrículos Cardíacos , Miocitos Cardíacos , Sarcolema , Intercambiador de Sodio-Calcio , Humanos , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Ventrículos Cardíacos/metabolismo , Sarcolema/metabolismo , Potenciales de Acción , Señalización del Calcio , Membrana Celular/metabolismo , Modelos Biológicos , Modelos Cardiovasculares
4.
J Biol Chem ; 299(5): 104681, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030504

RESUMEN

We report a novel small-molecule screening approach that combines data augmentation and machine learning to identify Food and Drug Administration (FDA)-approved drugs interacting with the calcium pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA) from skeletal (SERCA1a) and cardiac (SERCA2a) muscle. This approach uses information about small-molecule effectors to map and probe the chemical space of pharmacological targets, thus allowing to screen with high precision large databases of small molecules, including approved and investigational drugs. We chose SERCA because it plays a major role in the excitation-contraction-relaxation cycle in muscle and it represents a major target in both skeletal and cardiac muscle. The machine learning model predicted that SERCA1a and SERCA2a are pharmacological targets for seven statins, a group of FDA-approved 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors used in the clinic as lipid-lowering medications. We validated the machine learning predictions by using in vitro ATPase assays to show that several FDA-approved statins are partial inhibitors of SERCA1a and SERCA2a. Complementary atomistic simulations predict that these drugs bind to two different allosteric sites of the pump. Our findings suggest that SERCA-mediated Ca2+ transport may be targeted by some statins (e.g., atorvastatin), thus providing a molecular pathway to explain statin-associated toxicity reported in the literature. These studies show the applicability of data augmentation and machine learning-based screening as a general platform for the identification of off-target interactions and the applicability of this approach extends to drug discovery.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Miocardio/enzimología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Aprendizaje Automático
5.
Artículo en Inglés | MEDLINE | ID: mdl-38782254

RESUMEN

Regional endothermy is the ability of an animal to elevate the temperature of specific regions of the body above that of the surrounding environment and has evolved independently among several fish lineages. Sarcolipin (SLN) is a small transmembrane protein that uncouples the sarcoplasmic reticulum calcium ATPase pump (SERCA1b) resulting in futile Ca2+ cycling and is thought to play a role in non-shivering thermogenesis (NST) in cold-challenged mammals and possibly some fishes. This study investigated the relative expression of sln and serca1 transcripts in three regionally-endothermic fishes (the skipjack, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, both of which elevate the temperatures of their slow-twitch red skeletal muscle (RM) and extraocular muscles (EM), as well as the cranial endothermic swordfish, Xiphias gladius), and closely related ectothermic scombrids (the Eastern Pacific bonito, Sarda chiliensis, and Pacific chub mackerel, Scomber japonicus). Using Reverse Transcription quantitative PCR (RT-qPCR) and species-specific primers, relative sln expression trended higher in both the RM and EM for all four scombrid species compared to white muscle. In addition, relative serca1 expression was found to be higher in RM of skipjack and yellowfin tuna in comparison to white muscle. However, neither sln nor serca1 transcripts were higher in swordfish RM, EM or cranial heater tissue in comparison to white muscle. A key phosphorylation site in sarcolipin, threonine 5, is conserved in the swordfish, but is mutated to alanine or valine in tunas and the endothermic smalleye Pacific opah, Lampris incognitus, which should result in increased uncoupling of the SERCA pump. Our results support the role of potential SLN-NST in endothermic tunas and the lack thereof for swordfish.


Asunto(s)
Calcio , Proteínas Musculares , Proteolípidos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Termogénesis , Animales , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteolípidos/genética , Proteolípidos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Termogénesis/genética , Calcio/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Músculo Esquelético/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perciformes/genética , Perciformes/fisiología , Perciformes/metabolismo , Atún/genética , Atún/metabolismo , Atún/fisiología
6.
J Biol Chem ; 298(12): 102672, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36334632

RESUMEN

Yeast vacuoles are acidified by the v-type H+-ATPase (V-ATPase) that is comprised of the membrane embedded VO complex and the soluble cytoplasmic V1 complex. The assembly of the V1-VO holoenzyme on the vacuole is stabilized in part through interactions between the VO a-subunit ortholog Vph1 and the lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). PI(3,5)P2 also affects vacuolar Ca2+ release through the channel Yvc1 and uptake through the Ca2+ pump Pmc1. Here, we asked if H+ and Ca2+ transport activities were connected through PI(3,5)P2. We found that overproduction of PI(3,5)P2 by the hyperactive fab1T2250A mutant augmented vacuole acidification, whereas the kinase-inactive fab1EEE mutant attenuated the formation of a H+ gradient. Separately, we tested the effects of excess Ca2+ on vacuole acidification. Adding micromolar Ca2+ blocked vacuole acidification, whereas chelating Ca2+ accelerated acidification. The effect of adding Ca2+ on acidification was eliminated when the Ca2+/H+ antiporter Vcx1 was absent, indicating that the vacuolar H+ gradient can collapse during Ca2+ stress through Vcx1 activity. This, however, was independent of PI(3,5)P2, suggesting that PI(3,5)P2 plays a role in submicromolar Ca2+ flux but not under Ca2+ shock. To see if the link between Ca2+ and H+ transport was bidirectional, we examined Ca2+ transport when vacuole acidification was inhibited. We found that Ca2+ transport was inhibited by halting V-ATPase activity with Bafilomycin or neutralizing vacuolar pH with chloroquine. Together, these data show that Ca2+ transport and V-ATPase efficacy are connected but not necessarily through PI(3,5)P2.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , ATPasas de Translocación de Protón Vacuolares , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatidilinositoles , Vacuolas/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
7.
Expert Rev Proteomics ; 20(7-9): 125-142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37668143

RESUMEN

INTRODUCTION: Skeletal muscles contain large numbers of high-molecular-mass protein complexes in elaborate membrane systems. Integral membrane proteins are involved in diverse cellular functions including the regulation of ion handling, membrane homeostasis, energy metabolism and force transmission. AREAS COVERED: The proteomic profiling of membrane proteins and large protein assemblies in skeletal muscles are outlined in this article. This includes a critical overview of the main biochemical separation techniques and the mass spectrometric approaches taken to study membrane proteins. As an illustrative example of an analytically challenging large protein complex, the proteomic detection and characterization of the Ca2+-ATPase of the sarcoplasmic reticulum is discussed. The biological role of this large protein complex during normal muscle functioning, in the context of fiber type diversity and in relation to mechanisms of physiological adaptations and pathophysiological abnormalities is evaluated from a proteomics perspective. EXPERT OPINION: Mass spectrometry-based muscle proteomics has decisively advanced the field of basic and applied myology. Although it is technically challenging to study membrane proteins, innovations in protein separation methodology in combination with sensitive mass spectrometry and improved systems bioinformatics has allowed the detailed proteomic detection and characterization of skeletal muscle membrane protein complexes, such as Ca2+-pump proteins of the sarcoplasmic reticulum.


Asunto(s)
Proteómica , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Humanos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático , Proteínas de la Membrana/metabolismo , Calcio/química , Calcio/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(31): 18849-18857, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690691

RESUMEN

One of the major events of early plant immune responses is a rapid influx of Ca2+ into the cytosol following pathogen recognition. Indeed, changes in cytosolic Ca2+ are recognized as ubiquitous elements of cellular signaling networks and are thought to encode stimulus-specific information in their duration, amplitude, and frequency. Despite the wealth of observations showing that the bacterial elicitor peptide flg22 triggers Ca2+ transients, there remain limited data defining the molecular identities of Ca2+ transporters involved in shaping the cellular Ca2+ dynamics during the triggering of the defense response network. However, the autoinhibited Ca2+-ATPase (ACA) pumps that act to expel Ca2+ from the cytosol have been linked to these events, with knockouts in the vacuolar members of this family showing hypersensitive lesion-mimic phenotypes. We have therefore explored how the two tonoplast-localized pumps, ACA4 and ACA11, impact flg22-dependent Ca2+ signaling and related defense responses. The double-knockout aca4/11 exhibited increased basal Ca2+ levels and Ca2+ signals of higher amplitude than wild-type plants. Both the aberrant Ca2+ dynamics and associated defense-related phenotypes could be suppressed by growing the aca4/11 seedlings at elevated temperatures. Relocalization of ACA8 from its normal cellular locale of the plasma membrane to the tonoplast also suppressed the aca4/11 phenotypes but not when a catalytically inactive mutant was used. These observations indicate that regulation of vacuolar Ca2+ sequestration is an integral component of plant immune signaling, but also that the action of tonoplast-localized Ca2+ pumps does not require specific regulatory elements not found in plasma membrane-localized pumps.


Asunto(s)
Proteínas de Arabidopsis , Señalización del Calcio/fisiología , ATPasas Transportadoras de Calcio , Calcio/metabolismo , Inmunidad de la Planta/fisiología , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Membrana Celular/metabolismo , Vacuolas/metabolismo
9.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834924

RESUMEN

Impaired calcium uptake resulting from reduced expression and activity of the cardiac sarco-endoplasmic reticulum Ca2+ ATPase (SERCA2a) is a hallmark of heart failure (HF). Recently, new mechanisms of SERCA2a regulation, including post-translational modifications (PTMs), have emerged. Our latest analysis of SERCA2a PTMs has identified lysine acetylation as another PTM which might play a significant role in regulating SERCA2a activity. SERCA2a is acetylated, and that acetylation is more prominent in failing human hearts. In this study, we confirmed that p300 interacts with and acetylates SERCA2a in cardiac tissues. Several lysine residues in SERCA2a modulated by p300 were identified using in vitro acetylation assay. Analysis of in vitro acetylated SERCA2a revealed several lysine residues in SERCA2a susceptible to acetylation by p300. Among them, SERCA2a Lys514 (K514) was confirmed to be essential for SERCA2a activity and stability using an acetylated mimicking mutant. Finally, the reintroduction of an acetyl-mimicking mutant of SERCA2a (K514Q) into SERCA2 knockout cardiomyocytes resulted in deteriorated cardiomyocyte function. Taken together, our data demonstrated that p300-mediated acetylation of SERCA2a is a critical PTM that decreases the pump's function and contributes to cardiac impairment in HF. SERCA2a acetylation can be targeted for therapeutic aims for the treatment of HF.


Asunto(s)
Insuficiencia Cardíaca , Procesamiento Proteico-Postraduccional , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Factores de Transcripción p300-CBP , Humanos , Insuficiencia Cardíaca/metabolismo , Lisina/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción p300-CBP/química , Factores de Transcripción p300-CBP/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
10.
Semin Cell Dev Biol ; 107: 112-125, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32317144

RESUMEN

In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Animales , Humanos , Metabolismo de los Lípidos , Fusión de Membrana , Transporte de Proteínas , Vías Secretoras
11.
J Biol Chem ; 296: 100412, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33581112

RESUMEN

The Ca-ATPase isoform 2a (SERCA2a) pumps cytosolic Ca2+ into the sarcoplasmic reticulum (SR) of cardiac myocytes, enabling muscle relaxation during diastole. Abnormally high cytosolic [Ca2+] is a central factor in heart failure, suggesting that augmentation of SERCA2a Ca2+ transport activity could be a promising therapeutic approach. SERCA2a is inhibited by the protein phospholamban (PLB), and a novel transmembrane peptide, dwarf open reading frame (DWORF), is proposed to enhance SR Ca2+ uptake and myocyte contractility by displacing PLB from binding to SERCA2a. However, establishing DWORF's precise physiological role requires further investigation. In the present study, we developed cell-based FRET biosensor systems that can report on protein-protein interactions and structural changes in SERCA2a complexes with PLB and/or DWORF. To test the hypothesis that DWORF competes with PLB to occupy the SERCA2a-binding site, we transiently transfected DWORF into a stable HEK cell line expressing SERCA2a labeled with a FRET donor and PLB labeled with a FRET acceptor. We observed a significant decrease in FRET efficiency, consistent with a decrease in the fraction of SERCA2a bound to PLB. Surprisingly, we also found that DWORF also activates SERCA's enzymatic activity directly in the absence of PLB at subsaturating calcium levels. Using site-directed mutagenesis, we generated DWORF variants that do not activate SERCA, thus identifying residues P15 and W22 as necessary for functional SERCA2a-DWORF interactions. This work advances our mechanistic understanding of the regulation of SERCA2a by small transmembrane proteins and sets the stage for future therapeutic development in heart failure research.


Asunto(s)
Péptidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Células HEK293 , Insuficiencia Cardíaca/metabolismo , Humanos , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Péptidos/fisiología , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología
12.
J Biol Chem ; 296: 100310, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33482198

RESUMEN

The endoplasmic reticulum (ER) contains various enzymes that metabolize fatty acids (FAs). Given that FAs are the components of membranes, FA metabolic enzymes might be associated with regulation of ER membrane functions. However, it remains unclear whether there is the interplay between FA metabolic enzymes and ER membrane proteins. Trans-2-enoyl-CoA reductase (TER) is an FA reductase present in the ER membrane and catalyzes the last step in the FA elongation cycle and sphingosine degradation pathway. Here we identify sarco(endo)plasmic reticulum Ca2+-ATPase 2b (SERCA2b), an ER Ca2+ pump responsible for Ca2+ accumulation in the ER, as a TER-binding protein by affinity purification from HEK293 cell lysates. We show that TER directly binds to SERCA2b by in vitro assays using recombinant proteins. Thapsigargin, a specific SERCA inhibitor, inhibits this binding. TER binds to SERCA2b through its conserved C-terminal region. TER overexpression suppresses SERCA2b ATPase activity in microsomal membranes of HEK293 cells. Depletion of TER increases Ca2+ storage in the ER and accelerates SERCA2b-dependent Ca2+ uptake to the ER after ligand-induced Ca2+ release. Moreover, depletion of TER reduces the Ca2+-dependent nuclear translocation of nuclear factor of activated T cells 4. These results demonstrate that TER is a negative regulator of SERCA2b, implying the direct linkage of FA metabolism and Ca2+ accumulation in the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Transporte Activo de Núcleo Celular/genética , Calcio/metabolismo , Señalización del Calcio/genética , Retículo Endoplásmico/genética , Inhibidores Enzimáticos/farmacología , Ácidos Grasos/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ligandos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Unión Proteica/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química
13.
Biochem Cell Biol ; 100(2): 162-170, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35041539

RESUMEN

The A-kinase anchoring protein 5 (AKAP5) has a variety of biological activities. This study explored whether AKAP5 was involved in cardiomyocyte apoptosis induced by hypoxia and reoxygenation (H/R) and its possible mechanism. H9C2 cells were used to construct an H/R model in vitro, followed by AKAP5 overexpression. Flow cytometry was performed to determine the rate of cardiomyocyte apoptosis. Phosphorylation of phospholamban (PLN), sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), and apoptosis-related proteins was determined by western blotting. Immunofluorescence staining and immunoprecipitation were performed to detect the distribution and interaction between AKAP5, protein kinase A (PKA), and PLN. After H/R induction, H9C2 cells exhibited significantly reduced AKAP5 protein expression. Upregulation of AKAP5 promotes cell survival and significantly reduces lactate dehydrogenase (LDH) levels and apoptosis rates in H9C2 cells. In addition, the overexpression of AKAP5 was accompanied by the activation of the PLN/SERCA2a signaling pathway and a reduction in apoptosis. Immunofluorescence staining and immunoprecipitation revealed that AKAP5 co-localized and interacted with PLN and PKA. Interestingly, St-Ht31, an inhibitory peptide that disrupts AKAP interactions with regulatory subunits, inhibits the effect of AKAP5 overexpression on H/R-induced apoptosis in H9C2 cardiomyocytes. AKAP5 overexpression alleviated H/R-induced cardiomyocyte apoptosis possibly by anchoring PKA to mediate the PLN/SERCA pathway, suggesting that AKAP5 is a potential therapeutic target for the prevention and treatment of ischemia-reperfusion injury.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Miocitos Cardíacos , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Anclaje a la Quinasa A/farmacología , Apoptosis , Proteínas de Unión al Calcio , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Hipoxia/metabolismo , Miocitos Cardíacos/metabolismo
14.
Cell Commun Signal ; 20(1): 143, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104752

RESUMEN

Spatiotemporal regulation of subcellular protein kinase A (PKA) activity for precise substrate phosphorylation is essential for cellular responses to hormonal stimulation. Ryanodine receptor 2 (RyR2) and (sarco)endoplasmic reticulum calcium ATPase 2a (SERCA2a) represent two critical targets of ß adrenoceptor (ßAR) signaling on the sarcoplasmic reticulum membrane for cardiac excitation and contraction coupling. Using novel biosensors, we show that cardiac ß1AR signals to both RyR2 and SERCA2a nanodomains in cardiomyocytes from mice, rats, and rabbits, whereas the ß2AR signaling is restricted from these nanodomains. Phosphodiesterase 4 (PDE4) and PDE3 control the baseline PKA activity and prevent ß2AR signaling from reaching the RyR2 and SERCA2a nanodomains. Moreover, blocking inhibitory G protein allows ß2AR signaling to the RyR2 but not the SERCA2a nanodomains. This study provides evidence for the differential roles of inhibitory G protein and PDEs in controlling the adrenergic subtype signaling at the RyR2 and SERCA2a nanodomains in cardiomyocytes. Video abstract.


Asunto(s)
Señalización del Calcio , Canal Liberador de Calcio Receptor de Rianodina , Animales , Proteínas Quinasas Dependientes de AMP Cíclico , Proteínas de Unión al GTP , Ratones , Fosforilación , Conejos , Ratas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico
15.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35328746

RESUMEN

PMCA4 is a critical regulator of Ca2+ homeostasis in mammalian cells. While its biological and prognostic relevance in several cancer types has already been demonstrated, only preclinical investigations suggested a metastasis suppressor function in melanoma. Therefore, we studied the expression pattern of PMCA4 in human skin, nevus, as well as in primary and metastatic melanoma using immunohistochemistry. Furthermore, we analyzed the prognostic power of PMCA4 mRNA levels in cutaneous melanoma both at the non-metastatic stage as well as after PD-1 blockade in advanced disease. PMCA4 localizes to the plasma membrane in a differentiation dependent manner in human skin and mucosa, while nevus cells showed no plasma membrane staining. In contrast, primary cutaneous, choroidal and conjunctival melanoma cells showed specific plasma membrane localization of PMCA4 with a wide range of intensities. Analyzing the TCGA cohort, PMCA4 mRNA levels showed a gender specific prognostic impact in stage I-III melanoma. Female patients with high transcript levels had a significantly longer progression-free survival. Melanoma cell specific PMCA4 protein expression is associated with anaplasticity in melanoma lung metastasis but had no impact on survival after lung metastasectomy. Importantly, high PMCA4 transcript levels derived from RNA-seq of cutaneous melanoma are associated with significantly longer overall survival after PD-1 blockade. In summary, we demonstrated that human melanoma cells express PMCA4 and PMCA4 transcript levels carry prognostic information in a gender specific manner.


Asunto(s)
Melanoma , Nevo , Neoplasias Cutáneas , Animales , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico , Mamíferos/metabolismo , Melanoma/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Pronóstico , Receptor de Muerte Celular Programada 1/metabolismo , ARN Mensajero , Neoplasias Cutáneas/genética , Melanoma Cutáneo Maligno
16.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35216317

RESUMEN

Despite the effectiveness of doxorubicin (DOXO) as a chemotherapeutic agent, dose-dependent development of chronic cardiotoxicity limits its application. The angiotensin-II receptor blocker losartan is commonly used to treat cardiac remodeling of various etiologies. The beta-3 adrenergic receptor agonist mirabegron was reported to improve chronic heart failure. Here we investigated the effects of losartan, mirabegron and their combination on the development of DOXO-induced chronic cardiotoxicity. Male Wistar rats were divided into five groups: (i) control; (ii) DOXO-only; (iii) losartan-treated DOXO; (iv) mirabegron-treated DOXO; (v) losartan plus mirabegron-treated DOXO groups. The treatments started 5 weeks after DOXO administration. At week 8, echocardiography was performed. At week 9, left ventricles were prepared for histology, qRT-PCR, and Western blot measurements. Losartan improved diastolic but not systolic dysfunction and ameliorated SERCA2a repression in our DOXO-induced cardiotoxicity model. The DOXO-induced overexpression of Il1 and Il6 was markedly decreased by losartan and mirabegron. Mirabegron and the combination treatment improved systolic and diastolic dysfunction and significantly decreased overexpression of Smad2 and Smad3 in our DOXO-induced cardiotoxicity model. Only mirabegron reduced DOXO-induced cardiac fibrosis significantly. Mirabegron and its combination with losartan seem to be promising therapeutic tools against DOXO-induced chronic cardiotoxicity.


Asunto(s)
Cardiomiopatías , Cardiotoxicidad , Acetanilidas , Animales , Cardiomiopatías/inducido químicamente , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Doxorrubicina/efectos adversos , Losartán/efectos adversos , Masculino , Ratas , Ratas Wistar , Tiazoles
17.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887321

RESUMEN

Drug resistance causes therapeutic failure in refractory cancer. Cancer drug resistance stems from various factors, such as patient heterogeneity and genetic alterations in somatic cancer cells, including those from identical tissues. Generally, resistance is intrinsic for cancers; however, cancer resistance becomes common owing to an increased drug treatment. Unfortunately, overcoming this issue is not yet possible. The present study aimed to evaluate a clinical approach using candidate compounds 19 and 23, which are sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) inhibitors, discovered using the evolutionary chemical binding similarity method. mRNA sequencing indicated SERCA as the dominant marker of patient-derived anti-cancer drug-resistant hepatocellular carcinoma (HCC), but not of patient-derived anti-cancer drug-sensitive HCC. Candidate compounds 19 and 23 led to significant tumor shrinkage in a tumor xenograft model of anti-cancer drug-resistant patient-derived HCC cells. Our results might be clinically significant for the development of novel combinatorial strategies that selectively and efficiently target highly malignant cells such as drug-resistant and cancer stem-like cells.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Calcio/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Descubrimiento de Drogas , Retículo Endoplásmico/metabolismo , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tapsigargina/farmacología
18.
J Biol Chem ; 295(32): 11262-11274, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32554805

RESUMEN

The transport activity of the sarco(endo)plasmic reticulum calcium ATPase (SERCA) in cardiac myocytes is modulated by an inhibitory interaction with a transmembrane peptide, phospholamban (PLB). Previous biochemical studies have revealed that PLB interacts with a specific inhibitory site on SERCA, and low-resolution structural evidence suggests that PLB interacts with distinct alternative sites on SERCA. High-resolution details of the structural determinants of SERCA regulation have been elusive because of the dynamic nature of the regulatory complex. In this study, we used computational approaches to develop a structural model of SERCA-PLB interactions to gain a mechanistic understanding of PLB-mediated SERCA transport regulation. We combined steered molecular dynamics and membrane protein-protein docking experiments to achieve both a global search and all-atom force calculations to determine the relative affinities of PLB for candidate sites on SERCA. We modeled the binding of PLB to several SERCA conformations, representing different enzymatic states sampled during the calcium transport catalytic cycle. The results of the steered molecular dynamics and docking experiments indicated that the canonical PLB-binding site (comprising transmembrane helices M2, M4, and M9) is the preferred site. This preference was even more stringent for a superinhibitory PLB variant. Interestingly, PLB-binding specificity became more ambivalent for other SERCA conformers. These results provide evidence for polymorphic PLB interactions with novel sites on M3 and with the outside of the SERCA helix M9. Our findings are compatible with previous physical measurements that suggest that PLB interacts with multiple binding sites, conferring dynamic responsiveness to changing physiological conditions.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Sitios de Unión , Humanos , Simulación de Dinámica Molecular
19.
Arch Biochem Biophys ; 699: 108764, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33460582

RESUMEN

The interaction of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa with calcium ATPase from sarcoplasmic reticulum (SR) was studied by means of different approaches, such as enzyme activity, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and molecular docking simulations. The ATP hydrolysis activity was fully inhibited by incubation with dirhamnolipid (diRL) up to 0.1 mM concentration, corresponding to a surfactant concentration below membrane solubilization threshold. Surfactant-protein interaction induced conformational changes in the protein observed by an increase in the accessibility of tryptophan residues to the aqueous phase and by changes in the secondary structure of the protein as seen by fluorescence and FTIR spectroscopy. As a consequence, the protein become more unstable and denatured at lower temperatures, as seen by enzyme activity and DSC studies. Finally, these results were explained at molecular level throughout molecular docking simulations. It is concluded that there is a specific dirhamnolipid-protein interaction not related to the surface activity of the surfactant but to the particular physicochemical properties of the biosurfactant molecule.


Asunto(s)
Glucolípidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tensoactivos/metabolismo , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Glucolípidos/química , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Secundaria de Proteína/efectos de los fármacos , Pseudomonas aeruginosa/química , Conejos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Tensoactivos/química
20.
Exp Eye Res ; 207: 108559, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33848522

RESUMEN

Diabetic retinopathy is a multifactorial microvascular complication, and its pathogenesis hasn't been fully elucidated. The irreversible oxidation of cysteine 674 (C674) in the sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) was increased in the type 1 diabetic retinal vasculature. SERCA2 C674S knock-in (SKI) mouse line that half of C674 was replaced by serine 674 (S674) was used to study the effect of C674 inactivation on retinopathy. Compared with wild type (WT) mice, SKI mice had increased number of acellular capillaries and pericyte loss similar to those in type 1 diabetic WT mice. In the retina of SKI mice, pro-apoptotic proteins and intracellular Ca2+-dependent signaling pathways increased, while anti-apoptotic proteins and vessel density decreased. In endothelial cells, C674 inactivation increased the expression of pro-apoptotic proteins, damaged mitochondria, and induced cell apoptosis. These results suggest that a possible mechanism of retinopathy induced by type 1 diabetes is the interruption of calcium homeostasis in the retina by oxidation of C674. C674 is a key to maintain retinal health. Its inactivation can cause retinopathy similar to type 1 diabetes by promoting apoptosis. SERCA2 might be a potential target for the prevention and treatment of diabetic retinopathy.


Asunto(s)
Cisteína/genética , Retinopatía Diabética/enzimología , Retículo Endoplásmico/enzimología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Retículo Sarcoplasmático/enzimología , Adenoviridae , Animales , Apoptosis , Western Blotting , Calcineurina/metabolismo , Capilares/enzimología , Capilares/patología , Cisteína/metabolismo , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/enzimología , Diabetes Mellitus Tipo 1/genética , Retinopatía Diabética/patología , Técnica del Anticuerpo Fluorescente Indirecta , Técnicas de Sustitución del Gen , Silenciador del Gen , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunohistoquímica , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/metabolismo , Oxidación-Reducción , Reacción en Cadena en Tiempo Real de la Polimerasa , Vasos Retinianos/enzimología , Vasos Retinianos/patología , Transducción de Señal , Estreptozocina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA