Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Anim Ecol ; 93(7): 891-905, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38773852

RESUMEN

Competition for resources and space can drive forage selection of large herbivores from the bite through the landscape scale. Animal behaviour and foraging patterns are also influenced by abiotic and biotic factors. Fine-scale mechanisms of density-dependent foraging at the bite scale are likely consistent with density-dependent behavioural patterns observed at broader scales, but few studies have directly tested this assertion. Here, we tested if space use intensity, a proxy of spatiotemporal density, affects foraging mechanisms at fine spatial scales similarly to density-dependent effects observed at broader scales in caribou. We specifically assessed how behavioural choices are affected by space use intensity and environmental processes using behavioural state and forage selection data from caribou (Rangifer tarandus granti) observed from GPS video-camera collars using a multivariate discrete-choice modelling framework. We found that the probability of eating shrubs increased with increasing caribou space use intensity and cover of Salix spp. shrubs, whereas the probability of eating lichen decreased. Insects also affected fine-scale foraging behaviour by reducing the overall probability of eating. Strong eastward winds mitigated negative effects of insects and resulted in higher probabilities of eating lichen. At last, caribou exhibited foraging functional responses wherein their probability of selecting each food type increased as the availability (% cover) of that food increased. Space use intensity signals of fine-scale foraging were consistent with density-dependent responses observed at larger scales and with recent evidence suggesting declining reproductive rates in the same caribou population. Our results highlight potential risks of overgrazing on sensitive forage species such as lichen. Remote investigation of the functional responses of foraging behaviours provides exciting future applications where spatial models can identify high-quality habitats for conservation.


Asunto(s)
Herbivoria , Densidad de Población , Reno , Animales , Reno/fisiología , Conducta Alimentaria , Modelos Biológicos , Conducta de Elección , Ecosistema
2.
Emerg Infect Dis ; 29(1): 54-63, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573538

RESUMEN

Northern Canada is warming at 3 times the global rate. Thus, changing diversity and distribution of vectors and pathogens is an increasing health concern. California serogroup (CSG) viruses are mosquitoborne arboviruses; wildlife reservoirs in northern ecosystems have not been identified. We detected CSG virus antibodies in 63% (95% CI 58%-67%) of caribou (n = 517), 4% (95% CI 2%-7%) of Arctic foxes (n = 297), 12% (95% CI 6%-21%) of red foxes (n = 77), and 28% (95% CI 24%-33%) of polar bears (n = 377). Sex, age, and summer temperatures were positively associated with polar bear exposure; location, year, and ecotype were associated with caribou exposure. Exposure was highest in boreal caribou and increased from baseline in polar bears after warmer summers. CSG virus exposure of wildlife is linked to climate change in northern Canada and sustained surveillance could be used to measure human health risks.


Asunto(s)
Virus de la Encefalitis de California , Reno , Ursidae , Animales , Humanos , Zorros , Ecosistema , Serogrupo , Animales Salvajes , Canadá/epidemiología
3.
Glob Chang Biol ; 29(23): 6661-6678, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37750343

RESUMEN

The contraction of species range is one of the most significant symptoms of biodiversity loss worldwide. While anthropogenic activities and habitat alteration are major threats for several species, climate change should also be considered. For species at risk, differentiating the effects of human disturbances and climate change on past and current range transformations is an important step towards improved conservation strategies. We paired historical range maps with global atmospheric reanalyses from different sources to assess the potential effects of recent climate change on the observed northward contraction of the range of boreal populations of woodland caribou (Rangifer tarandus caribou) in Quebec (Canada) since 1850. We quantified these effects by highlighting the discrepancies between different southern limits of the caribou's range (used as references) observed in the past and reconstitutions obtained through the hindcasting of the climate conditions within which caribou are currently found. Hindcasted southern limits moved ~105 km north over time under all reanalysis datasets, a trend drastically different from the ~620 km reported for observed southern limits since 1850. The differences in latitudinal shift through time between the observed and hindcasted southern limits of distribution suggest that caribou range recession should have been only 17% of what has been observed since 1850 if recent climate change had been the only disturbance driver. This relatively limited impact of climate reinforces the scientific consensus stating that caribou range recession in Quebec is mainly caused by anthropogenic drivers (i.e. logging, development of the road network, agriculture, urbanization) that have modified the structure and composition of the forest over the past 160 years, paving the way for habitat-mediated apparent competition and overharvesting. Our results also call for a reconsideration of past ranges in models aiming at projecting future distributions, especially for endangered species.


Asunto(s)
Reno , Animales , Humanos , Quebec , Cambio Climático , Conservación de los Recursos Naturales/métodos , Ecosistema
4.
Ecol Appl ; 33(8): e2923, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37788067

RESUMEN

Assessing the effects of industrial development on wildlife is a key objective of managers and conservation practitioners. However, wildlife responses are often only investigated with respect to the footprint of infrastructure, even though human activity can strongly mediate development impacts. In Arctic Alaska, there is substantial interest in expanding energy development, raising concerns about the potential effects on barren-ground caribou (Rangifer tarandus granti). While caribou generally avoid industrial infrastructure, little is known about the role of human activity in moderating their responses, and whether managing activity levels could minimize development effects. To address this uncertainty, we examined the influence of traffic volume on caribou summer space use and road crossings in the Central Arctic Herd within the Kuparuk and Milne Point oil fields on the North Slope of Alaska. We first modeled spatiotemporal variation in hourly traffic volumes across the road system from traffic counter data using gradient-boosted regression trees. We then used generalized additive models to estimate nonlinear step selection functions and road-crossing probabilities from collared female caribou during the post-calving and insect harassment seasons, when they primarily interact with roads. Step selection analyses revealed that caribou selected areas further from roads (~1-3 km) during the post-calving and mosquito seasons and selected areas with lower traffic volumes during all seasons, with selection probabilities peaking when traffic was <5 vehicles/h. Using road-crossing models, we found that caribou were less likely to cross roads during the insect seasons as traffic increased, but that response dissipated as insect harassment became more severe. Past studies suggested that caribou exhibit behavioral responses when traffic exceeds 15 vehicles/h, but our results demonstrate behavioral responses at much lower traffic levels. Our results illustrate that vehicle activity mediates caribou responses to road infrastructure, information that can be used in future land-use planning to minimize the behavioral responses of caribou to industrial development in sensitive Arctic landscapes.


Asunto(s)
Reno , Animales , Humanos , Reno/fisiología , Regiones Árticas , Insectos/fisiología , Estaciones del Año , Alaska , Animales Salvajes
5.
Ecol Appl ; 33(3): e2816, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36752658

RESUMEN

Most research on boreal populations of woodland caribou (Rangifer tarandus caribou) has been conducted in areas of high anthropogenic disturbance. However, a large portion of the species' range overlaps relatively pristine areas primarily affected by natural disturbances, such as wildfire. Climate-driven habitat change is a key concern for the conservation of boreal-dependent species, where management decisions have yet to consider knowledge from multiple ecological domains integrated into a cohesive and spatially explicit forecast of species-specific habitat and demography. We used a novel ecological forecasting framework to provide climate-sensitive projections of habitat and demography for five boreal caribou monitoring areas within the Northwest Territories (NWT), Canada, over 90 years. Importantly, we quantify uncertainty around forecasted mean values. Our results suggest habitat suitability may increase in central and southwest regions of the NWT's Taiga Plains ecozone but decrease in southern and northwestern regions driven by conversion of coniferous to deciduous forests. We do not project that boreal caribou population growth rates will change despite forecasted changes to habitat suitability. Our results emphasize the importance of efforts to protect and restore northern boreal caribou habitat despite climate uncertainty while highlighting expected spatial variations that are important considerations for local people who rely on them. An ability to reproduce previous work, and critical thought when incorporating sources of uncertainty, will be important to refine forecasts, derive management decisions, and improve conservation efficacy for northern species at risk.


Asunto(s)
Reno , Animales , Humanos , Incertidumbre , Conservación de los Recursos Naturales/métodos , Ecosistema , Bosques
6.
J Anim Ecol ; 92(5): 1042-1054, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871141

RESUMEN

In seasonal environments, animals should be adapted to match important life-history traits to when environmental conditions are optimal. Most animal populations therefore reproduce when resource abundance is highest to increase annual reproductive success. When facing variable, and changing, environments animals can display behavioural plasticity to acclimate to changing conditions. Behaviours can further be repeatable. For example, timing of behaviours and life history traits such as timing of reproduction may indicate phenotypic variation. Such variation may buffer animal populations against the consequences of variation and change. Our goal was to quantify plasticity and repeatability in migration and parturition timing in response to timing of snowmelt and green-up in a migratory herbivore (caribou, Rangifer tarandus, n = 132 ID-years) and their effect on reproductive success. We used behavioural reaction norms to quantify repeatability in timing of migration and timing of parturition in caribou and their plasticity to timing of spring events, while also quantifying phenotypic covariance between behavioural and life-history traits. Timing of migration for individual caribou was positively correlated with timing of snowmelt. The timing of parturition for individual caribou varied as a function of inter-annual variation in timing of snowmelt and green-up. Repeatability for migration timing was moderate, but low for timing of parturition. Plasticity did not affect reproductive success. We also did not detect any evidence of phenotypic covariance among any traits examined-timing of migration was not correlated with timing of parturition, and neither was there a correlation in the plasticity of these traits. Repeatability in migration timing suggests the possibility that the timing of migration in migratory herbivores could evolve if the repeatability detected in this study has a genetic or otherwise heritable basis, but observed plasticity may obviate the need for an evolutionary response. Our results also suggest that observed shifts in caribou parturition timing are due to plasticity as opposed to an evolutionary response to changing conditions. While this provides some evidence that populations may be buffered from the consequences of climate change via plasticity, a lack of repeatability in parturition timing could impede adaptation as warming increases.


Asunto(s)
Reno , Femenino , Embarazo , Animales , Reno/fisiología , Estaciones del Año , Reproducción , Parto , Ecosistema , Migración Animal
7.
Conserv Biol ; 37(2): e14004, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36098630

RESUMEN

Fragmentation of the boreal forest by linear features, including seismic lines, has destabilized predator-prey dynamics, resulting in the decline of woodland caribou (Rangifer tarandus caribou) populations. Restoration of human-altered habitat has therefore been identified as a critical management tool for achieving self-sustaining woodland caribou populations. However, only recently has testing of the response of caribou and other wildlife to restoration activities been conducted. Early work has centered around assessing changes in wildlife use of restored seismic lines. We evaluated whether restoration reduces the movement rates of predators and their associated prey, which is expected to decrease predator hunting efficiency and ultimately reduce caribou mortality. We developed a new method for using cameras to measure fine-scale movement by measuring speed as animals traveled between cameras in an array. We used our method to quantify speed of caribou, moose (Alces alces), bears (Ursus americanus), and wolves (Canis lupus) on treated (restored) and untreated seismic lines. Restoration treatments reduced travel speeds along seismic lines of wolves by 1.38 km/h, bears by 0.55 km/h, and caribou by 1.57 km/h, but did not reduce moose travel speeds. Reduced predator and caribou speeds on treated seismic lines are predicted to decrease encounter rates between predators and caribou and thus lower caribou kill rates. However, further work is needed to determine whether reduced movement rates result in reduced encounter rates with prey, and ultimately reduced caribou mortality.


La fragmentación del bosque boreal causado por los accidentes lineales, incluyendo a las líneas sísmicas, ha desestabilizado las dinámicas depredador-presa, lo que resulta en la declinación de las poblaciones de caribú (Rangifer tarandus caribou). Por esto, la restauración del hábitat con alteraciones antropogénicas ha sido identificada como una herramienta fundamental de gestión para obtener poblaciones autosuficientes de esta especie. Sin embargo, no es hasta hace poco que se ha analizado la respuesta del caribú y otras especies a las actividades de restauración; los primeros trabajos se centraban en analizar los cambios en el uso que les daban las especies a las líneas sísmicas restauradas. Evaluamos si la restauración reduce las tasas de movimiento de los depredadores y sus presas asociadas, las cuales se esperan disminuyan la eficiencia de caza de los depredadores y por último reduzcan la mortalidad del caribú. Desarrollamos un nuevo método para usar las cámaras para medir el movimiento detallado mediante la medición de la velocidad con la que los animales se trasladan a lo largo de una serie de cámaras. Usamos nuestro método para cuantificar la velocidad del caribú, alces (Alces alces), osos (Ursus americanus) y lobos (Canis lupus) en líneas sísmicas tratadas (restauradas) y no tratadas. Los tratamientos de restauración redujeron la velocidad de movimiento de los lobos (reducción de 1.38 km/hora), osos (0.55 km/hora) y caribú (1.57 km/hora), pero no afectaron la velocidad de movimiento de los alces. Se pronostica que la reducción en la velocidad de movimiento sobre las líneas sísmicas disminuye la proporción de encuentros entre el caribú y sus depredadores y, por lo tanto, reduce la proporción de muertes del caribú. Sin embargo, se necesita un análisis más profundo para determinar si la tasa reducida de movimiento resulta en una tasa reducida de encuentros con depredadores y si, por último, esto reduce la mortalidad del caribú.


Asunto(s)
Ciervos , Reno , Ursidae , Lobos , Animales , Humanos , Reno/fisiología , Lobos/fisiología , Ursidae/fisiología , Conservación de los Recursos Naturales , Conducta Predatoria , Ecosistema , Ciervos/fisiología , Animales Salvajes
8.
Conserv Genet ; 24(6): 855-867, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37969360

RESUMEN

Conservation breeding programs are increasingly used as recovery actions for wild animals; bringing founders into captivity to rear captive populations for future reintroduction into the wild. The International Union for the Conservation of Nature recommends that founders should come from genetically close populations and should have sufficient genetic diversity to avoid mating among relatives. Genomic data are highly informative for evaluating founders due to their high resolution and ability to capture adaptive divergence, yet, their application in that context remains limited. Woodland caribou are federally listed as a Species at Risk in Canada, with several populations facing extirpation, such as those in the Rocky Mountains of Alberta and British Columbia (BC). To prevent local extirpation, Jasper National Park (JNP) is proposing a conservation breeding program. We examined single nucleotide polymorphisms for 144 caribou from 11 populations encompassing a 200,0002 km area surrounding JNP to provide information useful for identifying appropriate founders for this program. We found that this area likely hosts a caribou metapopulation historically characterized by high levels of gene flow, which indicates that multiple sources of founders would be appropriate for initiating a breeding program. However, population structure and adaptive divergence analyses indicate that JNP caribou are closest to populations in the BC Columbia range, which also have suitable genetic diversity for conservation breeding. We suggest that collaboration among jurisdictions would be beneficial to implement the program to promote recovery of JNP caribou and possibly other caribou populations in the surrounding area, which is strategically at the periphery of the distribution of this endangered species. Supplementary Information: The online version contains supplementary material available at 10.1007/s10592-023-01540-3.

9.
J Environ Manage ; 348: 119036, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37857223

RESUMEN

In western Canada, decades of oil-and-gas exploration have fragmented boreal landscapes with a dense network of linear forest disturbances (seismic lines). These seismic lines are implicated in the decline in wildlife populations that are adapted to function in unfragmented forest landscapes. In particular, anthropogenic disturbances have led to a decline of woodland caribou populations due to increasing predator access to core caribou habitat. Restoration of seismic lines aims to reduce the landscape fragmentation and stop the decline of caribou populations. However, planning restoration in complex landscapes can be challenging because it must account for a multitude of diverse aspects. To assist with restoration planning, we present a spatial network optimization approach that selects restoration locations in a fragmented landscape while addressing key environmental and logistical constraints. We applied the model to develop restoration scenarios in the Redrock-Prairie Creek caribou range in northwestern Alberta, Canada, which includes a combination of caribou habitat and active oil-and-gas and timber extraction areas. Our study applies network optimization at two distinct scales to address both the broad-scale restoration policy planning and project-level constraints at the level of individual forest sites. We first delineated a contiguous set of coarse-scale regions where restoration is most cost-effective and used this solution to solve a fine-scale network optimization model that addresses environmental and logistical planning constraints at the level of forest patches. Our two-tiered approach helps address the challenges of fine-scale spatial optimization of restoration activities. An additional coarse-scale optimization step finds a feasible starting solution for the fine-scale restoration problem, which serves to reduce the time to find an optimal solution. The added coarse-scale spatial constraints also make the fine-scale restoration solution align with the coarse-scale landscape features, which helps address the broad-scale restoration policies. The approach is generalizable and applicable to assist restoration planning in other regions fragmented by oil-and-gas activities.


Asunto(s)
Reno , Animales , Conservación de los Recursos Naturales , Ecosistema , Bosques , Alberta
10.
Emerg Infect Dis ; 28(8): 1650-1658, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35876625

RESUMEN

Several caribou (Rangifer tarandus) populations have been declining concurrently with increases in infectious diseases in the Arctic. Erysipelothrix rhusiopathiae, a zoonotic bacterium, was first described in 2015 as a notable cause of illness and death among several Arctic wildlife species. We investigated epidemiologic and environmental factors associated with the seroprevalence of E. rhusiopathiae in the Arctic and found that seropositivity was highest during warmer months, peaking in September, and was highest among adult males. Summer seroprevalence increases tracked with the oestrid index from the previous year, icing and snowing events, and precipitation from the same year but decreased with growing degree days in the same year. Seroprevalence of E. rhusiopathiae varied more during the later years of the study. Our findings provide key insights into the influence of environmental factors on disease prevalence that can be instrumental for anticipating and mitigating diseases associated with climate change among Arctic wildlife and human populations.


Asunto(s)
Erysipelothrix , Reno , Animales , Animales Salvajes , Regiones Árticas , Humanos , Masculino , Estaciones del Año , Estudios Seroepidemiológicos
11.
Ecol Appl ; 32(3): e2549, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35094462

RESUMEN

Climate change will lead to more frequent and more severe fires in some areas of boreal forests, affecting the distribution and availability of late-successional forest communities. These forest communities help to protect globally significant carbon reserves beneath permafrost layers and provide habitat for many animal species, including forest-dwelling caribou. Many caribou populations are declining, yet the mechanisms by which changing fire regimes could affect caribou declines are poorly understood. We analyzed resource selection of 686 GPS-collared female caribou from three ecotypes and 15 populations in a ~600,000 km2 region of northwest Canada and eastern Alaska. These populations span a wide gradient of fire frequency but experience low levels of human-caused habitat disturbance. We used a mixed-effects modeling framework to characterize caribou resource selection in response to burns at different seasons and spatiotemporal scales, and to test for functional responses in resource selection to burn availability. We also tested mechanisms driving observed selection patterns using burn severity and lichen cover data. Caribou avoided burns more strongly during winter relative to summer and at larger spatiotemporal scales relative to smaller scales. During the winter, caribou consistently avoided burns at both spatiotemporal scales as burn availability increased, indicating little evidence of a functional response. However, they decreased their avoidance of burns during summer as burn availability increased. Burn availability explained more variation in caribou selection for burns than ecotype. Within burns, caribou strongly avoided severely burned areas in winter, and this avoidance lasted nearly 30 years after a fire. Caribou within burns also selected higher cover of terrestrial lichen (an important caribou food source). We found a negative relationship between burn severity and lichen cover, confirming that caribou avoidance of burns was consistent with lower lichen abundance. Consistent winter avoidance of burns and severely burned areas suggests that caribou will experience increasing winter habitat loss as fire frequency and severity increase. Our results highlight the potential for climate-induced alteration of natural disturbance regimes to affect boreal biodiversity through habitat loss. We suggest that management strategies prioritizing protection of core winter range habitat with lower burn probabilities would provide important climate-change refugia for caribou.


Asunto(s)
Incendios , Reno , Animales , Ecosistema , Femenino , Bosques , Reno/fisiología , Taiga
12.
Conserv Biol ; 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35146809

RESUMEN

Genetic mechanisms determining habitat selection and specialization of individuals within species have been hypothesized, but not tested at the appropriate individual level in nature. In this work, we analyzed habitat selection for 139 GPS-collared caribou belonging to three declining ecotypes sampled throughout Northwestern Canada. We used Resource Selection Functions (RSFs) comparing resources at used and available locations. We found that the three caribou ecotypes differed in their use of habitat suggesting specialization. On expected grounds, we also found differences in habitat selection between summer and winter, but also, originally, among the individuals within an ecotype. We next obtained Single Nucleotide Polymorphisms (SNPs) for the same caribou individuals, we detected those associated to habitat selection, and then identified genes linked to these SNPs. These genes had functions related in other organisms to habitat and dietary specializations, and climatic adaptations. We therefore suggest that individual variation in habitat selection was based on genotypic variation in the SNPs of individual caribou, indicating that genetic forces underlie habitat and diet selection in the species. We also suggest that the associations between habitat and genes that we detected may lead to lack of resilience in the species, thus contributing to caribou endangerment. Our work emphasizes that similar mechanisms may exist for other specialized, endangered species. This article is protected by copyright. All rights reserved.

13.
Proc Biol Sci ; 288(1943): 20202811, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33468013

RESUMEN

Changes in primary productivity have the potential to substantially alter food webs, with positive outcomes for some species and negative outcomes for others. Understanding the environmental context and species traits that give rise to these divergent outcomes is a major challenge to the generality of both theoretical and applied ecology. In aquatic systems, nutrient-mediated eutrophication has led to major declines in species diversity, motivating us to seek terrestrial analogues using a large-mammal system across 598 000 km2 of the Canadian boreal forest. These forests are undergoing some of the most rapid rates of land-use change on Earth and are home to declining caribou (Rangifer tarandus caribou) populations. Using satellite-derived estimates of primary productivity, coupled with estimates of moose (Alces alces) and wolf (Canis lupus) abundance, we used path analyses to discriminate among hypotheses explaining how habitat alteration can affect caribou population growth. Hypotheses included food limitation, resource dominance by moose over caribou, and apparent competition with predators shared between moose and caribou. Results support apparent competition and yield estimates of wolf densities (1.8 individuals 1000 km-2) above which caribou populations decline. Our multi-trophic analysis provides insight into the cascading effects of habitat alteration from forest cutting that destabilize terrestrial predator-prey dynamics. Finally, the path analysis highlights why conservation actions directed at the proximate cause of caribou decline have been more successful in the near term than those directed further along the trophic chain.


Asunto(s)
Reno , Lobos , Animales , Canadá , Ecosistema , Eutrofización , Conducta Predatoria
14.
Glob Chang Biol ; 27(19): 4546-4563, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33993595

RESUMEN

Annual variation in phenology can have profound effects on the behavior of animals. As climate change advances spring phenology in ecosystems around the globe, it is becoming increasingly important to understand how animals respond to variation in the timing of seasonal events and how their responses may shift in the future. We investigated the influence of spring phenology on the behavior of migratory, barren-ground caribou (Rangifer tarandus), a species that has evolved to cope with short Arctic summers. Specifically, we examined the effect of spring snow melt and vegetation growth on the current and potential future space-use patterns of the Porcupine Caribou Herd (PCH), which exhibits large, inter-annual shifts in their calving and post-calving distributions across the U.S.-Canadian border. We quantified PCH selection for snow melt and vegetation phenology using machine learning models, determined how selection resulted in annual shifts in space-use, and then projected future distributions based on climate-driven phenology models. Caribou exhibited strong, scale-dependent selection for both snow melt and vegetation growth. During the calving season, caribou selected areas at finer scales where the snow had melted and vegetation was greening, but within broader landscapes that were still brown or snow covered. During the post-calving season, they selected vegetation with intermediate biomass expected to have high forage quality. Annual variation in spring phenology predicted major shifts in PCH space-use. In years with early spring phenology, PCH predominately used habitat in Alaska, while in years with late phenology, they spent more time in Yukon. Future climate conditions were projected to advance spring phenology, shifting PCH calving and post-calving distributions further west into Alaska. Our results demonstrate that caribou selection for habitat in specific phenological stages drive dramatic shifts in annual space-use patterns, and will likely affect future distributions, underscoring the importance of maintaining sufficient suitable habitat to allow for behavioral plasticity.


Asunto(s)
Ecosistema , Reno , Animales , Canadá , Estaciones del Año , Nieve
15.
Ecol Appl ; 31(1): e2207, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32632940

RESUMEN

Migration is common worldwide as species access spatiotemporally varying resources and avoid predators and parasites. However, long-distance migrations are increasingly imperiled due to development and habitat fragmentation. Improved understanding of migratory behavior has implications for conservation and management of migratory species, allowing identification and protection of seasonal ranges and migration corridors. We present a technique that applies circuit theory to predict future effects of development by analyzing season-specific resistance to movement from anthropogenic and natural environmental features across an entire migratory path. We demonstrate the utility of our approach by examining potential effects of a proposed road system on barren ground caribou (Rangifer tarandus granti) and subsistence hunters in northern Alaska. Resource selection functions revealed migratory selection by caribou. We tested five scenarios relating habitat selection to landscape resistance using Circuitscape and GPS telemetry data. To examine the effect of potential roads on connectivity of migrating animals and human hunters, we compared current flow values near communities in the presence of proposed roads. Caribou avoided dense vegetation, rugged terrain, major rivers, and existing roads in both spring and fall. A negative linear relationship between resource selection and landscape resistance was strongly supported for fall migration while spring migration featured a negative logarithmic relationship. Overall patterns of caribou connectivity remained similar in the presence of proposed roads, though reduced current flow was predicted for communities near the center of current migration areas. Such data can inform decisions to allow or disallow projects or to select among alternative development proposals and mitigation measures, though consideration of cumulative effects of development is needed. Our approach is flexible and can easily be adapted to other species, locations and development scenarios to expand understanding of movement behavior and to evaluate proposed developments. Such information is vital to inform policy decisions that balance new development, resource user needs, and preservation of ecosystem function.


Asunto(s)
Ecosistema , Reno , Alaska , Migración Animal , Animales , Herbivoria , Humanos
16.
J Hist Biol ; 54(1): 67-93, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33666784

RESUMEN

This essay is a historical-geographical account of how scientists and public health officials conceptualized and assessed northern radioactive exposures in the late 1950s and 1960s. The detection of radionuclides in caribou bodies in northern Canada both demonstrated the global reach of nuclear fallout and revealed the unevenness of toxic relations and radioactive exposures. Following the documentation of the lichen-caribou-human pathway of exposure, Canadian public health officials became increasingly concerned about the possibility of heightened radioactive exposures among Indigenous northerners. Between 1963 and 1969, scientists and officials with Canada's Radiation Protection Division (RPD) coordinated an interdepartmental monitoring program through which they sought to determine whether the consumption of contaminated caribou meat had caused radioactive exposure levels in northern communities to exceed the officially recognized "safe limits." In 1969, the northern monitoring program was suspended after officials determined that radionuclide body burdens had not exceeded the threshold for radioactive exposures. While the RPD emphasized its development of a technoscientific approach to measuring radioactive body burdens, the legitimacy of the monitoring program was linked directly to interdepartmental relations within Canada's colonial northern administration. I situate the northern monitoring program within broader shifts in public health approaches to radiation protection and use Gabrielle Hecht's concept of nuclearity to demonstrate how RPD officials employed the logic of the threshold in their assessment of radioactive exposures.

17.
Environ Monit Assess ; 193(9): 560, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34379192

RESUMEN

Mining activities in Canada's pristine Arctic (e.g., driving on unpacked roads, blasts, rock grinding, diesel combustion, and garbage incineration) could add local sources of airborne fine particulate matter with a diameter of < 2.5 µm (PM2.5) to their surrounding area. The increase in PM2.5 above the background level around a mine represents a potential disturbance to caribou. To quantify the spatial distribution of the elevated PM2.5, we investigated three different sampling schemes to measure PM2.5 concentration using a portable monitor. We found that the best sampling scheme was to use the regional background PM2.5 as the reference and analyze the anomaly of PM2.5 measured at sites around the mine complex from the background level. The regional background PM2.5 values were measured at the Daring Lake Tundra Research Station during 2018 and 2019. Our results indicated that the background PM2.5 was not a low and constant value but varied with rain events, wind direction, and the impacts of forest fire smoke. After excluding periods affected by forest fires smokes, we found the background PM2.5 was close to 0 µg m-3 for the first few hours after rain, and then increased logistically with the time after rain (tar) to the maximum of 5 (or 10) µg m-3 when the wind came from the north (or south) of the NW-SE axis. The NW-SE axis in western Canada divides the tundra north with few anthropogenic PM2.5 sources from the forested south with many PM2.5 sources from forest fire smokes and human activities. Analyses of PM2.5 anomaly from the background (i.e., PM2.5 measured at a site around the mining complex-the background level at the corresponding tar and wind direction) revealed that the zone of elevated PM2.5 around the mine (Zepm) expanded with tar. In the first few hours after rain, PM2.5 was close to 0 everywhere except within meters of a source (e.g., a truck exhaust) in the downwind direction. During tar = 6 to 96 h, Zepm expanded to 6.3 km in the downwind direction when the wind came from south of the NW-SE axis. A similar result was found in the downwind direction when the wind came from north of the NW-SE axis, with Zepm = 4.4 km. In the upwind direction, the value of Zepm was much smaller, being 0.7 km (or 1.0 km) when the wind came from the north (or south) of the NW-SE axis. For the period of tar between 96 and 192 hours, Zepm further expanded to 21.2 km when the wind from the south of the NW-SE axis. The results from this study indicated that this reference paradigm that uses the regional background PM2.5 as the reference in combination with a portable PM2.5 monitor worked well for quantifying the tempo-spatial patterns of PM2.5 at locations in remote and mostly pristine Arctic. However, their effectiveness for other regions needs further investigation.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Humanos , Vehículos a Motor , Material Particulado/análisis , Emisiones de Vehículos/análisis
18.
Ecol Lett ; 23(9): 1360-1369, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32602664

RESUMEN

Variation in social environment can mitigate risks and rewards associated with occupying a particular patch. We aim to integrate Ideal Free Distribution (IFD) and Geometry of the Selfish Herd (GSH) to address an apparent conflict in their predictions of equal mean fitness between patches (IFD) and declining fitness benefits within a patch (GSH). We tested these hypotheses in a socio-spatial context using individual caribou that were aggregated or disaggregated during calving and varied in their annual reproductive success (ARS). We then tested individual consistency of these spatial tactics. We reveal that two socio-spatial tactics accorded similar mean ARS (IFD); however, ARS for aggregated individuals declined near the periphery (GSH). Individuals near the aggregation periphery exhibited flexibility, whereas others were consistent. The integration of classical theories through a contemporary lens of consistent individual differences provides evidence for an integrated GSH and IFD strategy that may represent an evolutionary stable state.


Asunto(s)
Ecosistema , Reno , Animales , Dinámica Poblacional , Conducta Predatoria , Reproducción
19.
Am Nat ; 196(1): E1-E15, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32552106

RESUMEN

Movement provides a link between individual behavioral ecology and the spatial and temporal variation in an individual's landscape. Individual variation in movement traits is an important axis of animal personality, particularly in the context of foraging ecology. We tested whether individual caribou (Rangifer tarandus) displayed plasticity in movement and space-use behavior across a gradient of resource aggregation. We quantified first-passage time and range-use ratio as proxies for movement-related foraging behavior and examined how these traits varied at the individual level across a foraging resource gradient. Our results suggest that individuals adjusted first-passage time but not range-use ratio to maximize access to high-quality foraging resources. First-passage time was repeatable, and intercepts for first-passage time and range-use ratio were negatively correlated. Individuals matched first-passage time but not range-use ratio to the expectations of our patch-use model that maximized access to foraging resources, a result that suggests that individuals acclimated their movement patterns to accommodate both intra- and interannual variation in foraging resources on the landscape. Collectively, we highlight repeatable movement and space-use tactics and provide insight into how individual plasticity in movement interacts with landscape processes to affect the distribution of behavioral phenotypes and potentially fitness and population dynamics.


Asunto(s)
Conducta Alimentaria , Movimiento , Reno/fisiología , Animales , Ambiente , Femenino , Terranova y Labrador , Análisis Espacial
20.
Mol Ecol ; 29(20): 3830-3840, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32810895

RESUMEN

Polymorphisms within the prion protein gene (Prnp) are an intrinsic factor that can modulate chronic wasting disease (CWD) pathogenesis in cervids. Although wild European reindeer (Rangifer tarandus tarandus) were infected with CWD, as yet there have been no reports of the disease in North American caribou (R. tarandus spp.). Previous Prnp genotyping studies on approximately 200 caribou revealed single nucleotide polymorphisms (SNPs) at codons 2 (V/M), 129 (G/S), 138 (S/N), 146 (N/n) and 169 (V/M). The impact of these polymorphisms on CWD transmission is mostly unknown, except for codon 138. Reindeer carrying at least one allele encoding for asparagine (138NN or 138SN) are less susceptible to clinical CWD upon infection by natural routes, with the majority of prions limited to extraneural tissues. We sequenced the Prnp coding region of two caribou subspecies (n = 986) from British Columbia, Saskatchewan, Yukon, Nunavut and the Northwest Territories, to identify SNPs and their frequencies. Genotype frequencies at codon 138 differed significantly between barren-ground (R. t. groenlandicus) and woodland (R. t. caribou) caribou when we excluded the Chinchaga herd (p < .05). We also found new variants at codons 153 (Y/F) and 242 (P/L). Our findings show that the 138N allele is rare among caribou in areas with higher risk of contact with CWD-infected species. As both subspecies are classified as Threatened and play significant roles in North American Indigenous culture, history, food security and the economy, determining frequencies of Prnp genotypes associated with susceptibility to CWD is important for future wildlife management measures.


Asunto(s)
Ciervos , Priones , Reno , Enfermedad Debilitante Crónica , Animales , Colombia Británica , Ciervos/genética , Genotipo , Territorios del Noroeste , Nunavut , Proteínas Priónicas/genética , Priones/genética , Reno/genética , Saskatchewan , Enfermedad Debilitante Crónica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA