Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673918

RESUMEN

Non-degradable plastics of petrochemical origin are a contemporary problem of society. Due to the large amount of plastic waste, there are problems with their disposal or storage, where the most common types of plastic waste are disposable tableware, bags, packaging, bottles, and containers, and not all of them can be recycled. Due to growing ecological awareness, interest in the topics of biodegradable materials suitable for disposable items has begun to reduce the consumption of non-degradable plastics. An example of such materials are biodegradable biopolymers and their derivatives, which can be used to create the so-called bioplastics and biopolymer blends. In this article, gelatine blends modified with polysaccharides (e.g., agarose or carrageenan) were created and tested in order to obtain a stable biopolymer coating. Various techniques were used to characterize the resulting bioplastics, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC), contact angle measurements, and surface energy characterization. The influence of thermal and microbiological degradation on the properties of the blends was also investigated. From the analysis, it can be observed that the addition of agarose increased the hardness of the mixture by 27% compared to the control sample without the addition of polysaccharides. In addition, there was an increase in the surface energy (24%), softening point (15%), and glass transition temperature (14%) compared to the control sample. The addition of starch to the gelatine matrix increased the softening point by 15% and the glass transition temperature by 6%. After aging, both compounds showed an increase in hardness of 26% and a decrease in tensile strength of 60%. This offers an opportunity as application materials in the form of biopolymer coatings, dietary supplements, skin care products, short-term and single-contact decorative elements, food, medical, floriculture, and decorative industries.


Asunto(s)
Gelatina , Polisacáridos , Gelatina/química , Polisacáridos/química , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Plásticos/química , Biopolímeros/química , Carragenina/química , Rastreo Diferencial de Calorimetría , Sefarosa/química , Plásticos Biodegradables/química
2.
Mar Drugs ; 21(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37755095

RESUMEN

Macroalgae are a potentially novel source of nutrition and biologically active molecules. Proliferative species such as Eucheuma denticulatum, Solieria chordalis (red algae) and Sargassum muticum (brown alga) constitute a huge biomass that can be exploited. In this study, we focus on the extraction of polysaccharides from these three macroalgae species and the characterization of cell wall polysaccharides such as carrageenans, fucoidans and alginates by Fourier Transform Infrared spectroscopy with Attenuated Reflectance Module (FTIR-ATR). The comparison of purified extracts with commercial solutions of fucoidans, alginates or carrageenans shows a strong similarity between the spectra. It demonstrates that the methods of extraction that have been used are also suitable purifying technics. Moreover, it validates infrared spectroscopy as a quick, simple and non-destructive method for the accurate analysis of polysaccharides. The FTIR technique applied to samples collected at different periods of the year allowed us to highlight differences in the composition of fucoidans, alginates and carrageenans. Different classes corresponding to the season can be distinguished by statistical multidimensionnal analysis (Principal Component Analysis) showing that the structure of algal polysaccharides, related to bioactivity, depends on the period of harvest. FTIR results showed that S. chordalis and E. denticulatum possess a dominant type of carrageenan called iota-carrageenan. This type of carrageenan is in the majority when the alga is at maturity in its development cycle. During its growth phase, iota-carrageenan precursors can be detected by FTIR spectra, enabling a better control of the extraction and an application of these compounds in various economic sectors. When the alga E. denticulatum is in its juvenile stage, we found traces of kappa-carrageenan and nu-carrageenan polysaccharides in some extracts.


Asunto(s)
Polisacáridos , Algas Marinas , Estaciones del Año , Carragenina , Espectroscopía Infrarroja por Transformada de Fourier , Alginatos , Control de Calidad
3.
Mar Drugs ; 21(11)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37999389

RESUMEN

Periodontitis is a microbially-induced inflammation of the periodontium that is characterized by the destruction of the periodontal ligament (PDL) and alveolar bone and constitutes the principal cause of teeth loss in adults. Periodontal tissue regeneration can be achieved through guided tissue/bone regeneration (GTR/GBR) membranes that act as a physical barrier preventing epithelial infiltration and providing adequate time and space for PDL cells and osteoblasts to proliferate into the affected area. Electrospun nanofibrous scaffolds, simulating the natural architecture of the extracellular matrix (ECM), have attracted increasing attention in periodontal tissue engineering. Carrageenans are ideal candidates for the development of novel nanofibrous GTR/GBR membranes, since previous studies have highlighted the potential of carrageenans for bone regeneration by promoting the attachment and proliferation of osteoblasts. Herein, we report the development of bi- and tri-layer nanofibrous GTR/GBR membranes based on carrageenans and other biocompatible polymers for the regeneration of periodontal tissue. The fabricated membranes were morphologically characterized, and their thermal and mechanical properties were determined. Their periodontal tissue regeneration potential was investigated through the evaluation of cell attachment, biocompatibility, and osteogenic differentiation of human PDL cells seeded on the prepared membranes.


Asunto(s)
Nanofibras , Osteogénesis , Adulto , Humanos , Carragenina/farmacología , Sulfatos , Membranas Artificiales , Periodoncio , Regeneración Ósea
4.
J Sci Food Agric ; 103(5): 2585-2592, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36303517

RESUMEN

BACKGROUND: Foaming properties and macromolecular interactions in solution among brewer's spent grain proteins (CP) and iota and lambda carrageenans (i-CG and l-CG, respectively) as a function of aqueous medium pH (2-6) and protein-polysaccharide ratio, RCP:CG (1:1, 2:1 and 4:1), were studied. At these conditions, the CP colloidal stability was favored by the formation of soluble electrostatic complexes with CG. Fluorescence (intrinsic and extrinsic) spectroscopy and dynamic light scattering techniques, including particle size and ζ-potential analysis, were applied to know the phase behavior of the biopolymer systems. The bubbling method was used to produce foams, and the foam expansion (%) and half-life time (t1/2 ) were determined. RESULTS: Both CG promoted an increased Trp fluorescence emission depending on the pH, suggesting conformational changes in CP. The CG in mixed systems produced a significant decrease in the extrinsic fluorescence intensity, mainly at low pH values, highlighting a reduction in CP surface hydrophobicity. At the examined pH range, the ζ-potential values for mixed-systems were negative, and their magnitudes were intermediate between CP and CG, revealing the associative electrostatic nature of biopolymer interactions, which were dependent on the RCP:CG . The particle size analysis confirmed the formation of soluble electrostatic complexes in solution. Finally, using i-CG at pH 2 or 3 and 2:1 RCP:CG , the best foaming properties for mixed systems were observed. CONCLUSION: The formation of electrostatic complexes with a compact assembly among biopolymers, high negative net charge, and colloidal stability convert the CP-CG mixed solutions into promising biopolymer systems for food foams production. © 2022 Society of Chemical Industry.


Asunto(s)
Proteínas de Granos , Carragenina/química , Polisacáridos , Biopolímeros/química , Proteínas
5.
Mar Drugs ; 20(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36547888

RESUMEN

The carrageenans isolated from red algae demonstrated a variety of activities from antiviral and immunomodulatory to antitumor. The diverse structure and sulfation profile of carrageenans provide a great landscape for drug development. In this study, we isolated, purified and structurally characterized κo- and λo- oligosaccharides from the marine algae Chondrus armatus. We further examined the tumor suppressive activity of both carrageenans in gastrointestinal cancer models. Thus, using MTT assay, we could demonstrate a pronounced antiproliferative effect of the carrageenans in KYSE-30 and FLO-1 as well as HCT-116 and RKO cell lines with IC50 184~405 µg/mL, while both compounds were less active in non-cancer epithelial cells RPE-1. This effect was stipulated by the inhibition of cell cycle progression in the cancer cells. Specifically, flow cytometry revealed an S phase delay in FLO-1 and HCT-116 cells under κo-carrageenan treatment, while KYSE-30 demonstrated a pronounced G2/M cell cycle delay. In line with this, western blotting revealed a reduction of cell cycle markers CDK2 and E2F2. Interestingly, κo-carrageenan inhibited cell cycle progression of RKO cells in G1 phase. Finally, isolated κo- and λo- carrageenans induced apoptosis on adenocarcinomas, specifically with high apoptosis induction in RKO cells. Overall, our data underline the potential of κo- and λo- carrageenans for colon and esophageal carcinoma drug development.


Asunto(s)
Chondrus , Neoplasias Gastrointestinales , Rhodophyta , Humanos , Carragenina/química , Chondrus/química , Rhodophyta/química , Plantas/metabolismo
6.
Molecules ; 26(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33947107

RESUMEN

Hemostasis disorders play an important role in the pathogenesis, clinical manifestations, and outcome of COVID-19. First of all, the hemostasis system suffers due to a complicated and severe course of COVID-19. A significant number of COVID-19 patients develop signs of hypercoagulability, thrombocytopenia, and hyperfibrinolysis. Patients with severe COVID-19 have a tendency toward thrombotic complications in the venous and arterial systems, which is the leading cause of death in this disease. Despite the success achieved in the treatment of SARS-CoV-2, the search for new effective anticoagulants, thrombolytics, and fibrinolytics, as well as their optimal dose strategies, continues to be relevant. The wide therapeutic potential of seaweed sulfated polysaccharides (PSs), including anticoagulant, thrombolytic, and fibrinolytic activities, opens up new possibilities for their study in experimental and clinical trials. These natural compounds can be important complementary drugs for the recovery from hemostasis disorders due to their natural origin, safety, and low cost compared to synthetic drugs. In this review, the authors analyze possible pathophysiological mechanisms involved in the hemostasis disorders observed in the pathological progression of COVID-19, and also focus the attention of researchers on seaweed PSs as potential drugs aimed to correction these disorders in COVID-19 patients. Modern literature data on the anticoagulant, antithrombotic, and fibrinolytic activities of seaweed PSs are presented, depending on their structural features (content and position of sulfate groups on the main chain of PSs, molecular weight, monosaccharide composition and type of glycosidic bonds, the degree of PS chain branching, etc.). The mechanisms of PS action on the hemostasis system and the issues of oral bioavailability of PSs, important for their clinical use as oral anticoagulant and antithrombotic agents, are considered. The combination of the anticoagulant, thrombolytic, and fibrinolytic properties, along with low toxicity and relative cheapness of production, open up prospects for the clinical use of PSs as alternative sources of new anticoagulant and antithrombotic compounds. However, further investigation and clinical trials are needed to confirm their efficacy.


Asunto(s)
Anticoagulantes/farmacología , COVID-19/complicaciones , Hemostasis/efectos de los fármacos , Polisacáridos/farmacología , Algas Marinas , Sulfatos/farmacología , Trombosis/complicaciones , Animales , Anticoagulantes/química , Anticoagulantes/farmacocinética , Anticoagulantes/uso terapéutico , COVID-19/sangre , Descubrimiento de Drogas , Humanos , Polisacáridos/química , Polisacáridos/farmacocinética , Polisacáridos/uso terapéutico , Algas Marinas/química , Sulfatos/química , Sulfatos/farmacocinética , Sulfatos/uso terapéutico , Trombosis/sangre , Trombosis/tratamiento farmacológico , Tratamiento Farmacológico de COVID-19
7.
Mar Drugs ; 18(9)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825645

RESUMEN

Different kinds of red algae are enriched with chemically diverse carbohydrates. In particular, a group of sulfated polysaccharides, which were isolated from the cell walls of red algae, gained a large amount of attention due to their broad-spectrum antimicrobial activities. Within that group, carrageenans (CGs) were expected to be the first clinically applicable microbicides that could prevent various viral infections due to their superior antiviral potency and desirable safety profiles in subclinical studies. However, their anticipated beneficial effects could not be validated in human studies. To assess the value of a second attempt at pharmacologically developing CGs as a new class of preventive microbicides, all preclinical and clinical development processes of CG-based microbicides need to be thoroughly re-evaluated. In this review, the in vitro toxicities; in vivo safety profiles; and in vitro, ex vivo, and in vivo antiviral activities of CGs are summarized according to the study volume of their target viruses, which include human immunodeficiency virus, herpesviruses, respiratory viruses, human papillomavirus, dengue virus, and other viruses along with a description of their antiviral modes of action and development of antiviral resistance. This evaluation of the strengths and weaknesses of CGs will help provide future research directions that may lead to the successful development of CG-based antimicrobial prophylactics.


Asunto(s)
Antivirales/uso terapéutico , Carragenina/uso terapéutico , Rhodophyta/química , Virosis/tratamiento farmacológico , Animales , Antivirales/efectos adversos , Antivirales/aislamiento & purificación , Carragenina/efectos adversos , Carragenina/aislamiento & purificación , Interacciones Huésped-Patógeno , Humanos , Virosis/virología
8.
J Med Virol ; 88(7): 1120-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26694200

RESUMEN

The λ-carrageenan (λ-car) is a potent and selective inhibitor of dengue virus (DENV) infection targeted to virus adsorption and internalization, due to the structural similarities with the mammalian cell receptor heparan sulfate. To further characterize the antiviral activity of λ-car, the selection and the phenotypic and genomic features of λ-car resistant DENV-2 variants are studied here in comparison to control virus. Resistant variants were rapidly selected in Vero cells after three passages in presence of the drug. No difference was detected in the growth profiles in Vero and C6/36 cells between resistant and control viruses. By contrast, the kinetics of adsorption and internalization of resistant variants in Vero cells was significantly diminished whereas entry to C6/36 cells was unaffected. By plaque purification and sequence analysis of the population, two types of resistant clones were found: some clones presented two mutations in E protein, K126E, and F422L; but other equally λ-car resistant clones had no mutations in E. Furthermore, no mutations were found in other viral proteins like prM, C, or NS1. The genomic disparity in E protein was also associated to differences in phenotype stability. The stable genomic resistance here described provides information about determinants in E protein involved in receptor binding and membrane fusion for uncoating.


Asunto(s)
Carragenina/farmacología , Virus del Dengue/efectos de los fármacos , Virus del Dengue/genética , Farmacorresistencia Viral/genética , Mutación , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Virus del Dengue/fisiología , Genoma Viral , Genotipo , Fenotipo , Células Vero , Proteínas del Envoltorio Viral/genética , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
9.
Mar Drugs ; 13(5): 2875-89, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-26006710

RESUMEN

The effect of carrageenans on tomato chlorotic dwarf viroid (TCDVd) replication and symptom expression was studied. Three-week-old tomato plants were spray-treated with iota(É©)-, lambda(λ)-, and kappa(κ)-carrageenan at 1 g·L-1 and inoculated with TCDVd after 48 h. The λ-carrageenan significantly suppressed viroid symptom expression after eight weeks of inoculation, only 28% plants showed distinctive bunchy-top symptoms as compared to the 82% in the control group. Viroid concentration was reduced in the infected shoot cuttings incubated in λ-carrageenan amended growth medium. Proteome analysis revealed that 16 tomato proteins were differentially expressed in the λ-carrageenan treated plants. Jasmonic acid related genes, allene oxide synthase (AOS) and lipoxygenase (LOX), were up-regulated in λ-carrageenan treatment during viroid infection. Taken together, our results suggest that λ-carrageenan induced tomato defense against TCDVd, which was partly jasmonic acid (JA) dependent, and that it could be explored in plant protection against viroid infection.


Asunto(s)
Carragenina/farmacología , Replicación del ADN/efectos de los fármacos , Enfermedades de las Plantas/virología , Solanum lycopersicum/genética , Solanum lycopersicum/virología , Viroides/efectos de los fármacos , Ciclopentanos/metabolismo , Oxidorreductasas Intramoleculares/genética , Lipooxigenasa/genética , Solanum lycopersicum/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Proteoma/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Viroides/genética
10.
Carbohydr Polym ; 342: 122324, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048213

RESUMEN

The system of polysaccharides from Schizymenia dubyi (Nemastomatales) was investigated. It contains a mixture of hybrid dl galactans (SH-S) and carrageenan-like polysaccharides, which were separated by means of precipitation with KCl at high concentrations. The structural features of the carrageenan-like fraction (SH-I) were investigated by methylation analysis, desulfation, uronic acid reduction, and NMR spectroscopy. It was concluded that the structure has the typical alternance α-(1 â†’ 3), ß-(1 â†’ 4) of d-galactose units, with most of the 3-linked units sulfated in O-2 (and some in O-4), and most of the 4-linked units sulfated in O-3, and substituted in O-2 by single stubs of ß-d-glucuronic acid (partly sulfated in each of the three available positions). This substituent has been only seldom found in red seaweed galactans. Rheological studies of 5 % and 10 % w/v SH, SH-S and SH-I aqueous systems, either without ions, or in KCl or CaCl2 solution gave thickening behaviors. Their random coil conformations justify the pseudoplastic behavior observed in the viscosity versus shear rate curves. As SH-S and SH-I are both contained in SH, an interpenetrating network could form in SH between the glucurono-carrageenan and the agaran, as inferred from the mechanical spectra recorded in water, especially with potassium ion.


Asunto(s)
Carragenina , Reología , Carragenina/química , Viscosidad , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Galactanos/química , Rhodophyta/química , Espectroscopía de Resonancia Magnética
11.
Gels ; 10(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39195053

RESUMEN

The viscoelastic response of carrageenan hydrogels to large amplitude oscillatory shear (LAOS) has not received much attention in the literature in spite of its relevance in industrial application. A set of hybrid carrageenans with differing chemical compositions are gelled in the presence of KCl or NaCl, and their nonlinear viscoelastic responses are systematically compared with mixtures of kappa- and iota-carrageenans of equivalent kappa-carrageenan contents. Two categories of LAOS response are identified: strain softening and strain hardening gels. Strain softening gels show LAOS non-reversibility: when entering the nonlinear viscoelastic regime, the shear storage modulus G' decreases with increasing strain, and never recovers its linear value G0 after successive LAOS sweeps. In contrast to this, strain hardening carrageenan gels show a certain amount of LAOS reversibility: when entering the nonlinear regime, G' increases with strain and shows a maximum at strain γH. For strains applied below γH, G0 shows good reversibility and the strain hardening behavior is maintained. For strains larger than γH, G0 decreases significantly indicating an irreversible structural change in the elastic network. Strain hardening and elastic recovery after LAOS prevail for hybrid carrageenan and iota-carrageenan gels, but are only achieved when blends are gelled in NaCl, suggesting a phase separated structure with a certain degree of co-aggregated interface for mixed gels.

12.
Heliyon ; 10(13): e33407, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39050420

RESUMEN

The efficiency of human immunodeficiency virus-1 (HIV-1) inhibition by sulfated polysaccharides isolated from the various families of red algae of the Far East Pacific coast were studied. The anti-HIV-1 activity of kappa and lambda-carrageenans from Chondrus armatus, original highly sulfated X-carrageenan with low content of 3,6-anhydrogalactose from Tichocarpus crinitus and i/κ-carrageenan with hybrid structure isolated from Ahnfeltiopsis flabelliformis was found. The antiviral action of these polysaccharides and its low-weight oligosaccharide was compared with commercial κ-carrageenan. Here we used the HIV-1-based lentiviral particles and evaluated that these carrageenans in non-toxic concentrations significantly suppress the transduction potential of lentiviral particles pseudotyped with different envelope proteins, targeting cells of neuronal or T-cell origin. The antiviral action of these carrageenans was confirmed using the chimeric replication competent Mo-MuLV (Moloney murine leukemia retrovirus) encoding marker eGFP protein. We found that X-carrageenans from T. crinitus and its low weight derivative and λ-carrageenan from C. armatus effectively suppress the infection caused by retrovirus. The obtained data suggest that the differences in the suppressive effect of carrageenans on the transduction efficiency of HIV-1 based lentiviral particles may be related to the structural features of the studied polysaccharides.

13.
Int J Biol Macromol ; 260(Pt 1): 129433, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232891

RESUMEN

The immunomodulatory properties of the polysaccharides (carrageenan, xylan) from Chondrus crispus (CC), Ahnfeltiopsis devoniensis (AD), Sarcodiotheca gaudichaudii (SG) and Palmaria palmata (PP) algal species were studied. Using RAW264.7 macrophages, we investigated the proliferation and migration capacity of different extracts along with their immunomodulatory activities, including nitric oxide (NO) production, phagocytosis, and secretion of pro-inflammatory cytokines. Polysaccharides from C. crispus and S. gaudichaudii effectively mitigated inflammation and improved scratch-wound healing. Polysaccharide fractions extracted under cold conditions (25 °C), including CC-1A, SG-1A and SG-1B stimulated cell proliferation, while fractions extracted under hot conditions (95 °C), including CC-3A, CC-2B and A. devoniensis (AD-3A), inhibited cell proliferation after 48 h. Furthermore, RAW264.7 cells treated with the fractions CC-3A, AD-1A, and SG-2A significantly reduced LPS-stimulated NO secretion over 24 h. Phagocytosis was significantly improved by treatment with C. crispus (CC-2B, CC-3B) and A. devoniensis (AD-3A) fractions. RAW264.7 cells treated with the CC-2A and SG-1A fractions showed elevated TGF-ß1 expression without affecting TNF-α expression at 24 h. Polysaccharide fractions of A. devoniensis (ι/κ hybrid carrageenan; AD-2A, AD-3A) showed the highest anti-coagulation activity. CC-2A and SG-1A fractions enhanced various bioactivities, suggesting they are candidates for skin-health applications. The carrageenan fractions (CC-3A: λ-, µ-carrageenan, SG-2A: ν-, ι-carrageenan) tested herein showed great potential for developing anti-inflammatory and upscaled skin-health applications.


Asunto(s)
Chondrus , Algas Comestibles , Rhodophyta , Algas Marinas , Carragenina/farmacología , Xilanos , Polisacáridos/farmacología , Algas Marinas/metabolismo , Antiinflamatorios/farmacología , Anticoagulantes
14.
Stress Biol ; 4(1): 3, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38169020

RESUMEN

In the context of climate change, the need to ensure food security and safety has taken center stage. Chemical fertilizers and pesticides are traditionally used to achieve higher plant productivity and improved plant protection from biotic stresses. However, the widespread use of fertilizers and pesticides has led to significant risks to human health and the environment, which are further compounded by the emissions of greenhouse gases during fertilizer and pesticide production and application, contributing to global warming and climate change. The naturally occurring sulfated linear polysaccharides obtained from edible red seaweeds (Rhodophyta), carrageenans, could offer climate-friendly substitutes for these inputs due to their bi-functional activities. Carrageenans and their derivatives, known as oligo-carrageenans, facilitate plant growth through a multitude of metabolic courses, including chlorophyll metabolism, carbon fixation, photosynthesis, protein synthesis, secondary metabolite generation, and detoxification of reactive oxygen species. In parallel, these compounds suppress pathogens by their direct antimicrobial activities and/or improve plant resilience against pathogens by modulating biochemical changes via salicylate (SA) and/or jasmonate (JA) and ethylene (ET) signaling pathways, resulting in increased production of secondary metabolites, defense-related proteins, and antioxidants. The present review summarizes the usage of carrageenans for increasing plant development and defense responses to pathogenic challenges under climate change. In addition, the current state of knowledge regarding molecular mechanisms and metabolic alterations in plants during carrageenan-stimulated plant growth and plant disease defense responses has been discussed. This evaluation will highlight the potential use of these new biostimulants in increasing agricultural productivity under climate change.

15.
J Appl Phycol ; : 1-22, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37360291

RESUMEN

China has reconfigured the global value chains of a wide range of commodities. This includes carrageenan, a polysaccharide extracted from specific types of red seaweeds used as a gelling and thickening agent in a wide range of applications. In the past 20 years, China has moved to centre stage in the global carrageenan processing sector, with wide-ranging implications for seaweed producing nations and farmers. This is especially the case for Indonesia, a pivotal carrageenan seaweeds producer that exports almost all seaweed to China, cemented by large Chinese investments in processing in Indonesia. Despite the importance, there is a dearth of studies on the Chinese domestic industry and associated trade and investment flows. This study fills the gap by triangulating a range of detailed industry, statistical and interview data, in multiple language sources. It finds that Chinese trade and investment linkages is of net benefit to Indonesia but that Indonesian government agencies at both central and local levels can begin to introduce terms in their favour.

16.
Foods ; 12(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37048229

RESUMEN

Gums and carrageenans are food additives widely used in food preparations to improve texture and as viscosifiers. Although they are typically added in small amounts, nowadays people tend to use more and more pre-prepared food. In this work, the content of a wide panel of trace elements in commercial products were analyzed. Carrageenans and gums (n = 13) were purchased in the Portuguese market and were from European suppliers. Samples were solubilized by closed-vessel microwave-assisted acid digestion and analyzed by ICP-MS. Globally, the content of essential trace elements decreased in the following order: Fe (on average, on the order of several tens of µg/g) > Mn > Zn > Cr > Cu > Co > Se > Mo (typically < 0.1 µg/g), while the content of non-essential/toxic trace elements decreased in the following order: Al > Sr > Rb > As > Li > Cd > Pb > Hg. The consumption of these food additives can significantly contribute to the daily requirements of some essential trace elements, namely Cr and Mo. The toxic trace elements Cd, As, Pb, and Hg were below the EU regulatory limits in all analyzed samples. Additional research is needed to define the potential risk of introducing toxic trace elements into food products through the use of these additives.

17.
Pharmaceutics ; 14(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36145528

RESUMEN

The marine algal ecosystem is characterized by a rich ecological biodiversity and can be considered as an unexploited resource for the discovery and isolation of novel bioactive compounds. In recent years, marine macroalgae have begun to be explored for their valuable composition in bioactive compounds and opportunity to obtain different nutraceuticals. In comparison with their terrestrial counterparts, Black Sea macroalgae are potentially good sources of bioactive compounds with specific and unique biological activities, insufficiently used. Macroalgae present in different marine environments contain several biologically active metabolites, including polysaccharides, oligosaccharides, polyunsaturated fatty acids, sterols, proteins polyphenols, carotenoids, vitamins, and minerals. As a result, they have received huge interest given their promising potentialities in supporting antitumoral, antimicrobial, anti-inflammatory, immunomodulatory, antiangiogenic, antidiabetic, and neuroprotective properties. An additional advantage of ulvans, fucoidans and carrageenans is the biocompatibility and limited or no toxicity. This therapeutic potential is a great natural treasure to be exploited for the development of novel drug delivery systems in both preventive and therapeutic approaches. This overview aims to provide an insight into current knowledge focused on specific bioactive compounds, which represent each class of macroalgae e.g., ulvans, fucoidans and carrageenans, respectively, as valuable potential players in the development of innovative drug delivery systems.

18.
Foods ; 11(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35892789

RESUMEN

The use of emulsifiers in processed foods and the rapid epidemic development of metabolic syndrome in Western countries over the past 20 years have generated growing interest. Evidence for the role of emulsifiers in metabolic syndrome through gut microbiota has not been clearly established, thus making it challenging for clinical nutritionists and dietitians to make evidence-based associations between the nature and the quantity of emulsifiers and metabolic disorders. This narrative review summarizes the highest quality clinical evidence currently available about the impact of food emulsifiers on gut microbiota composition and functions and the potential development of metabolic syndrome. The state-of-the-art of the different common emulsifiers is performed, highlighting where they are present in daily foods and their roles. Recent findings of in vitro, in vivo, and human studies assessing the effect of different emulsifiers on gut microbiota have been recently published. There is some progress in understanding how some food emulsifiers could contribute to developing metabolic diseases through gut microbiota alterations while others could have prebiotic effects. However, there are still many unanswered questions regarding daily consumption amounts and the synergic effects between emulsifiers' intake and responses by the microbial signatures of each individual.

19.
Plants (Basel) ; 12(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36616183

RESUMEN

Encapsulation in agriculture today is practically focused on agrochemicals such as pesticides, herbicides, fungicides, or fertilizers to enhance the protective or nutritive aspects of the entrapped active ingredients. However, one of the most promising and environmentally friendly technologies, biostimulants, is hardly explored in this field. Encapsulation of biostimulants could indeed be an excellent means of counteracting the problems posed by their nature: they are easily biodegradable, and most of them run off through the soil, losing most of the compounds, thus becoming inaccessible to plants. In this respect, encapsulation seems to be a practical and profitable way to increase the stability and durability of biostimulants under field conditions. This review paper aims to provide researchers working on plant biostimulants with a quick overview of how to get started with encapsulation. Here we describe different techniques and offer protocols and suggestions for introduction to polymer science to improve the properties of biostimulants for future agricultural applications.

20.
Mar Drugs ; 9(12): 2514-2525, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22363237

RESUMEN

Plants interact with the environment by sensing "non-self" molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae) corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA), jasmonic acid (JA) and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i) Pathogenesis-Related (PR) proteins with antifungal and antibacterial activities; (ii) defense enzymes such as pheylalanine ammonia lyase (PAL) and lipoxygenase (LOX) which determine accumulation of phenylpropanoid compounds (PPCs) and oxylipins with antiviral, antifugal and antibacterial activities and iii) enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants.


Asunto(s)
Oligosacáridos/farmacología , Enfermedades de las Plantas/inmunología , Polisacáridos/farmacología , Algas Marinas/química , Alginatos/farmacología , Carragenina/farmacología , Glucanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA