RESUMEN
Lakes receive and actively process terrestrial dissolved organic matter (DOM) and play an important role in the global carbon cycle. Urbanization results in elevated inputs of nonpoint-source DOM to headwater streams. Retention of water in lakes allows time for alteration and transformation of the chemical composition of DOM by microbes and UV radiation. Yet, it remains unclear how anthropogenic and natural drivers impact the composition and biolability of DOM in non-pristine lakes. We used optical spectroscopy, Fourier transform ion cyclotron mass spectrometry, stable isotopic measurements, and laboratory bioincubations to investigate the chemical composition and biolability of DOM across two large data sets of lakes associated with a large gradient of urbanization in lowland Eastern China, encompassing a total of 99 lakes. We found that increased urban land use, gross domestic products, and population density in the catchment were associated with an elevated trophic level index, higher chlorophyll-a, higher bacterial abundance, and a higher amount of organic carbon with proportionally higher contribution of aliphatic and peptide-like DOM fractions, which can be highly biolabile. Catchment areas, water depth, lake area: catchment area, gross primary productivity, δ18O-H2O, and bacterial abundance, however, had comparatively little linkage with DOM composition and biolability. Urban land use is currently intensifying in many developing countries, and our results anticipate an increase in the level of biolabile aliphatic DOM from nonpoint sources and accelerated carbon cycling in lake ecosystems in such regions.
Asunto(s)
Materia Orgánica Disuelta , Ecosistema , Carbono/análisis , Lagos/química , RíosRESUMEN
An in-depth understanding of the rainfall-runoff process is essential for effective stormwater management. However, the understanding of the hierarchy of rainfall characteristics in terms of their importance in influencing runoff generation is limited. This paper investigates the influence of rainfall characteristics and catchment characteristics on runoff generation in urban catchments. The outcomes showed that there are 4 dominant factors affecting runoff generation: total precipitation TP and maximum 60-min rainfall intensity MAX60 are the two top-ranked factors while average rainfall intensity RI and maximum 5-min rainfall intensity MAX5 are ranked second. Additionally, compared to the moderate rainfall regime (MR), the heavy rainfall regime (HR) tends to produce higher peak flow rates, higher total inflow per unit area, and lower runoff control effect. Note that the antecedent precipitation has a more significant effect on runoff generation and is even the dominant factor when rainstorm events with daily rainfall larger than 50 mm are not considered. The results of analyzing the influence of catchment characteristics suggest that only under HR regime conditions do the catchment characteristics have an impact on runoff generation and behave as smaller catchment areas, and higher proportions of green landscapes always lead lower peak flow rates, lower total inflows per unit area, and higher runoff control effects.
Asunto(s)
Movimientos del Agua , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Lluvia , Contaminantes Químicos del Agua/análisisRESUMEN
Species' response to abiotic environmental variation can be influenced by local community structure and interspecific interactions, particularly in restricted habitats such as islands and lakes. In temperate lakes, future increase in water temperature and run-off of terrestrial (allochthonous) dissolved organic carbon (DOC) are predicted to alter community composition and the overall ecosystem productivity. However, little is known about how the present community structure and abiotic environmental variation interact to affect the abundance of native fish populations. We used a space-for-time approach to study how local community structure interact with lake morphometric and climatic characteristics (i.e. temperature and catchment productivity) to affect brown trout (Salmo trutta L.) yield in 283 Norwegian lakes located in different biogeographical regions. Brown trout yield (based on data from standardized survey gill net fishing; g 100 m(-2) gill net night(-1)) was generally lower in lakes where other fish species were present than in lakes with brown trout only. The yield showed an overall negative relationship with increasing temperature and a positive relationship with lake shoreline complexity. Brown trout yield was also negatively correlated with DOC load (measured using Normalized Difference Vegetation Index as a proxy) and lake size and depth (measured using terrain slope as a proxy), but only in lakes where other fish species were present. The observed negative response of brown trout yield to increasing DOC load and proportion of the pelagic open-water area is likely due to restricted (littoral) niche availability and competitive dominance of more pelagic fishes such as Arctic charr (Salvelinus alpinus (L.)). Our study highlights that, through competitive interactions, the local community structure can influence the response of a species' abundance to variation in abiotic conditions. Changes in biomass and niche use of top predators (such as the brown trout), associated with predicted changes in direct and indirect climatic factors, may have further influences on the structure and function of temperate lake ecosystems.
Asunto(s)
Biodiversidad , Lagos , Trucha/fisiología , Animales , Organismos Acuáticos/fisiología , Explotaciones Pesqueras , Modelos Biológicos , Noruega , Densidad de PoblaciónRESUMEN
Phosphate sorption-desorption parameters like maximum phosphorus (P) adsorption capacity (P max), equilibrium phosphorus concentration (EPC), water desorbable P (α), potentially bioavailable P (ß), and mobility index (α/ß ratio) were determined in order to understand the sediment source-sink nature in Guaporé catchment in southern Brazil during summer and winter 2013 and 2014. The result showed a significant (p = 0.05) variation across sediment site or seasons and revealed the most sorption-desorption parameters (P max, α, ß) with the increments following the order urban sediments > intensive agriculture under CT > intensive agriculture under NT > low agriculture sub-catchments (sub1 and sub2) > native forest. In the main river points, these parameters decreased along the river (P1 to P5). The results were more obvious in winter than the summer season. In contrast, the low values of λ and α/ß ratio in the sediment from native forest and relatively less polluted catchment (sub1) during summer season show the quick P desorption when compared to specific Fe and Al oxides bound to stable P in intensive agriculture sediments. These findings clearly indicated that agricultural practices, sediment characteristics, and hydrological factors have a major impact on seasonal sediment P bioavailability and mobility. The urban untreated discharges may be a single major P source and, if it is not wisely managed, proves a major threat to water quality. These results have serious implications for the river ecosystem and will be of great importance to improve the environmental and economic performance of agricultural practices aiming to reduce soil-based P legacy to surface waters.
Asunto(s)
Agricultura , Sedimentos Geológicos/química , Fósforo/análisis , Adsorción , Brasil , Ecosistema , Monitoreo del Ambiente , Cinética , Ríos , Estaciones del Año , Suelo , Calidad del AguaRESUMEN
Tryptophan-like fluorescence (TLF) is used to indicate anthropogenic inputs of dissolved organic matter (DOM), typically from wastewater, in rivers. We hypothesised that other sources of DOM, such as groundwater and planktonic microbial biomass can also be important drivers of riverine TLF dynamics. We sampled 19 contrasting sites of the River Thames, UK, and its tributaries. Multivariate mixed linear models were developed for each site using 15 months of weekly water quality observations and with predictor variables selected according to the statistical significance of their linear relationship with TLF following a stepwise procedure. The variables considered for inclusion in the models were potassium (wastewater indicator), nitrate (groundwater indicator), chlorophyll-a (phytoplankton biomass), and Total bacterial Cells Counts (TCC) by flow cytometry. The wastewater indicator was included in the model of TLF at 89 % of sites. Groundwater was included in 53 % of models, particularly those with higher baseflow indices (0.50-0.86). At these sites, groundwater acted as a negative control on TLF, diluting other potential sources. Additionally, TCC was included positively in the models of six (32 %) sites. The models on the Thames itself using TCC were more rural sites with lower sewage inputs. Phytoplankton biomass (Chlorophyll-a) was only used in two (11 %) site models, despite the seasonal phytoplankton blooms. It is also notable that, the wastewater indicator did not always have the strongest evidence for inclusion in the models. For example, there was stronger evidence for the inclusion of groundwater and TCC than wastewater in 32 % and 5 % of catchments, respectively. Our study underscores the complex interplay of wastewater, groundwater, and planktonic microbes, driving riverine TLF dynamics, with their influence determined by site characteristics.
Asunto(s)
Monitoreo del Ambiente , Ríos , Triptófano , Ríos/química , Monitoreo del Ambiente/métodos , Triptófano/análisis , Aguas Residuales/química , Agua Subterránea/química , Fluorescencia , Contaminantes Químicos del Agua/análisis , Fitoplancton , Clorofila A/análisisRESUMEN
Mercury (Hg) is a toxic metal that presents a major risk to ecosystems, biota, human health, and remains a priority concern. In temperate and boreal lakes Hg and methylmercury (MMHg) are expected to vary as a function of atmospheric Hg deposition, lake water chemistry, catchment characteristics and climate variables. The aim of this study was to quantify Hg and MMHg in unperturbed oligotrophic lakes and to identify the factors controlling their distribution. We first hypothesized that lake Hg (and MMHg to lesser extent) spatial variations are linked to atmospheric deposition, catchment characteristics, and terrestrial exportation of dissolved organic carbon (DOC). We secondly examined if lake Hg concentrations have followed the decrease in atmospheric Hg emission observed between the mid-1990s to the end-2010s. We found that overall, atmospheric Hg has little impact on lake Hg and MMHg concentrations, which are both primarily influenced by DOC input originating from the forest catchment. The relationship between DOC and Hg differed between the spring and the fall, with a Hg-to-DOC ratio twice as high in spring. This seems related to snowmelt input of Hg (with a relatively reduced input of DOC) or the internal lake build-up of Hg during the ice-covered period. Of the 10 lakes intensively visited over a 20-year period, only 3 showed significant lake Hg decreases despite significant negative trends in atmospheric Hg concentrations, suggesting a lag between atmospheric and surface water temporal trends. Overall, terrestrial catchments retain around 80% of atmospheric Hg implying that large Hg pools have been built up in soils in the last decades. As such, the reduction of atmospheric Hg alone will not necessarily result in Hg decreases in lakes, since the Hg concentrations may be modulated by DOC export trends and catchment characteristics. This stresses the need to improve our understanding of the processes governing Hg transfers from catchments into lakes.
Asunto(s)
Monitoreo del Ambiente , Lagos , Mercurio , Contaminantes Químicos del Agua , Lagos/química , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Compuestos de Metilmercurio/análisis , Estaciones del Año , EcosistemaRESUMEN
Browning of Fennoscandian boreal lakes is raising concerns for negative ecosystem impacts as well as reduced drinking water quality. Declined sulfur deposition and warmer climate, along with afforestation, other climate impacts and less outfield grazing, have resulted in increased fluxes of Total Organic Carbon (TOC) from catchments to freshwater, and subsequently to coastal waters. This study assesses the major governing factors for increased TOC levels among several catchment characteristics in almost 5000 Fennoscandian lakes and catchments. Normalized Difference Vegetation Index (NDVI), a proxy for plant biomass, and the proportions of peatland in the catchment, along with surface runoff intensity and nitrogen deposition loading, were identified as the main spatial predictors for lake TOC concentrations. A multiple linear model, based on these explanatory variables, was used to simulate future TOC concentration in surface runoff from coastal drainage basins in 2050 and 2100, using the forecasts of climatic variables in two of the Shared Socio-economic Pathways (SSP): 1-2.6 (+2 °C) and 3-7.0 (+4,5 °C). These scenarios yield contrasting effects. SSP 1-2.6 predicts an overall decrease of TOC export to coastal waters, while SSP 3-7.0 in contrast leads to an increase in TOC export.
RESUMEN
Despite well documented studies on metal pollutants in aquatic ecosystems, knowledge on the combined effects of catchment characteristics, sediment properties, and emerging pollutants, such as microplastics (MPs) on the presence of metals in urban river sediments is still limited. In this study, the synergistic influence of MPs type and hazard indices, catchment characteristics and sediment properties on the variability of metals present in sediments was investigated based on a typical urban river, Brisbane River, Australia. It was noted that the mean concentrations of metals in Brisbane River decreases in the order of Al (94,142 ± 12,194 µg/g) > Fe (62,970 ± 8104 µg/g) > Mn (746 ± 258 µg/g) > Zn (196 ± 29 µg/g) > Cu (50 ± 19 µg/g) > Pb (47 ± 25 µg/g) > Ni (25 ± 3 µg/g) while the variability of metals decreases in the order of Pb > Cu > Mn > Al > Ni > Zn > Fe along the river. According to enrichment factor (Ef) contamination categories, Mn, Cu and Zn exert a moderate level of contamination (Ef > 2), while Fe, Ni, and Zn show slight sediment pollution (1
Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Ríos , Microplásticos , Sedimentos Geológicos , Plásticos , Metales Pesados/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Ecosistema , Plomo , Medición de RiesgoRESUMEN
Detention pond is a key storm water management measure employed both to attenuate surface runoff and to regulate depression storage, yet the effects of aquaculture ponds and reservoirs on runoff coefficient are not well quantified in a subtropical humid monsoon climate zone, China. Here, a set of six subcatchments ranging in size from 0.7 hm2 to 10,000 hm2 were evaluated over the 2011-2015 period. (i) The annual average runoff coefficient differed with different subcatchments due to the spatial heterogeneity of landscape patterns, while the event-based runoff coefficient under the same catchment showed a decreasing trend with increasing rainfall intensity. (ii) The annual average and event-based runoff coefficients initially increased and then decreased with an increase in the area ratio of aquaculture ponds and reservoirs. The critical area ratio of aquaculture ponds and reservoirs for the maximum runoff coefficient in annual, light, and moderate rainfall intensity was about 4%; but this value would be transferred forward to the position of < 4% under the intensity of heavy rain, rainstorms, and heavy rainstorms. (iii) All runoff coefficients decreased with increasing forestland but increased with increasing paddy fields, and the decreasing rate was greater than the increasing rate. The trends of runoff coefficient for the annual and event-based rainfall are opposite between river development coefficient and watershed shape coefficient. The results provide underlying insights for decision-makers in aquaculture land-use planning and the sustainable utilization of water resources in the upstream and downstream systems of a catchment.
Asunto(s)
Estanques , Lluvia , Movimientos del Agua , Acuicultura , China , Monitoreo del AmbienteRESUMEN
Color dissolved organic matter (CDOM) plays a key role in lacustrine ecosystems and its composition is commonly mediated by the allochthonous input and autochthonous production. Deep lakes have a strong in-lake processing, which highly affects the sources, composition and cycle of CDOM. Here, the second deepest lake (Lake Fuxian) in China was selected to investigate the effects of allochthonous input and in-lake processing on lacustrine CDOM in deep lakes. Firstly, a detailed survey on CDOM composition across Lake Fuxian in the top water layer and inflowing rivers was carried out in the wet season representing the allochthonous input. In addition, CDOM in Lake Fuxian was compared with those in other lakes with distinct catchment characteristics and lake morphology. The results showed that compared to lacustrine CDOM in Lake Fuxian, the riverine CDOM contained much more humic-like substances, resulting in the humic-like fluorescence intensity peaked at the confluence of rivers into Lake Fuxian. In contrast, CDOM in Lake Fuxian was dominated by the protein-like substance. Comparison of CDOM composition among Lake Fuxian (well-vegetated catchment, deep lakes) with other diverse lakes in China (shallow/deep lakes with poor-vegetated catchment, and shallow lakes with well-vegetated catchment) showed similar CDOM quality in all type lakes, which were dominated by non-humified and autochthonous CDOM. Yet, CDOM quantity increased as the orders of deep lakes within poor-vegetated (Tibetan deep lakes) < the deep lake within well-vegetated catchment (Lake Fuxian) < shallow lakes within poorly-vegetated catchment (Tibetan shallow lakes) < shallow lakes within well-vegetated catchment (lakes along the middle and lower reaches of Yangtze River). Our results evidenced that the effect of allochthonous input on CDOM composition could be counteracted by in-lake processing in deep lakes. For deep lakes, a comprehensive understanding of in-lake processing of CDOM is critical for predicting lacustrine DOM composition and cycle.
Asunto(s)
Materia Orgánica Disuelta , Lagos , Ecosistema , Ríos , Sustancias Húmicas/análisis , China , Espectrometría de FluorescenciaRESUMEN
Stormwater drains are important sinks for microplastics and potentially aid the transport of microplastics from terrestrial to marine environments. Samples were collected from sediments in five stormwater drainage systems with different land uses, area, population, and sediment characteristics. Microplastic concentrations within the drainage network varied between 0 and 3500 microplastics per kg of dry sediment, with a mean concentration of 664 particles per kg. The majority of microplastics found were fibres. Polyethylene and polypropylene were the dominant polymer types (µ-FTIR). Based on a Generalized Linear Mixed Model, the expected number of microplastics for a representative urban drain was 760 particles per kg, with 245 particles per kg expected for an agricultural drain. Sediment grain size was a predictor for microplastic abundance, with sandier sediments containing more microplastics. This study is the first to quantify microplastic pollution in stormwater drainage systems in Western Australia.
Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Plásticos , Contaminantes Químicos del Agua/análisis , Australia OccidentalRESUMEN
Perfluoroalkyl acids (PFAAs) have emerged as global concerning contaminants because of their persistence, bioaccumulation, and toxicological effects. The transport and fate of PFAAs on dimension of plain river networks (PRNs) are difficult to model due to the unique regional characteristics (i.e., undirectional flows, low slope, complicated structure and connectivity) and the lack of data on PFAAs concentrations and compositions. A typical PRN (Taihu Basin, China) was selected to elucidate the spatial patterns of PFAAs in multi-matrices, including colloidal phase, soluble phase, suspended particles, and sediment. PFAAs were ubiquitously detected in plain rivers with total concentrations of 18.48-1220 ng/L in colloids, 139.07-721.37 ng/L in soluble phase, 97.69-2247 ng/g dw in suspended particles, and <72.04-178.12 ng/g dw in sediment. PFAAs were more likely to transport via dissolved phase and accumulate into sediment. Colloids carried 45.46-62.59% of ∑PFAAs in overlying water, while suspended particles contained <36.63% of ∑PFAAs, suggesting the important role of colloids in preloading PFAAs. Moreover, PFAAs variability was correlated with indicators of the structure and connectivity of river network by gray relational analysis. The mean gray relational degrees can be sorted as edge-node ratio (0.7609) > network connectivity (0.7191) > river density (0.7012) > water surface ratio (0.6887) > river development coefficient (0.6504) > functional connectivity (0.4780). These results suggested that the effects of catchment characteristics should be taken into account in understanding PFAAs fate in the PRNs.
Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , China , Monitoreo del Ambiente , Fluorocarburos/análisis , Ríos , Contaminantes Químicos del Agua/análisisRESUMEN
Water quality monitoring programs often collect large amounts of data with limited attention given to the assessment of the dominant drivers of spatial and temporal water quality variations at the catchment scale. This study uses a multi-model approach: a) to identify the influential catchment characteristics affecting spatial variability in water quality; and b) to predict spatial variability in water quality more reliably and robustly. Tropical catchments in the Great Barrier Reef (GBR) area, Australia, were used as a case study. We developed statistical models using 58 catchment characteristics to predict the spatial variability in water quality in 32 GBR catchments. An exhaustive search method coupled with multi-model inference approaches were used to identify important catchment characteristics and predict the spatial variation in water quality across catchments. Bootstrapping and cross-validation approaches were used to assess the uncertainty in identified important factors and robustness of multi-model structure, respectively. The results indicate that water quality variables were generally most influenced by the natural characteristics of catchments (e.g., soil type and annual rainfall), while anthropogenic characteristics (i.e., land use) also showed significant influence on dissolved nutrient species (e.g., NOX, NH4 and FRP). The multi-model structures developed in this work were able to predict average event-mean concentration well, with Nash-Sutcliffe coefficient ranging from 0.68 to 0.96. This work provides data-driven evidence for catchment managers, which can help them develop effective water quality management strategies.
Asunto(s)
Suelo , Calidad del Agua , Australia , Monitoreo del AmbienteRESUMEN
Rivers are regarded as sinks and pathways of plastic pollutants from terrestrial environments to various other aquatic systems such as lakes and oceans. Although extensive research has been conducted in recent years on microplastic pollution in river sediments, knowledge on the relationships between potential influential factors such as catchment characteristics and sediment properties, and microplastics occurrence in river sediments, is still considered an under-researched area. This study evaluated the influence of land use, population, and sediment particle size on the presence of microplastics abundance and types. Based on a Bayesian Network modelling approach to characterise the correlations between influencing factors and microplastics occurrence, it was evident that microplastics type had a positive correlation with different land use types and population. Catchment characteristics were found to play a more important role in influencing microplastics type than microplastics concentration. A statistically significant positive relationship was observed between microplastics concentration and clay particles which suggested that the occurrence of microplastics in sediments can be impacted by the presence of clay particles.
RESUMEN
Diffuse water pollution from agriculture (DWPA) is a major environmental concern, with significant adverse impacts on both human and ecosystem health. However, without an appropriate understanding of the multiple factors impacting on water, mitigation measures cannot be targeted. Therefore, this paper addresses this gap in understanding, reporting the hydrochemical monitoring evidence collected from the UK Government's Demonstration Test Catchments (DTC) programme including contrasting chalk and clay/mudstone catchments. We use data collected at daily and sub-daily frequency over multiple sites to address: (1) How does the behaviour of the full range of nitrogen (N) species and phosphorus (P) fractions vary? (2) How do N species and P fractions vary inter- and intra-annually? (3) What do these data indicate about the primary pollution sources? And (4) which diffuse pollution mitigation measures are appropriate in our study landscapes? Key differences in the rates of flux of nutrients were identified, dependent on catchment characteristics. Full N speciation and P fractionation, together with dissolved organic carbon (DOC) enabled identification of the most likely contributing sources in each catchment. Nitrate (NO3-N) was the dominant N fraction in the chalk whereas organic and particulate N comprised the majority of the load in the clay/mudstone catchments. Despite current legislation, orthophosphate (PO4-P) was not found to be the dominant form of P in any of the catchments monitored. The chalk sub-catchments had the largest proportion of inorganic/dissolved organic P (DOP), accompanied by episodic delivery of particulate P (PP). Contrastingly, the clay/mudstone sub-catchments loads were dominated by PP and DOP. Thus, our results show that by monitoring both the inorganic and organic fractions a more complete picture of catchment nutrient fluxes can be determined, and sources of pollution pin-pointed. Ultimately, policy and management to bring nutrient impacts under control will only be successful if a multi-stressor approach is adopted.
RESUMEN
Water quality monitoring is important to assess changes in inland and coastal water quality. The focus of this study was to improve understanding of the spatial component of spatial-temporal water quality dynamics, particularly the spatial variability in water quality and the association between this spatial variability and catchment characteristics. A dataset of nine water quality constituents collected from 32 monitoring sites over a 11-year period (2006-2016), across the Great Barrier Reef catchments (Queensland, Australia), were evaluated by multivariate techniques. Two clusters were identified, which were strongly associated with catchment characteristics. A two-step Principal Component Analysis/Factor Analysis revealed four groupings of constituents with similar spatial pattern and allowed the key catchment characteristics affecting water quality to be determined. These findings provide a more nuanced view of spatial variations in water quality compared with previous understanding and an improved basis for water quality management to protect nearshore marine ecosystem.
Asunto(s)
Agua de Mar/análisis , Ecosistema , Análisis Factorial , Análisis Multivariante , Análisis de Componente Principal , Queensland , Calidad del AguaRESUMEN
This study evaluated the spatial variability of risks and benefits of consuming fish from humic and clear lakes. Mercury in fish is a potential risk for human health, but risk assessment may be confounded by selenium, which has been suggested to counterbalance mercury toxicity. In addition to the risks, fish are also rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are known to be beneficial for cardiovascular health and brain cognitive function in humans. We found that the concentrations of EPA + DHA and mercury in European perch (Perca fluviatilis) vary spatially and are connected with lake water chemistry and catchment characteristics. The highest mercury concentrations and the lowest EPA + DHA concentrations were found in perch from humic lakes with high proportion of peatland (30-50%) in the catchment. In addition, the ratio of selenium to mercury in perch muscle was ≥1 suggesting that selenium may counterbalance mercury toxicity. The observed variation in mercury and EPA + DHA content in perch from different lakes indicate that the risks and benefits of fish consumption vary spatially, and are connected with lake water chemistry and catchment characteristics. In general, consumption of perch from humic lakes exposed humans to greater risks (higher concentrations of mercury), but provided less benefits (lower concentrations of EPA + DHA) than consumption of perch from clear lakes.
Asunto(s)
Ácidos Grasos Insaturados/análisis , Contaminación de Alimentos/análisis , Lagos/química , Mercurio/análisis , Percas , Selenio/análisis , Contaminantes Químicos del Agua/análisis , Animales , Finlandia , Humanos , Medición de RiesgoRESUMEN
We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5-9 % of the DOC and 45 % of the DON were degraded by the bacterial communities within 2-3 months. Simultaneously, the proportion of humic-like compounds in the DOM pool increased. Bioavailable DON accounted for approximately one-third of the total bioavailable dissolved nitrogen, and thus, terrestrial DON can markedly contribute to the coastal plankton dynamics and support the heterotrophic food web.