Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(1): 188-204.e22, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31883794

RESUMEN

Glioblastomas exhibit vast inter- and intra-tumoral heterogeneity, complicating the development of effective therapeutic strategies. Current in vitro models are limited in preserving the cellular and mutational diversity of parental tumors and require a prolonged generation time. Here, we report methods for generating and biobanking patient-derived glioblastoma organoids (GBOs) that recapitulate the histological features, cellular diversity, gene expression, and mutational profiles of their corresponding parental tumors. GBOs can be generated quickly with high reliability and exhibit rapid, aggressive infiltration when transplanted into adult rodent brains. We further demonstrate the utility of GBOs to test personalized therapies by correlating GBO mutational profiles with responses to specific drugs and by modeling chimeric antigen receptor T cell immunotherapy. Our studies show that GBOs maintain many key features of glioblastomas and can be rapidly deployed to investigate patient-specific treatment strategies. Additionally, our live biobank establishes a rich resource for basic and translational glioblastoma research.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Glioblastoma/metabolismo , Organoides/crecimiento & desarrollo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Bancos de Muestras Biológicas , Femenino , Glioblastoma/genética , Glioblastoma/patología , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Modelos Biológicos , Organoides/metabolismo , Reproducibilidad de los Resultados , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
2.
CA Cancer J Clin ; 71(2): 107-139, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33326126

RESUMEN

We are experiencing a revolution in cancer. Advances in screening, targeted and immune therapies, big data, computational methodologies, and significant new knowledge of cancer biology are transforming the ways in which we prevent, detect, diagnose, treat, and survive cancer. These advances are enabling durable progress in the goal to achieve personalized cancer care. Despite these gains, more work is needed to develop better tools and strategies to limit cancer as a major health concern. One persistent gap is the inconsistent coordination among researchers and caregivers to implement evidence-based programs that rely on a fuller understanding of the molecular, cellular, and systems biology mechanisms underpinning different types of cancer. Here, the authors integrate conversations with over 90 leading cancer experts to highlight current challenges, encourage a robust and diverse national research portfolio, and capture timely opportunities to advance evidence-based approaches for all patients with cancer and for all communities.


Asunto(s)
Medicina Basada en la Evidencia/organización & administración , Tamizaje Masivo/organización & administración , Oncología Médica/organización & administración , Neoplasias/terapia , Brechas de la Práctica Profesional , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Costo de Enfermedad , Detección Precoz del Cáncer/métodos , Detección Precoz del Cáncer/tendencias , Medicina Basada en la Evidencia/métodos , Medicina Basada en la Evidencia/tendencias , Humanos , Tamizaje Masivo/métodos , Tamizaje Masivo/tendencias , Oncología Médica/métodos , Oncología Médica/tendencias , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/mortalidad , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Estados Unidos/epidemiología
3.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34353917

RESUMEN

The increasing complexity of different cell types revealed by single-cell analysis of tissues presents challenges in efficiently elucidating their functions. Here we show, using prostate as a model tissue, that primary organoids and freshly isolated epithelial cells can be CRISPR edited ex vivo using Cas9-sgRNA (guide RNA) ribotnucleoprotein complex technology, then orthotopically transferred in vivo into immunocompetent or immunodeficient mice to generate cancer models with phenotypes resembling those seen in traditional genetically engineered mouse models. Large intrachromosomal (∼2 Mb) or multigenic deletions can be engineered efficiently without the need for selection, including in isolated subpopulations to address cell-of-origin questions.


Asunto(s)
Deleción Cromosómica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Próstata/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína 9 Asociada a CRISPR/genética , Células Epiteliales , Genes Supresores de Tumor , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Organoides , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Guía de Kinetoplastida , Ribonucleoproteínas/genética , Regulador Transcripcional ERG/genética , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Theor Biol ; 562: 111432, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36746298

RESUMEN

We present a mathematical model for the complex system for the growth of a solid tumor. The system embeds proliferation of cells depending on the surrounding oxygen field, hypoxia caused by insufficient oxygen when the tumor reaches a certain size, consequent VEGF release and angiogenic new vasculature growth, re-oxygenation of the tumor and subsequent tumor growth restart. Specifically cancerous cells are represented by individual units, interacting as proliferating particles of a solid body, oxygen, and VEGF are fields with a source and a sink, and new angiogenic vasculature is described by a network of growing curves. The model, as shown by numerical simulations, captures both the time-evolution of the tumor growth before and after angiogenesis and its spatial properties, with different distribution of proliferating and hypoxic cells in the external and deep layers of the tumor, and the spatial structure of the angiogenic network. The microscopic description of the growth opens the possibility of tuning the model to patient-specific scenarios.


Asunto(s)
Neoplasias , Neovascularización Patológica , Humanos , Neovascularización Patológica/patología , Factor A de Crecimiento Endotelial Vascular , Modelos Biológicos , Neoplasias/patología , Modelos Teóricos , Hipoxia , Oxígeno
5.
Phys Biol ; 19(2)2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35100568

RESUMEN

Most aggressive cancers are incurable due to their fast evolution of drug resistance. We model cancer growth and adaptive response in a simplified cell-based (CB) setting, assuming a genetic resistance to two chemotherapeutic drugs. We show that optimal administration protocols can steer cells resistance and turned it into a weakness for the disease. Our work extends the population-based model proposed by Orlandoet al(2012Phys. Biol.), in which a homogeneous population of cancer cells evolves according to a fitness landscape. The landscape models three types of trade-offs, differing on whether the cells are more, less, or equal effective when generalizing resistance to two drugs as opposed to specializing to a single one. The CB framework allows us to include genetic heterogeneity, spatial competition, and drugs diffusion, as well as realistic administration protocols. By calibrating our model on Orlandoet al's assumptions, we show that dynamical protocols that alternate the two drugs minimize the cancer size at the end of (or at mid-points during) treatment. These results significantly differ from those obtained with the homogeneous model-suggesting static protocols under the pro-generalizing and neutral allocation trade-offs-highlighting the important role of spatial and genetic heterogeneities. Our work is the first attempt to search for optimal treatments in a CB setting, a step forward toward realistic clinical applications.


Asunto(s)
Neoplasias , Evolución Biológica , Humanos , Neoplasias/tratamiento farmacológico
6.
Bull Math Biol ; 84(12): 139, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36301402

RESUMEN

Cancer stem cells (CSCs) are key in understanding tumor growth and tumor progression. A counterintuitive effect of CSCs is the so-called tumor growth paradox: the effect where a tumor with a higher death rate may grow larger than a tumor with a lower death rate. Here we extend the modeling of the tumor growth paradox by including spatial structure and considering cancer invasion. Using agent-based modeling and a corresponding partial differential equation model, we demonstrate and prove mathematically a tumor invasion paradox: a larger cell death rate can lead to a faster invasion speed. We test this result on a generic hypothetical cancer with typical growth rates and typical treatment sensitivities. We find that the tumor invasion paradox may play a role for continuous and intermittent treatments, while it does not seem to be essential in fractionated treatments. It should be noted that no attempt was made to fit the model to a specific cancer, thus, our results are generic and theoretical.


Asunto(s)
Modelos Biológicos , Neoplasias , Humanos , Conceptos Matemáticos , Células Madre Neoplásicas/patología , Neoplasias/patología
7.
J Math Biol ; 85(5): 46, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36205792

RESUMEN

Cancer cells at the tumor boundary move in the direction of the oxygen gradient, while cancer cells far within the tumor are in a necrotic state. This paper introduces a simple mathematical model that accounts for these facts. The model consists of cancer cells, cytotoxic T cells, and oxygen satisfying a system of partial differential equations. Some of the model parameters represent the effect of anti-cancer drugs. The tumor boundary is a free boundary whose dynamics is determined by the movement of cancer cells at the boundary. The model is simulated for radially symmetric and axially symmetric tumors, and it is shown that the tumor may increase or decrease in size, depending on the "strength" of the drugs. Existence theorems are proved, global in-time in the radially symmetric case, and local in-time for any shape of tumor. In the radially symmetric case, it is proved, under different conditions, that the tumor may shrink monotonically, or expand monotonically.


Asunto(s)
Modelos Biológicos , Neoplasias , Humanos , Modelos Teóricos , Necrosis , Oxígeno
8.
J Theor Biol ; 514: 110570, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33422609

RESUMEN

Prostate cancer is one of the most prevalent cancers in men, with increasing incidence worldwide. This public health concern has inspired considerable effort to study various aspects of prostate cancer treatment using dynamical models, especially in clinical settings. The standard of care for metastatic prostate cancer is hormonal therapy, which reduces the production of androgen that fuels the growth of prostate tumor cells prior to treatment resistance. Existing population models often use patients' prostate-specific antigen levels as a biomarker for model validation and for finding optimal treatment schedules; however, the synergistic effects of drugs used in hormonal therapy have not been well-examined. This paper describes the first mathematical model that explicitly incorporates the synergistic effects of two drugs used to inhibit androgen production in hormonal therapy. The drugs are cyproterone acetate, representing the drug family of anti-androgens that affect luteinizing hormones, and leuprolide acetate, representing the drug family of gonadotropin-releasing hormone analogs. By fitting the model to clinical data, we show that the proposed model can capture the dynamics of serum androgen levels during intermittent hormonal therapy better than previously published models. Our results highlight the importance of considering the synergistic effects of drugs in cancer treatment, thus suggesting that the dynamics of the drugs should be taken into account in optimal treatment studies, particularly for adaptive therapy. Otherwise, an unrealistic treatment schedule may be prescribed and render the treatment less effective. Furthermore, the drug dynamics allow our model to explain the delay in the relapse of androgen the moment a patient is taken off treatment, which supports that this delay is due to the residual effects of the drugs.


Asunto(s)
Preparaciones Farmacéuticas , Neoplasias de la Próstata , Antagonistas de Andrógenos/uso terapéutico , Andrógenos , Antineoplásicos Hormonales/uso terapéutico , Humanos , Masculino , Recurrencia Local de Neoplasia , Antígeno Prostático Específico , Neoplasias de la Próstata/tratamiento farmacológico
9.
Proc Natl Acad Sci U S A ; 115(22): 5774-5779, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760052

RESUMEN

A growing body of evidence suggests that a subset of human cancers grows as single clonal expansions. In such a nearly neutral evolution scenario, it is possible to infer the early ancestral tree of a full-grown tumor. We hypothesized that early tree reconstruction can provide insights into the mobility phenotypes of tumor cells during their first few cell divisions. We explored this hypothesis by means of a computational multiscale model of tumor expansion incorporating the glandular structure of colorectal tumors. After calibrating the model to multiregional and single gland data from 19 human colorectal tumors using approximate Bayesian computation, we examined the role of early tumor cell mobility in shaping the private mutation patterns of the final tumor. The simulations showed that early cell mixing in the first tumor gland can result in side-variegated patterns where the same private mutations could be detected on opposite tumor sides. In contrast, absence of early mixing led to nonvariegated, sectional mutation patterns. These results suggest that the patterns of detectable private mutations in colorectal tumors may be a marker of early cell movement and hence the invasive and metastatic potential of the tumor at the start of the growth. In alignment with our hypothesis, we found evidence of early abnormal cell movement in 9 of 15 invasive colorectal carcinomas ("born to be bad"), but in none of 4 benign adenomas. If validated with a larger dataset, the private mutation patterns may be used for outcome prediction among screen-detected lesions with unknown invasive potential.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Mutación/genética , Invasividad Neoplásica/genética , Heterogeneidad Genética , Humanos
10.
J Theor Biol ; 492: 110203, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32067938

RESUMEN

Tissue self-organization into defined and well-controlled three-dimensional structures is essential during development for the generation of organs. A similar, but highly deranged process might also occur during the aberrant growth of cancers, which frequently display a loss of the orderly structures of the tissue of origin, but retain a multicellular organization in the form of spheroids, strands, and buds. The latter structures are often seen when tumors masses switch to an invasive behavior into surrounding tissues. However, the general physical principles governing the self-organized architectures of tumor cell populations remain by and large unclear. In this work, we perform in-vitro experiments to characterize the growth properties of glioblastoma budding emerging from monolayers. We further propose a theoretical model and its finite element implementation to characterize such a topological transition, that is modelled as a self-organised, non-equilibrium phenomenon driven by the trade-off of mechanical forces and physical interactions exerted at cell-cell and cell-substrate adhesions. Notably, the unstable disorder states of uncontrolled cellular proliferation macroscopically emerge as complex spatio-temporal patterns that evolve statistically correlated by a universal law.


Asunto(s)
Neoplasias , Adhesión Celular , División Celular , Humanos , Fenómenos Mecánicos , Modelos Teóricos
11.
J Math Biol ; 81(3): 799-843, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32789610

RESUMEN

Metastatic seeding of distant organs can occur in the very early stages of primary tumor development. Once seeded, these micrometastases may enter a dormant phase that can last decades. Curiously, the surgical removal of the primary tumor can stimulate the accelerated growth of distant metastases, a phenomenon known as metastatic blow-up. Recent clinical evidence has shown that the immune response can have strong tumor promoting effects. In this work, we investigate if the pro-tumor effects of the immune response can have a significant contribution to metastatic dormancy and metastatic blow-up. We develop an ordinary differential equation model of the immune-mediated theory of metastasis. We include both anti- and pro-tumor immune effects, in addition to the experimentally observed phenomenon of tumor-induced immune cell phenotypic plasticity. Using geometric singular perturbation analysis, we derive a rather simple model that captures the main processes and, at the same time, can be fully analyzed. Literature-derived parameter estimates are obtained, and model robustness is demonstrated through a time dependent sensitivity analysis. We determine conditions under which the parameterized model can successfully explain both metastatic dormancy and blow-up. The results confirm the significant active role of the immune system in the metastatic process. Numerical simulations suggest a novel measure to predict the occurrence of future metastatic blow-up in addition to new potential avenues for treatment of clinically undetectable micrometastases.


Asunto(s)
Sistema Inmunológico , Modelos Biológicos , Neoplasias , Simulación por Computador , Humanos , Sistema Inmunológico/fisiología , Metástasis de la Neoplasia , Neoplasias/diagnóstico , Neoplasias/inmunología , Neoplasias/fisiopatología , Neoplasias/terapia
12.
Proc Natl Acad Sci U S A ; 114(23): 6046-6051, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533405

RESUMEN

Recently, a rigorous mathematical theory has been developed for spatial games with weak selection, i.e., when the payoff differences between strategies are small. The key to the analysis is that when space and time are suitably rescaled, the spatial model converges to the solution of a partial differential equation (PDE). This approach can be used to analyze all [Formula: see text] games, but there are a number of [Formula: see text] games for which the behavior of the limiting PDE is not known. In this paper, we give rules for determining the behavior of a large class of [Formula: see text] games and check their validity using simulation. In words, the effect of space is equivalent to making changes in the payoff matrix, and once this is done, the behavior of the spatial game can be predicted from the behavior of the replicator equation for the modified game. We say predicted here because in some cases the behavior of the spatial game is different from that of the replicator equation for the modified game. For example, if a rock-paper-scissors game has a replicator equation that spirals out to the boundary, space stabilizes the system and produces an equilibrium.

13.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212997

RESUMEN

Patient-derived cancer 3D models are a promising tool that will revolutionize personalized cancer therapy but that require previous knowledge of optimal cell growth conditions and the most advantageous parameters to evaluate biomimetic relevance and monitor therapy efficacy. This study aims to establish general guidelines on 3D model characterization phenomena, focusing on neuroblastoma. We generated gelatin-based scaffolds with different stiffness and performed SK-N-BE(2) and SH-SY5Y aggressive neuroblastoma cell cultures, also performing co-cultures with mouse stromal Schwann cell line (SW10). Model characterization by digital image analysis at different time points revealed that cell proliferation, vitronectin production, and migration-related gene expression depend on growing conditions and are specific to the tumor cell line. Morphometric data show that 3D in vitro models can help generate optimal patient-derived cancer models, by creating, identifying, and choosing patterns of clinically relevant artificial microenvironments to predict patient tumor cell behavior and therapeutic responses.


Asunto(s)
Movimiento Celular , Proliferación Celular , Procesamiento de Imagen Asistido por Computador , Proteínas de Neoplasias/biosíntesis , Neuroblastoma , Biosíntesis de Proteínas , Línea Celular Tumoral , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patología
14.
Cancer Sci ; 110(3): 926-938, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30588718

RESUMEN

The emergence of clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology has dramatically advanced how we manipulate the genome. Regarding in vivo experiments, Cas9-transgenic animals could provide efficient and complex genome editing. However, this potential has not been fully realized partly due to a lack of convenient platforms and limited examples of successful disease modeling. Here, we devised two doxycycline (Dox)-inducible Cas9 platforms that efficiently enable conditional genome editing at multiple loci in vitro and in vivo. In these platforms, we took advantage of a site-specific multi-segment cloning strategy for rapid and easy integration of multiple single guide (sg)RNAs. We found that a platform containing rtTA at the Rosa26 locus and TRE-Cas9 together with multiple sgRNAs at the Col1a1 locus showed higher efficiency of inducible insertions and deletions (indels) with minimal leaky editing. Using this platform, we succeeded to model Wilms' tumor and the progression of intestinal adenomas with multiple mutations including an activating mutation with a large genomic deletion. Collectively, the established platform should make complicated disease modeling in the mouse easily attainable, extending the range of in vivo experiments in various biological fields including cancer research.


Asunto(s)
Adenoma/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Neoplasias Intestinales/genética , Neoplasias Renales/genética , ARN Guía de Kinetoplastida/genética , Tumor de Wilms/genética , Adenoma/patología , Animales , Femenino , Edición Génica/métodos , Neoplasias Intestinales/patología , Neoplasias Renales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Mutación/genética , Tumor de Wilms/patología
15.
Microvasc Res ; 118: 20-30, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29408401

RESUMEN

Hypoxia as one of the principal properties of tumor cells is a reaction to the deprivation of oxygen. The location of tumor cells could be identified by assessment of oxygen and nutrient level in human body. Positron emission tomography (PET) is a well-known non-invasive method that is able to measure hypoxia based on the FMISO (Fluoromisonidazole) tracer dynamic. This paper aims to study the PET tracer concentration through convection-diffusion-reaction equations in a real human capillary-like network. A non-uniform oxygen pressure along the capillary path and convection mechanism for FMISO transport are taken into account to accurately model the characteristics of the tracer. To this end, a multi-scale model consists of laminar blood flow through the capillary network, interstitial pressure, oxygen pressure, FMISO diffusion and FMISO convection transport in the extravascular region is developed. The present model considers both normal and tumor tissue regions in computational domain. The accuracy of numerical model is verified with the experimental results available in the literature. The convection and diffusion types of transport mechanism are employed in order to calculate the concentration of FMISO in the normal and tumor sub-domain. The influences of intravascular oxygen pressure, FMISO transport mechanisms, capillary density and different types of tissue on the FMISO concentration have been investigated. According to result (Table 4) the convection mechanism of FMISO molecules transportation is negligible, but it causes more accuracy of the proposed model. The approach of present study can be employed in order to investigate the effects of various parameters, such as tumor shape, on the dynamic behavior of different PET tracers, such as FDG, can be extended to different case study problems, such as drug delivery.


Asunto(s)
Capilares/diagnóstico por imagen , Misonidazol/análogos & derivados , Modelos Cardiovasculares , Nanopartículas , Neoplasias/irrigación sanguínea , Neoplasias/diagnóstico por imagen , Neovascularización Patológica , Oxígeno/sangre , Tomografía de Emisión de Positrones , Radiofármacos/administración & dosificación , Velocidad del Flujo Sanguíneo , Capilares/metabolismo , Capilares/patología , Capilares/fisiopatología , Hipoxia de la Célula , Simulación por Computador , Humanos , Microcirculación , Misonidazol/administración & dosificación , Neoplasias/sangre , Neoplasias/patología , Análisis Numérico Asistido por Computador , Valor Predictivo de las Pruebas , Flujo Sanguíneo Regional , Microambiente Tumoral
16.
J Theor Biol ; 446: 149-159, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29548736

RESUMEN

Drug resistance is one of the major obstacles to a successful treatment of cancer and, in turn, has been recognized to be linked to intratumoral heterogeneity, which increases the probability of the emergence of cancer clones refractory to treatment. Combination therapies have been introduced to overcome resistance, but the design of successful combined protocols is still an open problem. In order to provide some indications on the effectiveness of medical treatments, a mathematical model is proposed, comprising two cancer populations competing for resources and with different susceptibilities to the action of immune system cells and therapies: the focus is on the effects of chemotherapy and immunotherapy, used singularly or in combination. First, numerical predictions of the model have been tested with experimental data from the literature and next therapeutic protocols with different doses and temporal order have been simulated. Finally the role of competitive interactions has been also investigated, to provide some insights on the role of competitive interactions among cancer clones in determining treatment outcomes.


Asunto(s)
Modelos Biológicos , Neoplasias/terapia , Terapia Combinada/métodos , Humanos , Inmunoterapia/métodos
17.
Future Oncol ; 14(20): 2083-2095, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30027767

RESUMEN

The CRISPR-Cas9, a part of the defence mechanism from bacteria, has rapidly become the simplest, fastest and the most precise genome-editing tool available. The therapeutic applications of CRISPR are boundless: correction of mutations in several disorders, inactivation of oncogenes and viral oncoproteins, and activation of tumor suppressor genes. In this review, we expose recent advances concerning animal models of cancer that use CRISPR-Cas9, addressing also the current efforts to develop CRISPR-Cas9-based therapies, focusing on proof-of-concept studies. Finally, the review exposes some of the main challenges that this genome-editing tool faces. The key issue remains: does CRISPR-Cas9 have real potential for therapeutic application or will it just remain a wonderful research tool?


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Terapia Genética , Neoplasias/genética , Neoplasias/terapia , Animales , Transformación Celular Neoplásica/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Modelos Animales de Enfermedad , Humanos , Ratones , Neoplasias/patología , Oncogenes
18.
Bull Math Biol ; 80(8): 2026-2048, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29948886

RESUMEN

Neuroblastoma is the leading cause of cancer death in young children. Although treatment for neuroblastoma has improved, the 5-year survival rate of patients still remains less than half. Recent studies have indicated that bevacizumab, an anti-VEGF drug used in treatment of several other cancer types, may be effective for treating neuroblastoma as well. However, its effect on neuroblastoma has not been well characterized. While traditional experiments are costly and time-consuming, mathematical models are capable of simulating complex systems quickly and inexpensively. In this study, we present a model of vascular tumor growth of neuroblastoma IMR-32 that is complex enough to replicate experimental data across a range of tumor cell properties measured in a suite of in vitro and in vivo experiments. The model provides quantitative insight into tumor vasculature, predicting a linear relationship between vasculature and tumor volume. The tumor growth model was coupled with known pharmacokinetics and pharmacodynamics of the VEGF blocker bevacizumab to study its effect on neuroblastoma growth dynamics. The results of our model suggest that total administered bevacizumab concentration per week, as opposed to dosage regimen, is the major determining factor in tumor suppression. Our model also establishes an exponentially decreasing relationship between administered bevacizumab concentration and tumor growth rate.


Asunto(s)
Bevacizumab/uso terapéutico , Modelos Biológicos , Neuroblastoma/patología , Neuroblastoma/terapia , Animales , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/farmacocinética , Antineoplásicos Inmunológicos/uso terapéutico , Bevacizumab/administración & dosificación , Bevacizumab/farmacocinética , Línea Celular Tumoral , Humanos , Conceptos Matemáticos , Ratones , Neuroblastoma/irrigación sanguínea , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Theor Biol ; 430: 245-282, 2017 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-28529153

RESUMEN

We present a three-dimensional nonlinear tumor growth model composed of heterogeneous cell types in a multicomponent-multispecies system, including viable, dead, healthy host, and extra-cellular matrix (ECM) tissue species. The model includes the capability for abnormal ECM dynamics noted in tumor development, as exemplified by pancreatic ductal adenocarcinoma, including dense desmoplasia typically characterized by a significant increase of interstitial connective tissue. An elastic energy is implemented to provide elasticity to the connective tissue. Cancer-associated fibroblasts (myofibroblasts) are modeled as key contributors to this ECM remodeling. The tumor growth is driven by growth factors released by these stromal cells as well as by oxygen and glucose provided by blood vasculature which along with lymphatics are stimulated to proliferate in and around the tumor based on pro-angiogenic factors released by hypoxic tissue regions. Cellular metabolic processes are simulated, including respiration and glycolysis with lactate fermentation. The bicarbonate buffering system is included for cellular pH regulation. This model system may be of use to simulate the complex interactions between tumor and stromal cells as well as the associated ECM and vascular remodeling that typically characterize malignant cancers notorious for poor therapeutic response.


Asunto(s)
Modelos Biológicos , Neoplasias/patología , Remodelación Vascular , Animales , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Comunicación Celular , Células/metabolismo , Tejido Conectivo/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Tejido Linfoide/crecimiento & desarrollo , Tejido Linfoide/metabolismo , Neoplasias/irrigación sanguínea , Células del Estroma/metabolismo
20.
Theor Biol Med Model ; 14(1): 6, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28327183

RESUMEN

BACKGROUND: Drug-induced resistance is one the major obstacles that may lead to therapeutic failure during cancer treatment. Different genetic alterations occur when tumor cells divide. Among new generations of tumor cells, some may express intrinsic resistance to a specific chemotherapeutic agent. Also, some tumor cells may carry a gene that can develop resistance induced by the therapeutic drug. The methods by which the therapeutic approaches need to be revised in the occurrence of drug induced resistance is still being explored. Previously, we introduced a model that expresses only intrinsic drug resistance in a conjoint normal-tumor cell setting. The focus of this work is to expand our previously reported model to include terms that can express both intrinsic drug resistance and drug-induced resistance. Additionally, we assess the response of the cell population as a function of time under different treatment strategies and discuss the outcomes. METHODS: The model introduced is expressed in the format of coupled differential equations which describe the growth pattern of the cells. The dynamic of the cell populations is simulated under different treatment cases. All computational simulations were executed using Mathematica v7.0. RESULTS: The outcome of the simulations clearly demonstrates that while some therapeutic strategies can overcome or control the intrinsic drug resistance, they may not be effective, and are even to some extent damaging, if the administered drug creates resistance by itself. CONCLUSION: In the present study, the evolution of the cells in a conjoint setting, when the system expresses both intrinsic and induced resistance, is mathematically modeled. Followed by a set of computer simulations, the different growing patterns that can be created based on choices of therapy were examined. The model can still be improved by considering other factors including, but not limited to, the nature of the cancer growth, the level of toxicity that the body can tolerate, or the strength of the patient's immune system.


Asunto(s)
Antineoplásicos/uso terapéutico , Simulación por Computador , Resistencia a Antineoplásicos/genética , Mutación/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/farmacología , Línea Celular Tumoral , Simulación por Computador/estadística & datos numéricos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA