Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.661
Filtrar
Más filtros

Intervalo de año de publicación
1.
FASEB J ; 38(3): e23455, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38308636

RESUMEN

Recent evidence suggests the anti-inflammatory effect of carrageenan oligosaccharides (COS). The effects of COS on intestinal injury induced by 0.6% sodium dodecyl sulfate (SDS) and the molecular mechanisms involved were investigated in this study. 0.625, 1.25, and 2.5 mg/mL COS in diet had no toxic effect in flies, and they could all prolong SDS-treated female flies' survival rate. 1.25 mg/mL COS prevented the development of inflammation by improving the intestinal barrier integrity and maintaining the intestinal morphology stability, inhibited the proliferation of intestine stem cells (ISCs), and the production of lysosomes induced by SDS, accompanied by a decrease in the expression of autophagy-related genes. Moreover, COS decreased the active oxygen species (ROS) content in gut and increased the antioxidant activity in SDS-induced female flies, while COS still played a role in increasing survival rate and decreasing intestinal leakage in CncC-RNAi flies. The improvement of anti-inflammation capacity may be associated with the regulation of intestinal microflora with COS supplementation for Drosophila melanogaster. COS changed the gut microbiota composition, and COS had no effect on germ-free (GF) flies. It is highlighted that COS could not work in Relish-RNAi flies, indicating relish is required for COS to perform beneficial effects. These results provide insights into the study of gut microbiota interacting with COS to modulate intestinal inflammation in specific hosts.


Asunto(s)
Drosophila melanogaster , Microbioma Gastrointestinal , Animales , Femenino , Carragenina/farmacología , Inflamación , Intestinos , Oligosacáridos/farmacología
2.
Appl Environ Microbiol ; 90(7): e0025524, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-38874338

RESUMEN

Marine bacteria contribute substantially to cycle macroalgae polysaccharides in marine environments. Carrageenans are the primary cell wall polysaccharides of red macroalgae. The carrageenan catabolism mechanism and pathways are still largely unclear. Pseudoalteromonas is a representative bacterial genus that can utilize carrageenan. We previously isolated the strain Pseudoalteromonas haloplanktis LL1 that could grow on ι-carrageenan but produce no ι-carrageenase. Here, through a combination of bioinformatic, biochemical, and genetic analyses, we determined that P. haloplanktis LL1 processed a desulfurization-depolymerization sequential pathway for ι-carrageenan utilization, which was initiated by key sulfatases PhSulf1 and PhSulf2. PhSulf2 acted as an endo/exo-G4S (4-O-sulfation-ß-D-galactopyranose) sulfatase, while PhSulf1 was identified as a novel endo-DA2S sulfatase that could function extracellularly. Because of the unique activity of PhSulf1 toward ι-carrageenan rather than oligosaccharides, P. haloplanktis LL1 was considered to have a distinct ι-carrageenan catabolic pathway compared to other known ι-carrageenan-degrading bacteria, which mainly employ multifunctional G4S sulfatases and exo-DA2S (2-O-sulfation-3,6-anhydro-α-D-galactopyranose) sulfatase for sulfate removal. Furthermore, we detected widespread occurrence of PhSulf1-encoding gene homologs in the global ocean, indicating the prevalence of such endo-acting DA2S sulfatases as well as the related ι-carrageenan catabolism pathway. This research provides valuable insights into the enzymatic processes involved in carrageenan catabolism within marine ecological systems.IMPORTANCECarrageenan is a type of linear sulfated polysaccharide that plays a significant role in forming cell walls of marine algae and is found extensively distributed throughout the world's oceans. To the best of our current knowledge, the ι-carrageenan catabolism in marine bacteria either follows the depolymerization-desulfurization sequential process initiated by ι-carrageenase or starts from the desulfurization step catalyzed by exo-acting sulfatases. In this study, we found that the marine bacterium Pseudoalteromonas haloplanktis LL1 processes a distinct pathway for ι-carrageenan catabolism employing a specific endo-acting DA2S-sulfatase PhSulf1 and a multifunctional G4S sulfatase PhSulf2. The unique PhSulf1 homologs appear to be widely present on a global scale, indicating the indispensable contribution of the marine bacteria containing the distinct ι-carrageenan catabolism pathway. Therefore, this study would significantly enrich our understanding of the molecular mechanisms underlying carrageenan utilization, providing valuable insights into the intricate roles of marine bacteria in polysaccharide cycling in marine environments.


Asunto(s)
Proteínas Bacterianas , Carragenina , Pseudoalteromonas , Sulfatasas , Carragenina/metabolismo , Pseudoalteromonas/enzimología , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Sulfatasas/metabolismo , Sulfatasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Agua de Mar/microbiología
3.
J Med Virol ; 96(4): e29604, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606779

RESUMEN

Previous research has shown that women's use of a carrageenan gel reduces the risk of acquiring genital human papillomavirus (HPV) infections but does not help to clear existing ones. Although gel use may not result in complete clearance, it may decrease the viral load of HPV infections. We tested this hypothesis in the Carrageenan-gel Against Transmission of Cervical Human papillomavirus (CATCH) randomized controlled trial. Participants of the CATCH study were selected for viral load testing if they had completed the first four study visits and tested positive for HPV42 or HPV51 in at least one of these visits. HPV42 and HPV51 were chosen as they were among the most abundant low- and high-risk types, respectively, in the study sample. We measured viral load with a type-specific real-time polymerase chain reaction. Results were displayed using summary statistics. Of 461 enrolled participants, 39 were included in the HPV42 analysis set and 56 in the HPV51 analysis set. The median time between visits 1 and 4 was 3.7 months. The viral load (copies/cell) of HPV42 ranged from <0.001 to 13 434.1, and that of HPV51 from <0.001 to 967.1. The net median change in HPV42 viral load over all four visits was -1.04 copies/cell in the carrageenan and -147 copies/cell in the placebo arm (Wilcoxon rank sum test, p = 0.26). There was no net median change in HPV51 viral load over all four visits in either arm (p = 0.45). The use of a carrageenan-based gel is unlikely to reduce the viral load of HPVs 42 or 51.


Asunto(s)
Alphapapillomavirus , Infecciones por Papillomavirus , Enfermedades de Transmisión Sexual , Neoplasias del Cuello Uterino , Humanos , Femenino , Infecciones por Papillomavirus/prevención & control , Carragenina , Carga Viral , Virus del Papiloma Humano , Cuello del Útero , Papillomaviridae/genética , ADN Viral/análisis
4.
J Med Virol ; 96(3): e29562, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38528834

RESUMEN

The Lubricant Investigation in Men to Inhibit Transmission of human papillomavirus (HPV) Infection randomized control trial in gay, bisexual, and other men who have sex with men (gbMSM) found that carrageenan use neither reduced acquisition of anal HPV infections nor influenced infection clearance. To investigate carrageenan's lack of protective effect, we compared the change in anal HPV16 and HPV18 viral loads following carrageenan use against placebo. We restricted our analysis to participants who completed the first four study visits and had a valid baseline sample (n = 161, 54 HIV-positive). Samples were tested for HPV detection using the linear array PCR assay. HPV16- and/or HPV18-positive samples were tested for viral load using real-time PCR. For participants who tested HPV16- (n = 29) or HPV18-positive (n = 10) at least once across visits 1-4, we compared the change in type-specific viral load between study arms using the Mann-Whitney U test. Although the median net change in HPV16 and HPV18 viral loads across visits 1-4 was higher in the treatment than placebo arm (HPV16: 0.68 vs. 0.18 copies/cell, p = 0.60; HPV18: 18.32 vs. 10.12 copies/cell, p = 0.52), these differences were not statistically significant. Results were similar by HIV status. Carrageenan use did not impact anal HPV16 or HPV18 viral loads, which may further explain its lack of protective effect in gbMSM.


Asunto(s)
Infecciones por Papillomavirus , Minorías Sexuales y de Género , Humanos , Masculino , Carragenina , Homosexualidad Masculina , Papillomavirus Humano 16/genética , Infecciones por Papillomavirus/prevención & control , Carga Viral
5.
Fish Shellfish Immunol ; 148: 109470, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442766

RESUMEN

Cantharidin is a natural compound with known therapeutic applications in humans. The aim of this study was to investigate the in vitro effects of cantharidin on gilthead seabream (Sparus aurata) head kidney leucocytes (HKL) stimulated with λ-carrageenan. HKLs were incubated for 24 h with cantharidin (0, 2.5 and 5 µg mL-1) and λ-carrageenan (0 and 1000 µg mL-1). The results showed that HKL viability only decreased by 15.2% after incubated with 5 µg mL-1 of cantharidin and λ-carrageenan. Cantharidin increased the peroxidase activity of HKLs only when incubated in combination with λ-carrageenan. Besides this, cantharidin inhibited the respiratory burst and phagocytic activities. Furthermore, cantharidin induced morphological changes in HKLs (apoptotic and vacuolization signs) that were enhanced when incubated with λ-carrageenan. Considering the analysis of the selected gene expression studied in HKLs [NF-κB subunits (rela, relb, crel, nfkb1, nfkb2), proinflammatory cytokines (il1b, tnfa), anti-inflammatory cytokines (il10, tgfb) and caspases (casp1, casp3, casp8, casp9)], although λ-carrageenan up-regulated the expression of the proinflammatory gene il1b, λ-carrageenan and cantharidin down-regulated its expression in HKLs. In addition, cantharidin up-regulated casp3 and casp9 expression. The casp3 and casp9 gene expression was down-regulated while casp1 gene expression was up-regulated in HKLs incubated with both cantharidin and λ-carrageenan. All the effects of cantharidin are related to its inhibitory effect on protein phosphatases, which induce apoptosis at long exposure times, and minimize the effects of λ-carrageenan. The present results provide detailed insight into the immune-depressive and anti-inflammatory properties of cantharidin on immune cells, which could be of interest to the aquaculture sector.


Asunto(s)
Dorada , Humanos , Animales , Carragenina/farmacología , Carragenina/metabolismo , Inmunidad Innata , Cantaridina/farmacología , Cantaridina/metabolismo , Caspasa 3/metabolismo , Depresión , Leucocitos , Citocinas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo
6.
Mol Biol Rep ; 51(1): 89, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38184807

RESUMEN

BACKGROUND: Kappaphycus alvarezii, a marine red algae species, has gained significant attention in recent years due to its versatile bioactive compounds. Among these, κ-carrageenan (CR), a sulfated polysaccharide, exhibits remarkable antimicrobial properties. This study emphasizes the synergism attained by functionalizing zinc oxide nanoparticles (ZnO NPs) with CR, thereby enhancing its antimicrobial efficacy and target specificity against dental pathogens. METHODS: In this study, we synthesized ZnO-CR NPs and characterized them using SEM, FTIR, and XRD techniques to authenticate their composition and structural attributes. Moreover, our investigation revealed that ZnO-CR NPs possess better free radical scavenging capabilities, as evidenced by their effective activity in the DPPH and ABTS assay. RESULTS: The antimicrobial properties of ZnO-CR NPs were systematically assessed using a zone of inhibition assay against dental pathogens of S. aureus, S. mutans, E. faecalis, and C. albicans, demonstrating their substantial inhibitory effects at a minimal concentration of 50 µg/mL. We elucidated the interaction between CR and the receptors of dental pathogens to further understand their mechanism of action. The ZnO-CR NPs demonstrated a dose-dependent anticancer effect at concentrations of 5 µg/mL, 25 µg/mL, 50 µg/mL, and 100 µg/mL on KB cells, a type of Human Oral Epidermal Carcinoma. The mechanism by which ZnO-CA NPs induced apoptosis in KB cells was determined by observing an increase in the expression of the BCL-2, BAX, and P53 genes. CONCLUSION: Our findings unveil the promising potential of ZnO-CR NPs as a candidate with significant utility in dental applications. The demonstrated biocompatibility, potent antioxidant and antiapoptotic activity, along with impressive antimicrobial efficacy position these NPs as a valuable resource in the ongoing fight against dental pathogens and oral cancer.


Asunto(s)
Antiinfecciosos , Neoplasias de la Boca , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Carragenina/farmacología , Staphylococcus aureus , Neoplasias de la Boca/tratamiento farmacológico , Apoptosis , Candida albicans
7.
Mar Drugs ; 22(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39195483

RESUMEN

Red seaweed carrageenans are frequently used in industry for its texturizing properties and have demonstrated antiviral activities that can be used in human medicine. However, their high viscosity, high molecular weight, and low skin penetration limit their use. Low-weight carrageenans have a reduced viscosity and molecular weight, enhancing their biological properties. In this study, ι-carrageenan from Solieria chordalis, extracted using hot water and dialyzed, was depolymerized using hydrogen peroxide and ultrasound. Ultrasonic depolymerization yielded fractions of average molecular weight (50 kDa) that were rich in sulfate groups (16% and 33%) compared to those from the hydrogen peroxide treatment (7 kDa, 6% and 9%). The potential bioactivity of the polysaccharides and low-molecular-weight (LMW) fractions were assessed using WST-1 and LDH assays for human fibroblast viability, proliferation, and cytotoxicity. The depolymerized fractions did not affect cell proliferation and were not cytotoxic. This research highlights the diversity in the biochemical composition and lack of cytotoxicity of Solieria chordalis polysaccharides and LMW fractions produced by a green (ultrasound) depolymerization method.


Asunto(s)
Carragenina , Peso Molecular , Rhodophyta , Humanos , Rhodophyta/química , Carragenina/farmacología , Oligosacáridos/farmacología , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Fibroblastos/efectos de los fármacos , Peróxido de Hidrógeno , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Polimerizacion , Ondas Ultrasónicas , Viscosidad
8.
Mar Drugs ; 22(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38786583

RESUMEN

Glycosidic linkage analysis was conducted on the unfractionated polysaccharides in alcohol-insoluble residues (AIRs) prepared from six red seaweeds (Gracilariopsis sp., Prionitis sp., Mastocarpus papillatus, Callophyllis sp., Mazzaella splendens, and Palmaria palmata) using GC-MS/FID analysis of partially methylated alditol acetates (PMAAs). The cell walls of P. palmata primarily contained mixed-linkage xylans and small amounts of sulfated galactans and cellulose. In contrast, the unfractionated polysaccharides of the other five species were rich in galactans displaying diverse 3,6-anhydro-galactose and galactose linkages with varied sulfation patterns. Different levels of cellulose were also observed. This glycosidic linkage method offers advantages for cellulose analysis over traditional monosaccharide analysis that is known for underrepresenting glucose in crystalline cellulose. Relative linkage compositions calculated from GC-MS and GC-FID measurements showed that anhydro sugar linkages generated more responses in the latter detection method. This improved linkage workflow presents a useful tool for studying polysaccharide structural variations across red seaweed species. Furthermore, for the first time, relative linkage compositions from GC-MS and GC-FID measurements, along with normalized FID and total ion current (TIC) chromatograms without peak assignments, were analyzed using principal component analysis (PCA) as a proof-of-concept demonstration of the technique's potential to differentiate various red seaweed species.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Polisacáridos , Rhodophyta , Algas Marinas , Polisacáridos/química , Algas Marinas/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Rhodophyta/química , Metilación , Glicósidos/química
9.
Reprod Domest Anim ; 59(3): e14551, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38462999

RESUMEN

Cryopreservation is one of the reliable techniques for long-term storage of sperm. The success of this technique depends on the choice of cryoprotectant; therefore, a plethora of literature has reported the effects of different cryoprotective agents so far. Kappa-carrageenan (κ-carrageenan) is a hydrocolloid polysaccharide extracted from red marine seaweed. Its unique property makes it a promising option as a non-colligative cryoprotectant. The current study aims to evaluate the cryoprotective effect of k-carrageenan along with glycerol on ram sperm quality both after equilibration and freezing. Nine Kajli rams were utilized in this experiment for semen collection through an artificial vagina maintained at 42°C. Qualified samples were diluted in tris egg yolk glycerol (TEYG) extender containing different concentrations of k-carrageenan as 0 mg/mL (control), 0.2, 0.5, 0.8 and 1 mg/mL. Post-thaw assessment was done at 37°C after 24 h of storage, which showed a significant improvement (p < .05) in sperm viability, motility, membrane and acrosome integrity in an extender containing k-carrageenan at a concentration of 0.5 mg/mL compared to control. It is concluded from the current study that the combination of glycerol and 0.5 mg/mL concentration of k-carrageenan improved the sperm post-thaw quality.


Asunto(s)
Preservación de Semen , Semen , Masculino , Ovinos , Animales , Carragenina/farmacología , Glicerol/farmacología , Motilidad Espermática , Espermatozoides , Crioprotectores/farmacología , Criopreservación/veterinaria , Criopreservación/métodos , Oveja Doméstica , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Suplementos Dietéticos
10.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39066021

RESUMEN

This paper is dedicated to the research of phenomena noticed during tests of biodegradable carrageenan-based force and pressure sensors. Peculiar voltage characteristics were noticed during the impact tests. Therefore, the sensors' responses to impact were researched more thoroughly, defining time-dependent sensor output signals from calibrated energy impact. The research was performed using experimental methods when a free-falling steel ball impacted the sensor material to create relatively definable impact energy. The sensor's output signal, which is analogue voltage, was registered using an oscilloscope and transmitted to the PC for further analysis. The obtained results showed a very interesting outcome, where the sensor, which was intended to be piezoresistive, demonstrated a combination of behaviour typical for galvanic cells and piezoelectric material. It provides a stable DC output that is sensitive to the applied statical pressure, and in case of a sudden impact, like a hit, it demonstrates piezoelectric behaviour with some particular effects, which are described in the paper as proton transfer in the sensor-sensitive material. Such phenomena and sensor design are a matter of further development and research.

11.
Sensors (Basel) ; 24(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276377

RESUMEN

This article presents research on biodegradable stretch sensors produced using biological material. This sensor uses a piezoresistive effect to indicate stretch, which can be used for force measurement. In this work, an attempt was made to develop the composition of a sensitive material and to design a sensor. The biodegradable base was made from a κ-carrageenan compound mixed with Fe2O3 microparticles and glycerol. The influence of the weight fraction and iron oxide microparticles on the tensile strength and Young's modulus was experimentally investigated. Tensile test specimens consisted of 10-25% iron oxide microparticles of various sizes. The results showed that increasing the mass fraction of the reinforcement improved the Young's modulus compared to the pure sample and decreased the elongation percentage. The GF of the developed films varies from 0.67 to 10.47 depending on composition. In this paper, it was shown that the incorporation of appropriate amounts of Fe2O3 microparticles into κ-carrageenan can achieve dramatic improvements in mechanical properties, resulting in elongation of up to 10%. The developed sensors were experimentally tested, and their sensitivity, stability, and range were determined. Finally, conclusions were drawn on the results obtained.


Asunto(s)
Compuestos Férricos , Fenómenos Mecánicos , Carragenina , Resistencia a la Tracción , Módulo de Elasticidad
12.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339059

RESUMEN

The present study aimed to evaluate the anti-inflammatory effects of ginger (Zingiber officinale) root capsule extract (GRCE) in doses of 100 mg/kg b.w. (body weight) and 200 mg/kg b.w. alone and in combination with a low dose (5 mg/kg b.w.) of diclofenac sodium (D) on carrageenan-induced acute inflammation (AI). The association of GRCE in a dose of 200 mg/kg b.w. with D offered the highest inhibition percentage for edema, reaching the maximum level of inhibition (95%) after 24 h. The association of GRCE in a dose of 200 mg/kg b.w. with D showed the ability to reduce tissue inflammatory changes when compared to D alone, while GRCE alone did not exhibit such properties. The association of both doses of GRCE with D showed significantly lower plasma and tissue levels of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) by up to 55% (p ≤ 0.0317), with the best results obtained by the group who received GRCE in the higher dose. These associations reduced the serum and tissue levels of prostaglandin-endoperoxide synthase 2 (COX-2) by up to 71% (p ≤ 0.0371). In conclusion, the association of GRCE with a low dose of D could be an appropriate combination to decrease the dose used to reduce serum and tissue levels of inflammatory molecules, edema, and histological changes in acute inflammation. Further research will be necessary to achieve clinical evaluation.


Asunto(s)
Diclofenaco , Zingiber officinale , Diclofenaco/efectos adversos , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Extractos Vegetales/efectos adversos , Antiinflamatorios/efectos adversos , Carragenina/efectos adversos , Factor de Necrosis Tumoral alfa/uso terapéutico , Ciclooxigenasa 2 , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/patología
13.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674119

RESUMEN

The aim of this work is research dedicated to the search for new bactericidal systems for use in cosmetic formulations, dermocosmetics, or the production of wound dressings. Over the last two decades, chitosan, due to its special biological activity, has become a highly indispensable biopolymer with very wide application possibilities. Reports in the literature on the antibacterial effects of chitosan are very diverse, but our research has shown that they can be successfully improved through chemical modification. Therefore, in this study, results on the synthesis of new chitosan-based Schiff bases, dCsSB-SFD and dCsSB-PCA, are obtained using two aldehydes: sodium 4-formylbenzene-1,3-disulfonate (SFD) and 2-pyridine carboxaldehyde (PCA), respectively. Chitosan derivatives synthesized in this way demonstrate stronger antimicrobial activity. Carrying out the procedure of grafting chitosan with a caproyl chain allowed obtaining compatible blends of chitosan derivatives with κ-carrageenan, which are stable hydrogels with a high swelling coefficient. Furthermore, the covalently bounded poly(ε-caprolactone) (PCL) chain improved the solubility of obtained polymers in organic solvents. In this respect, the Schiff base-containing polymers obtained in this study, with special hydrogel and antimicrobial properties, are very promising materials for potential use as a controlled-release formulation of both hydrophilic and hydrophobic drugs in cosmetic products for skin health.


Asunto(s)
Antibacterianos , Carragenina , Quitosano , Bases de Schiff , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Carragenina/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Bases de Schiff/química , Hidrogeles/química , Pruebas de Sensibilidad Microbiana , Solubilidad
14.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791434

RESUMEN

Extracts from medicinal plants are widely used in the treatment and prevention of different diseases. Micromeria frivaldszkyana is a Balkan endemic species with reported antioxidant and antimicrobial characteristics; however, its phytochemical composition is not well defined. Here, we examined the metabolome of M. frivaldszkyana by chromatography-mass spectrometry (GC-MS), ultra-performance liquid chromatography-mass spectrometry (UPLC-MS-MS), and inductively coupled plasma mass spectrometry (ICP-MS). Amino acids, organic acids, sugars, and sugar alcohols were the primary metabolites with the highest levels in the plant extract. Detailed analysis of the sugar content identified high levels of sucrose, glucose, mannose, and fructose. Lipids are primary plant metabolites, and the analysis revealed triacylglycerols as the most abundant lipid group. Potassium (K), magnesium (Mg), zinc (Zn), and calcium (Ca) were the elements with the highest content. The results showed linarin, 3-caffeoil-quinic acid, and rosmarinic acid, as well as a number of polyphenols, as the most abundant secondary metabolites. Among the flavonoids and polyphenols with a high presence were eupatorin, kaempferol, and apigenin-compounds widely known for their bioactive properties. Further, the acute toxicity and potential anti-inflammatory activity of the methanolic extract were evaluated in Wistar rats. No toxic effects were registered after a single oral application of the extract in doses of between 200 and 5000 mg/kg bw. A fourteen-day pre-treatment with methanolic extract of M. frivaldszkyana in doses of 250, 400, and 500 mg/kg bw induced anti-inflammatory activity in the 1st, 2nd, and 3rd hours after carrageenan injection in a model of rat paw edema. This effect was also present in the 4th hour only in the group treated with a dose of 500 mg/kg. In conclusion, M. frivaldszkyana extract is particularly rich in linarin, rosmarinic acid, and flavonoids (eupatorin, kaempferol, and apigenin). Its methanolic extract induced no toxicity in male Wistar rats after oral application in doses of up to 5000 mg/kg bw. Additionally, treatment with the methanolic extract for 14 days revealed anti-inflammatory potential in a model of rat paw edema on the 1st, 2nd, and 3rd hours after the carrageenan injection. These results show the anti-inflammatory potential of the plant, which might be considered for further exploration and eventual application as a phytotherapeutic agent.


Asunto(s)
Antiinflamatorios , Extractos Vegetales , Ratas Wistar , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/química , Ratas , Metanol/química , Edema/tratamiento farmacológico , Edema/inducido químicamente , Sapotaceae/química , Metaboloma/efectos de los fármacos
15.
Molecules ; 29(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124866

RESUMEN

The kinetics of amyloid aggregation was studied indirectly by monitoring the changes in the polydispersity of mixed dispersion of amyloid ß peptide (1-40) and composite liposomes. The liposomes were prepared from the 1,2-dioleoyl-sn-glicero-3-phoshocholine (DOPC) phospholipid and stabilised by the electrostatic adsorption of κ-carrageenan. The produced homotaurine-loaded and unloaded liposomes had a highly negative electrokinetic potential and remarkable stability in phosphate buffer (pH 4 and 7.4). For the first time, the appearance and evolution of the aggregation of Aß were presented through the variation in the standard percentile readings (D10, D50, and D90) obtained from the particle size distribution analysis. The kinetic experiments indicated the appearance of the first aggregates almost 30 min after mixing the liposomes and peptide solution. It was observed that by adding unloaded liposomes, the size of 90% of the particles in the dispersion (D90) increased. In contrast, the addition of homotaurine-loaded liposomes had almost minimal impact on the size of the fractions of larger particles during the kinetic experiments. Despite the specific bioactivity of homotaurine in the presence of natural cell membranes, this study reported an additional inhibitory effect of the compound on the amyloid peptide aggregation due to the charge effects and 'molecular crowding'.


Asunto(s)
Péptidos beta-Amiloides , Carragenina , Liposomas , Taurina , Liposomas/química , Carragenina/química , Péptidos beta-Amiloides/química , Taurina/química , Taurina/análogos & derivados , Cinética , Fragmentos de Péptidos/química , Tamaño de la Partícula , Agregado de Proteínas
16.
Inflammopharmacology ; 32(2): 1353-1369, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38334860

RESUMEN

Habenaira plantaginea belong to orchid family which is native to Asia. Members of this family are commonly famous for the cure of pain and inflammation. To date, no research was found on isolation of compounds from this plant for the treatment of inflammation and analgesia nor has been published to our knowledge. The purpose of this study was to evaluate an analgesic, anti-inflammatory and anti-oxidant activity of the isolated compound from the most potent chloroform sub-fraction and the isolated compounds form the habenaria plantaginea. Anti-inflammatory analgesic and antioxidant potential of the various chloroform sub-fractions and isolated compounds from the most potent sub-fraction (HP-1 & HP-1) were screened for their in vitro enzymatic assays. Furthermore, prior to in-vivo investigation, the isolated compounds were subjected for their toxicity study. The potent compound was then examined for acetic acid-induced writhing, hot plate test, carrageenan-induced inflammation assays. Further various phlogistic agents were used for the evaluation of mechanism. In the COX-2 inhibitory assay the chloroform sub fraction Cf-4 demonstrated excellent activity as compared to the other sub-fraction with 92.15% inhibition. The COX-2 enzyme make prostaglandins which are directly involved in inflammation. Likewise against 5-LOX the Cf-4 was the most potent sub-fraction with IC50 3.77 µg/mL. The 5-LOX catalyzes the biosynthesis of leukotrienes which is a group of lipid mediators of inflammation derived from arachidonic acid. Free radicals can induce inflammation through cellular damage while chronic inflammation generates a large number of free radicals, whose eventually lead to inflammation. In antioxidant assays the Cf-4 fraction was displayed excellent results against ABTS, DPPH and H2O2 free radical with 88.88, 77.44, and 65.52% inhibition at highest concentration. Likewise, the compound HP-1 demonstrated 88.81, 89.34 and 80.43% inhibition while compound HP-2 displayed 84.34, 91.52 and 82.34% inhibition against ABTS, DPPH and H2O2 free radical which were comparable to the standard drug ascorbic acid respectively. This study's findings validate the use of this species as traditional use.


Asunto(s)
Antioxidantes , Benzotiazoles , Orchidaceae , Ácidos Sulfónicos , Antioxidantes/uso terapéutico , Extractos Vegetales/uso terapéutico , Cloroformo/efectos adversos , Analgésicos , Antiinflamatorios , Dolor/tratamiento farmacológico , Carragenina/farmacología , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Antiinflamatorios no Esteroideos/uso terapéutico , Ácido Acético , Radicales Libres , Edema/inducido químicamente , Edema/tratamiento farmacológico
17.
Inflammopharmacology ; 32(3): 1855-1870, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38607503

RESUMEN

Arthritis is a debilitating condition impacting the quality of life for millions worldwide, characterized by pain and inflammation. Understanding the mechanisms of arthritis and developing effective treatments are crucial. This study investigated the hydroethanolic extract of Artemisia herba-alba for its protective potential against arthritis hallmarks, oxidative stress, and lipid peroxidation in vitro. It also assessed its in vivo anti-arthritic activity. The phytochemical analysis identified various compounds within the extract, with high concentrations of polyphenols and flavonoids. These compounds are associated with numerous health benefits, making A. herba-alba a potential source of valuable phytochemicals. A. herba-alba demonstrated a notable effect in body weight loss, paw edema, and arthritic severity. Histopathological examination revealed structural improvements in bone and muscle tissues, emphasizing its therapeutic potential in managing chronic arthritis. Furthermore, while these findings are promising, further studies are necessary to delve deeper into the mechanisms underlying the observed hematological changes and to gain a more comprehensive understanding of the in vivo results. This research sets the stage for continued exploration, ultimately aiming to unlock the full potential of A. herba-alba in addressing chronic arthritis and enhancing the lives of those affected by this condition.


Asunto(s)
Antioxidantes , Artemisia , Artritis Experimental , Estrés Oxidativo , Extractos Vegetales , Artemisia/química , Animales , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Artritis Experimental/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Ratas , Masculino , Ratones , Enfermedad Crónica , Fitoquímicos/farmacología , Peroxidación de Lípido/efectos de los fármacos , Flavonoides/farmacología , Edema/tratamiento farmacológico , Artritis/tratamiento farmacológico
18.
J Infect Dis ; 227(3): 402-406, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35090175

RESUMEN

Preclinical studies have demonstrated carrageenan's anti-human papillomavirus (HPV) activity. We assessed efficacy of a carrageenan-based gel compared to a placebo gel in increasing the clearance of anal HPV infections among gay, bisexual, and other men who have sex with men (gbMSM). Of 255 enrolled gbMSM, 134 were HPV positive at baseline and had valid HPV results for ≥2 visits. Carrageenan did not differ from placebo in clearing all baseline infections (hazard ratio, 0.84 [95% confidence interval, .31-2.27]), based on having 2 consecutive HPV-negative visits following at least 1 HPV-positive visit. There were no remarkable differences for analyses at the HPV type level or by human immunodeficiency virus status. CLINICAL TRIALS REGISTRATION: NCT02354144.


Asunto(s)
Infecciones por VIH , Infecciones por Papillomavirus , Minorías Sexuales y de Género , Masculino , Humanos , Homosexualidad Masculina , Carragenina , Canal Anal , Virus del Papiloma Humano , Papillomaviridae
19.
Indian J Microbiol ; 64(2): 593-602, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39011007

RESUMEN

Seaweed, a valuable marine resource widely cultivated worldwide, can be vulnerable to stress and microbiome alterations, resulting in the decay of seaweeds and substantial economic losses. To investigate the seaweed-microbiome interaction, our study aimed to isolate marine bacteria and fungi that can cause Ice-Ice disease and evaluate their enzymatic characteristics for potential application in bioethanol production from seaweed biomass. Three red seaweed species (Gracilaria edulis, Kappaphycus alvarezii, and Eucheuma cottonii) were obtained for our study and placed in separate culture tanks. Among the 18 isolated marine microbial species, 12 tested positive for agar and carrageenan activity: six exhibited both activities, three displayed only agar activity, and three only carrageenan activity. DNA sequencing of the positive microbes identified ten bacteria and two yeast species. The 3,5-Dinitrosalicylic acid (DNSA) assay results revealed that the identified bacterial Caldibacillus kokeshiiformis strain FJAT-47861 exhibited the highest carrageenase activity (0.76 units/ml), while the yeast Pichia fermentans strain PM79 demonstrated the highest agarase activity (0.52 units/ml). Notably, Pichia fermentans strain PM79 exhibited the highest overall agarase and carrageenase activity, averaging 0.63 units/ml. The average carrageenase activity of all six positive microbes was 1.5 times higher than their agarase activity. These findings suggest that the 12 isolated microbes hold potential for bioethanol production from macroalgae, as their agarase and carrageenase activity indicates their ability to break down seaweed cell wall carbohydrates, causing ice-ice disease. Moreover, these results provide exciting prospects for harnessing the bioconversion capabilities of these microbes, paving the way for sustainable and efficient bioethanol production from seaweed resources. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01205-w.

20.
J Biol Chem ; 298(12): 102707, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36402445

RESUMEN

The carrageenophyte red alga Chondrus crispus produces three family 16 glycoside hydrolases (CcGH16-1, CcGH16-2, and CcGH16-3). Phylogenetically, the red algal GH16 members are closely related to bacterial GH16 homologs from subfamilies 13 and 14, which have characterized marine bacterial ß-carrageenase and ß-porphyranase activities, respectively, yet the functions of these CcGH16 hydrolases have not been determined. Here, we first confirmed the gene locus of the ccgh16-3 gene in the alga to facilitate further investigation. Next, our biochemical characterization of CcGH16-3 revealed an unexpected ß-porphyranase activity, since porphyran is not a known component of the C. crispus extracellular matrix. Kinetic characterization was undertaken on natural porphyran substrate with an experimentally determined molecular weight. We found CcGH16-3 has a pH optimum between 7.5 and 8.0; however, it exhibits reasonably stable activity over a large pH range (pH 7.0-9.0). CcGH16-3 has a KM of 4.0 ± 0.8 µM, a kcat of 79.9 ± 6.9 s-1, and a kcat/KM of 20.1 ± 1.7 µM-1 s-1. We structurally examined fine enzymatic specificity by performing a subsite dissection. CcGH16-3 has a strict requirement for D-galactose and L-galactose-6-sulfate in its -1 and +1 subsites, respectively, whereas the outer subsites are less restrictive. CcGH16-3 is one of a handful of algal enzymes characterized with a specificity for a polysaccharide unknown to be found in their own extracellular matrix. This ß-porphyranase activity in a carrageenophyte red alga may provide defense against red algal pathogens or provide a competitive advantage in niche colonization.


Asunto(s)
Chondrus , Rhodophyta , Chondrus/genética , Rhodophyta/genética , Polisacáridos , Glicósido Hidrolasas , Biología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA