Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Angew Chem Int Ed Engl ; 60(8): 4049-4054, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33188558

RESUMEN

In anion exchange membrane fuel cells, catalytic reactions occur at a well-defined three-phase interface, wherein conventional heterogeneous catalyst layer structures exacerbate problems, such as low catalyst utilization and limited mass transfer. We developed a structural engineering strategy to immobilize a molecular catalyst tetrakis(4-methoxyphenyl)porphyrin cobalt(II) (TMPPCo) on the side chains of an ionomer (polyfluorene, PF) to obtain a composite material (PF-TMPPCo), thereby achieving a homogeneous catalysis environment inside ion-flow channels, with greatly improved mass transfer and turnover frequency as a result of 100 % utilization of the catalyst molecules. The unique structure of the homogeneous catalysis system comprising interconnected nanoreactors exhibits advantages of low overpotential and high fuel-cell power density. This strategy of reshaping of the catalyst layer structure may serve as a new platform for applications of many molecular catalysts in fuel cells.

2.
Molecules ; 25(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230750

RESUMEN

To advance the technology of polymer electrolyte membrane fuel cells, material development is at the forefront of research. This is especially true for membrane electrode assembly, where the structuring of its various layers has proven to be directly linked to performance increase. In this study, we investigate the influence of the various ingredients in the cathode catalyst layer, such as ionomer content, catalyst loading and catalyst type, on the oxygen and ion transport using a full parametric analysis. Using two types of catalysts, 40 wt.% Pt/C and 60 wt.% Pt/C with high surface area carbon, the ionomer/carbon content was varied between 0.29-1.67, while varying the Pt loading in the range of 0.05-0.8 mg cm-2. The optimum ionomer content was found to be dependent on the operating point and condition, as well as catalyst loading and type. The data set provided in this work gives a starting point to further understanding of structured catalyst layers.


Asunto(s)
Carbono/química , Electroquímica/métodos , Membranas Artificiales , Oxígeno/química , Platino (Metal)/química , Polímeros/química , Catálisis , Electrodos , Electrólitos/química , Iones/química , Microscopía Electrónica de Rastreo
3.
Molecules ; 25(15)2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32722653

RESUMEN

Catalyst layer (CL) ionomers control several transport and interfacial phenomena including long-range transport of protons, local transport of oxygen to Pt catalyst, effective utilization of Pt catalyst, electrochemical reaction kinetics and double-layer capacitance. In this work, the variation of these properties, as a function of humidity, for CLs made with two ionomers differing in side-chain length and equivalent weight, Nafion-1100 and Aquivion-825, was investigated. This is the first study to examine humidity-dependent oxygen reduction reaction (ORR) kinetics in-situ for CLs with different ionomers. A significant finding is the observation of higher ORR kinetic activity (A/cm2Pt) for the Aquivion-825 CL than for the Nafion-1100 CL. This is attributed to differences in the interfacial protonic concentrations at Pt/ionomer interface in the two CLs. The differences in Pt/ionomer interface is also noted in a higher local oxygen transport resistance for Aquivion-825 CLs compared to Nafion-1100 CLs, consistent with stronger interaction between ionomer and Pt for ionomer with more acid groups. Similar dependency on Pt utilization (ratio of electrochemically active area at any relative humidity (RH) to that at 100% RH) as a function of RH is observed for the two CLs. As expected, strong influence of humidity on proton conduction is observed. Amongst the two, the CL with high equivalent weight ionomer (Nafion-1100) exhibits higher conduction.


Asunto(s)
Técnicas Electroquímicas , Polímeros de Fluorocarbono/química , Iones/química , Platino (Metal)/química , Catálisis , Suministros de Energía Eléctrica , Membranas Artificiales , Oxígeno/química , Protones
4.
Molecules ; 24(19)2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569772

RESUMEN

The effects of carbon monoxide (CO) and hydrogen sulfide (H2S) in concentrations close to their respective limits in the Hydrogen Quality Standard ISO 14687-2:2012 on the performance of proton exchange membrane fuel cells (PEMFCs) with ultralow-loaded platinum anode catalyst layers (CLs) were investigated. The anodic loadings were 50, 25, and 15 µg/cm2, which represent the current state-of-the-art, target, and stretch target, respectively, for future automotive PEMFCs. Additionally, the effect of shut-down and start-up (SD/SU) processes on recovery from sulfur poisoning was investigated. CO at an ISO concentration of 0.2 ppm caused severe voltage losses of ~40-50% for ultralow-loaded anode CLs. When H2S was in the fuel, these anode CLs exhibited both a nonlinear decrease in tolerance toward sulfur and an improved self-recovery during shut-down and start-up (SD/SU) processes. This observation was hypothesized to have resulted from the decrease in the ratio between CL thickness and geometric cell area, as interfacial effects of water in the pores increasingly impacted the performance of ultrathin CLs. The results indicate that during the next discussions on the Hydrogen Quality Standard, a reduction in the CO limit could be a reasonable alternative considering future PEMFC anodic loadings, while the H2S limit might not require modification.


Asunto(s)
Monóxido de Carbono/química , Electrodos , Sulfuro de Hidrógeno/química , Platino (Metal)/química , Fuentes de Energía Bioeléctrica , Catálisis , Suministros de Energía Eléctrica , Reproducibilidad de los Resultados
5.
Sci Rep ; 14(1): 7299, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538652

RESUMEN

In polymer membrane fuel cells (PEMFC), the pore microstructure and the effective diffusion coefficient ( D eff ) of the catalytic layer have a significant impact on the overall performance of the fuel cell. In this work, numerical methods to simulate PEMFC catalytic layers were used to study the effect of isotropy ( I xy ) on the D eff . The proposed methodology studies reconstructed systems by Simulated Annealing imaging with different surface fractions of microstructures composed by two diffusive phases: agglomerates and pores. The D eff is determined numerically by the Finite Volume Method solved for Fick's First Law of Diffusion. The results show that the proposed methodology can effectively quantify the effect of isotropy on the D eff for both diffusion phases. Two trends were obtained in the magnitude of the D eff concerning the change in isotropy: (1) an analytical equation is proposed in this article for D eff ≥ 5 % D 0 and (2) numerical solutions are determined for D eff < 5 % D 0 . In our analytical equation are both a lineal and a logarithmic sweep. When the surface fraction is ∅ = 50%, the D eff decreases more linearly than ∅ = 10 % at the beginning of the isotropy change, which indicates that small changes in isotropy in the particulate material modify it drastically; under these conditions the diffusion coefficient in the pore is predominant. (3) When the surface fraction is less than 50%, the D eff decreases more exponentially at the beginning and more linearly at the end of the isotropy change, which shows that small isotropy changes in the bar-aligned material drastically alter it. In this trend, diffusion in the agglomerate is less affected by isotropy. The proposed methodology can be used as a design tool to improve the mass transport in porous PEMFC electrodes.

6.
J Colloid Interface Sci ; 673: 934-942, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38909492

RESUMEN

Exploring the intrinsic relationship between the network structure and the performance of catalyst layer (CL) by rational design its structure is of paramount importance for proton exchange membrane (PEM) electrolyzers. This study reveals the relative effect of polymeric dispersion evolution on oxygen evolution reaction (OER) performance and cell voltage loss and linked to CL network structure. The results show that although the dispersed particle size of the ionomer and ink increases with increasing the solubility parameter (δ) difference between the mixed solvent and the ionomer, MeOH-cat (ink from MeOH aqueous solution) has the largest ionomer and ink particle size resulting in the poorest stability, but has comparable OER overpotential to that of IPA-cat (249 mV@10 mA cm-2), which has the smallest dispersed size. While at 100 mA cm-2, the overpotential of the ink rises as the particle size increases, suggesting that the electrode structure becomes more influential as the current density increases. Quantitatively analyzed the electrolyzers' voltage losses and determined that the CL from MeOH-cat has the lowest kinetic overpotential. However, its performance is the worst because of the insufficient network structure of CL, resulting in an output of 1.96 V at 1.5 A cm-2. Comparatively, the CL from IPA-cat has the highest kinetic overpotential yet can achieve the greatest performance of 1.76 V at 2 A cm-2 due to its homogeneous network structure and optimal mass transport. Furthermore, the performance variation becomes more pronounced as current density rises. Hence, this study highlights the significant impact of CL structure on electrolyzer's performance. To improve performance in PEM water electrolysis technology, especially for large work current density, it is crucial to enhance the CL's network structure.

7.
ACS Appl Mater Interfaces ; 16(32): 42363-42371, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39078706

RESUMEN

The mass transport and ion conductivity in the catalyst layer are important for fuel cell performances. Here, we report an in situ-grown ultrathin catalyst layer (UTCL) to reduce the oxygen mass transport and a surface ionomer-coated gas diffusion layer method to reduce the ion conducting resistance. A significantly reduced catalyst layer thickness (ca. 1 µm) is achieved, and coupled with the ionomer introduction method, the ultrathin catalyst layer is in good contact with the membrane, resulting in high ion conductivity and high Pt utilization. This ultrathin catalyst layer is suitable for both proton exchange membrane fuel cells and anion exchange membrane fuel cells, giving peak power densities of 2.24 and 1.11 W cm-2, respectively, which represent an increase of more than 30% compared with the membrane electrode assembly (MEA) fabricated by using traditional Pt/C power catalysts. Electrochemical impedance spectra and limiting current tests demonstrate the reduced charge transfer, mass transfer, and ohmic resistances in the ultrathin catalyst layer membrane electrode assembly, resulting in the promoted fuel cell performances.

8.
ACS Nano ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984372

RESUMEN

Multiscale design of catalyst layers (CLs) is important to advancing hydrogen electrochemical conversion devices toward commercialized deployment, which has nevertheless been greatly hampered by the complex interplay among multiscale CL components, high synthesis cost and vast design space. We lack rational design and optimization techniques that can accurately reflect the nanostructure-performance relationship and cost-effectively search the design space. Here, we fill this gap with a deep generative artificial intelligence (AI) framework, GLIDER, that integrates recent generative AI, data-driven surrogate techniques and collective intelligence to efficiently search the optimal CL nanostructures driven by their electrochemical performance. GLIDER achieves realistic multiscale CL digital generation by leveraging the dimensionality-reduction ability of quantized vector-variational autoencoder. The powerful generative capability of GLIDER allows the efficient search of the optimal design parameters for the Pt-carbon-ionomer nanostructures of CLs. We also demonstrate that GLIDER is transferable to other fuel cell electrode microstructure generation, e.g., fibrous gas diffusion layers and solid oxide fuel cell anode. GLIDER is of potential as a digital tool for the design and optimization of broad electrochemical energy devices.

9.
Adv Mater ; 36(28): e2402780, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38661112

RESUMEN

The high cost of proton exchange membrane water electrolysis (PEMWE) originates from the usage of precious materials, insufficient efficiency, and lifetime. In this work, an important degradation mechanism of PEMWE caused by dynamics of ionomers over time in anode catalyst layer (ACL), which is a purely mechanical degradation of microstructure, is identified. Contrary to conventional understanding that the microstructure of ACL is static, the micropores are inclined to be occupied by ionomers due to the localized swelling/creep/migration, especially near the ACL/PTL (porous transport layer) interface, where they form transport channels of reactant/product couples. Consequently, the ACL with increased ionomers at PTL/ACL interface exhibit rapid and continuous degradation. In addition, a close correlation between the microstructure of ACL and the catalyst ink is discovered. Specifically, if more ionomers migrate to the top layer of the ink, more ionomers accumulate at the ACL/PEM interface, leaving fewer ionomers at the ACL/PTL interface. Therefore, the ionomer distribution in ACL is successfully optimized, which exhibits reduced ionomers at the ACL/PTL interface and enriches ionomers at the ACL/PEM interface, reducing the decay rate by a factor of three when operated at 2.0 A cm-2 and 80 °C. The findings provide a general way to achieve low-cost hydrogen production.

10.
ACS Appl Mater Interfaces ; 16(3): 3311-3324, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38212130

RESUMEN

Species transport in thin-film Nafion heavily influences proton-exchange membrane (PEMFC) performance, particularly in low-platinum-loaded cells. Literature suggests that phase-segregated nanostructures in hydrated Nafion thin films can reduce species mobility and increase transport losses in cathode catalyst layers. However, these structures have primarily been observed at silicon-Nafion interfaces rather than at more relevant material (e.g., Pt and carbon black) interfaces. In this work, we use neutron reflectometry and X-ray photoelectron spectroscopy to investigate carbon-supported Nafion thin films. Measurements were taken in humidified environments for Nafion thin films (≈30-80 nm) on four different carbon substrates. Results show a variety of interfacial morphologies in carbon-supported Nafion. Differences in carbon samples' roughness, surface chemistry, and hydrophilicity suggest that thin-film Nafion phase segregation is impacted by multiple substrate characteristics. For instance, hydrophilic substrates with smooth surfaces correlate with a high likelihood of lamellar phase segregation parallel to the substrate. When present, the lamellar structures are less pronounced than those observed at silicon oxide interfaces. Local oscillations in water volume fraction for the lamellae were less severe, and the lamellae were thinner and were not observed when the water was removed, all in contrast to Nafion-silicon interfaces. For hydrophobic and rough samples, phase segregation was more isotropic rather than lamellar. Results suggest that Nafion in PEMFC catalyst layers is less influenced by the interface compared with thin films on silicon. Despite this, our results demonstrate that neutron reflectometry measurements of silicon-Nafion interfaces are valuable for PEMFC performance predictions, as water uptake in the majority Nafion layers (i.e., the uniformly hydrated region beyond the lamellar region) trends similarly with thickness, regardless of support material.

11.
ACS Nano ; 18(34): 23331-23340, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39151059

RESUMEN

Iridium, the most widely used anode catalyst in proton exchange membrane water electrolysis (PEMWE), must be used minimally due to its high price and limited supply. However, reducing iridium loading poses challenges due to abnormally large anode polarization. Herein, we present an anode catalyst layer (CL) based on a one-dimensional iridium nanofiber that enables a high current density operation of 3 A cm-2 at 1.86 V, even at an ultralow loading (0.07 mgIr cm-2). The performance is maintained even with a Pt coating-free porous transport layer (PTL) because our nanofiber CL circumvents the interfacial electron transport problem caused by the native oxide on the Ti PTL. We attribute this to the low work function and the low-ionomer-exposed surface of the nanofiber CL, which prevent the formation of Schottky contact at the native oxide interface. These results highlight the significance of optimizing the electronic properties of the CL/PTL interface for low-iridium-loading PEMWE.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38652166

RESUMEN

Reducing the use of platinum group metals is crucial for the large-scale deployment of proton exchange membrane (PEM) water electrolysis systems. The optimization of the cathode catalyst layer and decrease of the cathode Pt loading are usually overlooked due to the predominant focus of research on the anode. However, given the close relationship between the rate of hydrogen permeation through the membrane in an operating cell and the local hydrogen concentration near the membrane-cathode interface, the structural design of the cathode catalyst layer is considered to be of pivotal importance for reducing H2 crossover, particularly in combination with the use of thin (≲50 µm) membranes. In this study, we have conducted a detailed investigation on the cathode structural parameters, covering the Pt wt % of the Pt/C electrocatalyst, the type of carbon support (Vulcan and high surface area carbon, HSAC), and the ionomer content, with a goal to reduce Pt loading to 0.025 mgPt/cm2 while minimizing the rate of cell hydrogen crossover. We found that the electrochemical performance is mainly influenced by the changes in the interfacial contact resistance due to variations in the cathode thickness. Both the Pt wt % in Pt/C and the ionomer content showed a positive correlation with the measured H2 in O2% in the anode outlet, whereas the Pt loading exhibited an opposite trend. The rate of hydrogen crossover was analyzed in relation to the calculated local volumetric current density within the cathode catalyst layer. Based on the obtained hydrogen mass transfer coefficient, a cathode catalyst layer comprising 40 wt % Pt on HSAC support with an ionomer-to-carbon (I/C) ratio of 0.35 was found to be an optimum configuration for achieving a low Pt loading of 0.025 mgPt/cm2 and a reduced rate of hydrogen crossover.

13.
ACS Appl Mater Interfaces ; 16(20): 25938-25952, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38740377

RESUMEN

Polymer electrolyte fuel cells are an essential technology for future local emission-free mobility. One of the critical challenges for thriving commercialization is water management in the cells. We propose small- and wide-angle X-ray scattering as a suitable diagnostic tool to quantify the liquid saturation in the catalyst layer and determine the hydration of the ion-conducting membrane in real operating conditions. The challenges that may occur in operando data collection are described in detail─separation of the anode and cathode, cell alignment to the beam, X-ray radiation damage, and the possibility of membrane swelling. A synergistic development of experimental setup, data acquisition, and data interpretation circumvents the major challenges and leads to practical and reliable insights.

14.
J Colloid Interface Sci ; 671: 344-353, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815371

RESUMEN

In view of a catalyst layer (CL) with low-Pt causing higher local transport resistance of O2 (Rlocal), we propose a multi-study methodology that combines CO poisoning, the limiting current density method, and electrochemical impedance spectroscopy to reveal how real CL interfaces dominate Rlocal. Experimental results indicate that the ionomer is not evenly distributed on the catalyst surface, and the uniformity of ionomer distribution does not show a positive correlation with the ionomer content. When the ionomer coverage on the supported catalyst surface is below 20 %, the ECSA is only 10 m2·g-1, and the ionomer coverage on the supported catalyst surface reaches 60 %, the ECSA is close to 40 m2·g-1. The ECSA has a positive correlation with ionomer coverage. Because the ECSA is measured by CO poisoning, it can be inferred that the platinum contacted with ionomer can generate effective active sites. Furthermore, a more uniform distribution of ionomer can create additional proton transport channels and reduce the distance for oxygen transport from the catalyst layer bulk to the active sites. A higher ECSA and a shorter distance for oxygen transport will reduce the Rlocal, leading to better performance.

15.
Materials (Basel) ; 17(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38591377

RESUMEN

The determination of the electrochemically active surface area (ECSA) of a catalyst layer (CL) of a non-precious metal catalyst is of fundamental importance in optimizing the design of a durable CL for anion exchange membrane (AEM) water electrolysis, but has yet to be developed. Traditional double layer capacitance (Cdl), measured by cyclic voltammetry (CV), is not suitable for the estimation of the ECSA due to the nonconductive nature of Ni-based oxides and hydroxides in the non-Faradaic region. This paper analyses the applicability of electrochemical impedance spectroscopy (EIS) compared to CV in determining capacitances for the estimation of the ECSA of AEM-based CLs in an aqueous KOH electrolyte solution. A porous electrode transmission line (TML) model was employed to obtain the capacitance-voltage dependence from 1.0 V to 1.5 V at 20 mV intervals, covering both non-Faradic and Faradic regions. This allows for the identification of the contribution of a NiFe-layered double hydroxide (LDH) catalyst and supports in a CL, to capacitances in both non-Faradic and Faradic regions. A nearly constant double layer capacitance (Qdl) observed in the non-Faradic region represents the interfaces between catalyst supports and electrolytes. The capacitance determined in the Faradic region by EIS experiences a peak capacitance (QF), which represents the maximum achievable ECSA in an AEMCL during reactions. The EIS method was additionally validated in durability testing. An approximate 30% loss of QF was noted while Qdl remained unchanged following an eight-week test at 1 A/cm2 constant current density, implying that QF, determined by EIS, is sensitive to and therefore suitable for assessing the loss of ECSA. This universal method can provide a reasonable estimate of catalyst utilization and enable the monitoring of catalyst degradation in CLs, in particular in liquid alkaline electrolyte water electrolysis systems.

16.
Adv Sci (Weinh) ; : e2407570, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352320

RESUMEN

Anode cell reversal typically leads to severe carbon corrosion and catalyst layer collapse, which significantly compromises the durability of proton exchange membrane fuel cells. Herein, three types of commercial carbon supports with various structures are facilely coated by polyaniline (PANI) and subsequently fabricated into reversal-tolerant anodes (RTAs). Consequently, the optimized PANI-coated catalyst RTAs demonstrate enhanced polarization performance and improved reversal tolerance compared to their uncoated counterparts, thus confirming the universality of this coating strategy. Essentially, the surface engineering introduced by PANI coating incorporates abundant N-groups and enhances coulombic interactions with ionomer side chains, which in turn reduces lower carbon exposure, promotes more uniform Pt deposition, and ensures better ionomer distribution. Accordingly, the membrane-electrode-assembly containing the Pt/PANI/XC-72R-1+IrO2 RTA presents a 100 mV (at 2500 mA cm-2) polarization performance improvement and 26-fold reduction in the degradation rate compared to the uncoated counterpart. This work provides a universal strategy for developing durable anodes and lays the groundwork for the practical fabrication of high-performance, low-degradation RTA.

17.
ACS Appl Mater Interfaces ; 16(13): 16408-16417, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38502312

RESUMEN

The widespread application of proton exchange membrane water electrolyzers (PEMWEs) is hampered by insufficient lifetime caused by degradation of the anode catalyst layer (ACL). Here, an important degradation mechanism has been identified, attributed to poor mechanical stability causing the mass transfer channels to be blocked by ionomers under operating conditions. By using liquid-phase atomic force microscopy, we directly observed that the ionomers were randomly distributed (RD) in the ACL, which occupied the mass transfer channels due to swelling, creeping, and migration properties. Interestingly, we found that alternating treatments of the ACL in different water/temperature environments resulted in forming three-dimensional ionomer networks (3D INs) in the ACL, which increased the mechanical strength of microstructures by 3 times. Benefitting from the efficient and stable mass transfer channels, the lifetime was improved by 19 times. A low degradation rate of approximately 3.0 µV/h at 80 °C and a high current density of 2.0 A/cm2 was achieved on a 50 cm2 electrolyzer. These data demonstrated a forecasted lifetime of 80 000 h, approaching the 2026 DOE lifetime target. This work emphasizes the importance of the mechanical stability of the ACL and offers a general strategy for designing and developing a durable PEMWE.

18.
ACS Nano ; 18(18): 11598-11630, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38669279

RESUMEN

The membrane electrode assembly (MEA) is the core component of proton exchange membrane fuel cells (PEMFCs), which is the place where the reaction occurrence, the multiphase material transfer and the energy conversion, and the development of MEA with high activity and long stability are crucial for the practical application of PEMFCs. Currently, efforts are devoted to developing the regulation of MEA nanostructure engineering, which is believed to have advantages in improving catalyst utilization, maximizing three-phase boundaries, enhancing mass transport, and improving operational stability. This work reviews recent research progress on platinum group metal (PGM) and PGM-free catalysts with multidimensional nanostructures, catalyst layers (CLs), and nano-MEAs for PEMFCs, emphasizing the importance of structure-function relationships, aiming to guide the further development of the performance for PEMFCs. Then the design strategy of the MEA interface is summarized systematically. In addition, the application of in situ and operational characterization techniques to adequately identify current density distributions, hot spots, and water management visualization of MEAs is also discussed. Finally, the limitations of nanostructured MEA research are discussed and future promising research directions are proposed. This paper aims to provide valuable insights into the fundamental science and technical engineering of efficient MEA interfaces for PEMFCs.

19.
Nanomaterials (Basel) ; 14(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38607137

RESUMEN

The development of direct dimethyl ether (DME) solid oxide fuel cells (SOFCs) has several drawbacks, due to the low catalytic activity and carbon deposition of conventional Ni-zirconia-based anodes. In the present study, the insertion of 2.0 wt.% Ru-Ce0.7Zr0.3O2-δ (ruthenium-zirconium-doped ceria, Ru-CZO) as an anode catalyst layer (ACL) is proposed to be a promising solution. For this purpose, the CZO powder was prepared by the sol-gel synthesis method, and subsequently, nanoparticles of Ru (1.0-2.0 wt.%) were synthesized by the impregnation method and calcination. The catalyst powder was characterized by BET-specific surface area, X-ray diffraction (XRD), field emission scanning electron microscopy with an energy-dispersive spectroscopy detector (FESEM-EDS), and transmission electron microscopy (TEM) techniques. Afterward, the catalytic activity of Ru-CZO catalyst was studied using DME partial oxidation. Finally, button anode-supported SOFCs with Ru-CZO ACL were prepared, depositing Ru-CZO onto the anode support and using an annealing process. The effect of ACL on the electrochemical performance of cells was investigated under a DME and air mixture at 750 °C. The results showed a high dispersion of Ru in the CZO solid solution, which provided a complete DME conversion and high yields of H2 and CO at 750 °C. As a result, 2.0 wt.% Ru-CZO ACL enhanced the cell performance by more than 20% at 750 °C. The post-test analysis of cells with ACL proved a remarkable resistance of Ru-CZO ACL to carbon deposition compared to the reference cell, evidencing the potential application of Ru-CZO as a catalyst as well as an ACL for direct DME SOFCs.

20.
Materials (Basel) ; 16(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37959530

RESUMEN

The optimized design of the catalyst layer (CL) plays a vital role in improving the performance of polymer electrolyte membrane fuel cells (PEMFCs). The need to improve transport and catalyst activity is especially important at low Pt loading, where local oxygen and ionic transport resistances decrease the performance due to an inevitable reduction in active catalyst sites. In this work, local oxygen and ionic transport are analyzed using direct numerical simulation on virtually reconstructed microstructures. Four morphologies are examined: (i) heterogeneous, (ii) uniform, (iii) uniform vertically-aligned, and (iv) meso-porous ionomer distributions. The results show that the local oxygen transport resistance can be significantly reduced, while maintaining good ionic conductivity, through the design of high porosity CLs (ε≃ 0.6-0.7) with low agglomerated ionomer morphologies. Ionomer coalescence into thick films can be effectively mitigated by increasing the uniformity of thin films and reducing the tortuosity of ionomer distribution (e.g., good ionomer interconnection in supports with a vertical arrangement). The local oxygen resistance can be further decreased by the use of blended ionomers with enhanced oxygen permeability and meso-porous ionomers with oxygen transport routes in both water and ionomer. In summary, achieving high performance at low Pt loading in next-generation CLs must be accomplished through a combination of high porosity, uniform and low tortuosity ionomer distribution, and oxygen transport through activated water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA