Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Intervalo de año de publicación
1.
EMBO J ; 41(12): e109992, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35262206

RESUMEN

Epithelial wound healing in Drosophila involves the formation of multinucleate cells surrounding the wound. We show that autophagy, a cellular degradation process often deployed in stress responses, is required for the formation of a multinucleated syncytium during wound healing, and that autophagosomes that appear near the wound edge acquire plasma membrane markers. In addition, uncontrolled autophagy in the unwounded epidermis leads to the degradation of endo-membranes and the lateral plasma membrane, while apical and basal membranes and epithelial barrier function remain intact. Proper functioning of TORC1 is needed to prevent destruction of the larval epidermis by autophagy, in a process that depends on phagophore initiation and expansion but does not require autophagosomes fusion with lysosomes. Autophagy induction can also affect other sub-cellular membranes, as shown by its suppression of experimentally induced laminopathy-like nuclear defects. Our findings reveal a function for TORC1-mediated regulation of autophagy in maintaining membrane integrity and homeostasis in the epidermis and during wound healing.


Asunto(s)
Autofagosomas , Autofagia , Animales , Autofagosomas/metabolismo , Membrana Celular , Drosophila , Células Gigantes/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
2.
J Cell Sci ; 137(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38265145

RESUMEN

The evolutionarily conserved apical Crumbs (CRB) complex, consisting of the core components CRB3a (an isoform of CRB3), PALS1 and PATJ, plays a key role in epithelial cell-cell contact formation and cell polarization. Recently, we observed that deletion of one Pals1 allele in mice results in functional haploinsufficiency characterized by renal cysts. Here, to address the role of PALS1 at the cellular level, we generated CRISPR/Cas9-mediated PALS1-knockout MDCKII cell lines. The loss of PALS1 resulted in increased paracellular permeability, indicating an epithelial barrier defect. This defect was associated with a redistribution of several tight junction-associated proteins from bicellular to tricellular contacts. PALS1-dependent localization of tight junction proteins at bicellular junctions required its interaction with PATJ. Importantly, reestablishment of the tight junction belt upon transient F-actin depolymerization or upon Ca2+ removal was strongly delayed in PALS1-deficient cells. Additionally, the cytoskeleton regulator RhoA was redistributed from junctions into the cytosol under PALS1 knockout. Together, our data uncover a critical role of PALS1 in the coupling of tight junction proteins to the F-actin cytoskeleton, which ensures their correct distribution along bicellular junctions and the formation of tight epithelial barrier.


Asunto(s)
Células Epiteliales , Proteínas de la Membrana , Nucleósido-Fosfato Quinasa , Proteínas de Uniones Estrechas , Animales , Ratones , Citoesqueleto de Actina , Actinas , Citoesqueleto , Citosol , Nucleósido-Fosfato Quinasa/genética , Proteínas de la Membrana/genética
3.
Bioessays ; 45(5): e2200211, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36929512

RESUMEN

Actomyosin (actin-myosin II complex)-mediated contractile forces are central to the generation of multifaceted uni- and multi-cellular material properties and dynamics such as cell division, migration, and tissue morphogenesis. In the present article, we summarize our recent researches addressing molecular mechanisms that ensure actomyosin-mediated directional cell-cell junction remodeling, either shortening or extension, driving cell rearrangement for epithelial morphogenesis. Genetic perturbation clarified two points concerning cell-cell junction remodeling: an inhibitory mechanism against negative feedback in which actomyosin contractile forces, which are well known to induce cell-cell junction shortening, can concomitantly alter actin dynamics, oppositely leading to perturbation of the shortening; and tricellular junctions as a point that organizes extension of new cell-cell junctions after shortening. These findings highlight the notion that cells develop underpinning mechanisms to transform the multi-tasking property of actomyosin contractile forces into specific and proper cellular dynamics in space and time.


Asunto(s)
Actinas , Actomiosina , Retroalimentación , Uniones Intercelulares , Morfogénesis , Uniones Adherentes
4.
Am J Physiol Cell Physiol ; 327(4): C1073-C1086, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39129490

RESUMEN

Cells depend on precisely regulating barrier function within the vasculature to maintain physiological stability and facilitate essential substance transport. Endothelial cells achieve this through specialized adherens and tight junction protein complexes, which govern paracellular permeability across vascular beds. Adherens junctions, anchored by vascular endothelial (VE)-cadherin and associated catenins to the actin cytoskeleton, mediate homophilic adhesion crucial for barrier integrity. In contrast, tight junctions composed of occludin, claudin, and junctional adhesion molecule A interact with Zonula Occludens proteins, reinforcing intercellular connections essential for barrier selectivity. Endothelial cell-cell junctions exhibit dynamic conformations during development, maturation, and remodeling, regulated by local biochemical and mechanical cues. These structural adaptations play pivotal roles in disease contexts such as chronic inflammation, where junctional remodeling contributes to increased vascular permeability observed in conditions from cancer to cardiovascular diseases. Conversely, the brain microvasculature's specialized junctional arrangements pose challenges for therapeutic drug delivery due to their unique molecular compositions and tight organization. This commentary explores the molecular mechanisms underlying endothelial cell-cell junction conformations and their implications for vascular permeability. By highlighting recent advances in quantifying junctional changes and understanding mechanotransduction pathways, we elucidate how physical forces from cellular contacts and hemodynamic flow influence junctional dynamics.


Asunto(s)
Permeabilidad Capilar , Células Endoteliales , Mecanotransducción Celular , Uniones Estrechas , Humanos , Permeabilidad Capilar/fisiología , Células Endoteliales/metabolismo , Animales , Uniones Estrechas/metabolismo , Uniones Adherentes/metabolismo , Uniones Intercelulares/metabolismo
5.
J Biol Chem ; 299(2): 102817, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36539037

RESUMEN

The regulation of cell-cell junctions during epidermal morphogenesis ensures tissue integrity, a process regulated by α-catenin. This cytoskeletal protein connects the cadherin complex to filamentous actin at cell-cell junctions. The cadherin-catenin complex plays key roles in cell physiology, organism development, and disease. While mutagenesis of Caenorhabditis elegans cadherin and catenin shows that these proteins are key for embryonic morphogenesis, we know surprisingly little about their structure and attachment to the cytoskeleton. In contrast to mammalian α-catenin that functions as a dimer or monomer, the α-catenin ortholog from C. elegans, HMP1 for humpback, is a monomer. Our cryogenic electron microscopy (cryoEM) structure of HMP1/α-catenin reveals that the amino- and carboxy-terminal domains of HMP1/α-catenin are disordered and not in contact with the remaining HMP1/α-catenin middle domain. Since the carboxy-terminal HMP1/α-catenin domain is the F-actin-binding domain (FABD), this interdomain constellation suggests that HMP1/α-catenin is constitutively active, which we confirm biochemically. Our perhaps most surprising finding, given the high sequence similarity between the mammalian and nematode proteins, is our cryoEM structure of HMP1/α-catenin bound to F-actin. Unlike the structure of mammalian α-catenin bound to F-actin, binding to F-actin seems to allosterically convert a loop region of the HMP1/α-catenin FABD to extend an HMP1/α-catenin FABD α-helix. We use cryoEM and bundling assays to show for the first time how the FABD of HMP1/α-catenin bundles actin in the absence of force. Collectively, our data advance our understanding of α-catenin regulation of cell-cell contacts and additionally aid our understanding of the evolution of multicellularity in metazoans.


Asunto(s)
Citoesqueleto de Actina , Caenorhabditis elegans , alfa Catenina , Animales , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/química , Actinas/metabolismo , Actinas/ultraestructura , alfa Catenina/química , alfa Catenina/metabolismo , Cadherinas/metabolismo , Mamíferos , Conformación Proteica en Hélice alfa , Dominios Proteicos , Microscopía por Crioelectrón , Adhesión Celular , Comunicación Celular
6.
Development ; 148(18)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712442

RESUMEN

Recognizing the crucial role of mechanical regulation and forces in tissue development and homeostasis has stirred a demand for in situ measurement of forces and stresses. Among emerging techniques, the use of cell geometry to infer cell junction tensions, cell pressures and tissue stress has gained popularity owing to the development of computational analyses. This approach is non-destructive and fast, and statistically validated based on comparisons with other techniques. However, its qualitative and quantitative limitations, in theory as well as in practice, should be examined with care. In this Primer, we summarize the underlying principles and assumptions behind stress inference, discuss its validity criteria and provide guidance to help beginners make the appropriate choice of its variants. We extend our discussion from two-dimensional stress inference to three dimensional, using the early mouse embryo as an example, and list a few possible extensions. We hope to make stress inference more accessible to the scientific community and trigger a broader interest in using this technique to study mechanics in development.


Asunto(s)
Uniones Intercelulares/fisiología , Animales , Embrión de Mamíferos/fisiología , Fenómenos Mecánicos , Presión , Estrés Mecánico
7.
Arterioscler Thromb Vasc Biol ; 43(7): 1199-1218, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37199159

RESUMEN

BACKGROUND: Endothelial cells (ECs) are sensitive to physical forces created by blood flow, especially to laminar shear stress. Among the cell responses to laminar flow, EC polarization against the flow direction emerges as a key event, particularly during the development and remodeling of the vascular network. EC adopt an elongated planar cell shape with an asymmetrical distribution of intracellular organelles along the axis of blood flow. This study aimed to investigate the involvement of planar cell polarity via the receptor ROR2 (receptor tyrosine kinase-like orphan receptor 2) in endothelial responses to laminar shear stress. METHODS: We generated a genetic mouse model with EC-specific deletion of Ror2, in combination with in vitro approaches involving loss- and gain-of-function experiments. RESULTS: During the first 2 weeks of life, the endothelium of the mouse aorta undergoes a rapid remodeling associated with a loss of EC polarization against the flow direction. Notably, we found a correlation between ROR2 expression and endothelial polarization levels. Our findings demonstrate that deletion of Ror2 in murine ECs impaired their polarization during the postnatal development of the aorta. In vitro experiments further validated the essential role of ROR2 in both EC collective polarization and directed migration under laminar flow conditions. Exposure to laminar shear stress triggered the relocalization of ROR2 to cell-cell junctions where it formed a complex with VE-Cadherin and ß-catenin, thereby regulating adherens junctions remodeling at the rear and front poles of ECs. Finally, we showed that adherens junctions remodeling and cell polarity induced by ROR2 were dependent on the activation of the small GTPase Cdc42. CONCLUSIONS: This study identified ROR2/planar cell polarity pathway as a new mechanism controlling and coordinating collective polarity patterns of EC during shear stress response.


Asunto(s)
Células Endoteliales , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Ratones , Animales , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Polaridad Celular/fisiología , Endotelio Vascular/metabolismo , Uniones Intercelulares , Estrés Mecánico
8.
Appl Microbiol Biotechnol ; 108(1): 119, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38204132

RESUMEN

Infection and invasion are the prerequisites for developing the disease symptoms in a host. While the probable mechanism of host invasion and pathogenesis is known in many pathogens, very little information is available on Leptospira invasion/pathogenesis. For causing systemic infection Leptospira must transmigrate across epithelial barriers, which is the most critical and challenging step. Extracellular and membrane-bound proteases play a crucial role in the invasion process. An extensive search for the proteins experimentally proven to be involved in the invasion process through cell junction cleavage in other pathogens has resulted in identifying 26 proteins. The similarity searches on the Leptospira genome for counterparts of these 26 pathogenesis-related proteins identified at least 12 probable coding sequences. The proteins were either extracellular or membrane-bound with a proteolytic domain to cleave the cell junction proteins. This review will emphasize our current understanding of the pathogenic aspects of host cell junction-pathogenic protein interactions involved in the invasion process. Further, potential candidate proteins with cell junction cleavage properties that may be exploited in the diagnostic/therapeutic aspects of leptospirosis will also be discussed. KEY POINTS: • The review focussed on the cell junction cleavage proteins in bacterial pathogenesis • Cell junction disruptors from Leptospira genome are identified using bioinformatics • The review provides insights into the therapeutic/diagnostic interventions possible.


Asunto(s)
Leptospira , Leptospirosis , Humanos , Uniones Intercelulares , Endopeptidasas , Biología Computacional
9.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33531347

RESUMEN

Cell-cell adhesions are often subjected to mechanical strains of different rates and magnitudes in normal tissue function. However, the rate-dependent mechanical behavior of individual cell-cell adhesions has not been fully characterized due to the lack of proper experimental techniques and therefore remains elusive. This is particularly true under large strain conditions, which may potentially lead to cell-cell adhesion dissociation and ultimately tissue fracture. In this study, we designed and fabricated a single-cell adhesion micro tensile tester (SCAµTT) using two-photon polymerization and performed displacement-controlled tensile tests of individual pairs of adherent epithelial cells with a mature cell-cell adhesion. Straining the cytoskeleton-cell adhesion complex system reveals a passive shear-thinning viscoelastic behavior and a rate-dependent active stress-relaxation mechanism mediated by cytoskeleton growth. Under low strain rates, stress relaxation mediated by the cytoskeleton can effectively relax junctional stress buildup and prevent adhesion bond rupture. Cadherin bond dissociation also exhibits rate-dependent strengthening, in which increased strain rate results in elevated stress levels at which cadherin bonds fail. This bond dissociation becomes a synchronized catastrophic event that leads to junction fracture at high strain rates. Even at high strain rates, a single cell-cell junction displays a remarkable tensile strength to sustain a strain as much as 200% before complete junction rupture. Collectively, the platform and the biophysical understandings in this study are expected to build a foundation for the mechanistic investigation of the adaptive viscoelasticity of the cell-cell junction.


Asunto(s)
Uniones Intercelulares/metabolismo , Estrés Mecánico , Cadherinas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Citoesqueleto/metabolismo , Elasticidad , Humanos , Uniones Intercelulares/química , Viscosidad
10.
Molecules ; 29(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474514

RESUMEN

Cell junctions, which are typically associated with dynamic cytoskeletons, are essential for a wide range of cellular activities, including cell migration, cell communication, barrier function and signal transduction. Observing cell junctions in real-time can help us understand the mechanisms by which they regulate these cellular activities. This study examined the binding capacity of a modified tridecapeptide from Connexin 43 (Cx43) to the cell junction protein zonula occludens-1 (ZO-1). The goal was to create a fluorescent peptide that can label cell junctions. A cell-penetrating peptide was linked to the modified tridecapeptide. The heterotrimeric peptide molecule was then synthesized. The binding of the modified tridecapeptide was tested using pulldown and immunoprecipitation assays. The ability of the peptide to label cell junctions was assessed by adding it to fixed or live Caco-2 cells. The testing assays revealed that the Cx43-derived peptide can bind to ZO-1. Additionally, the peptide was able to label cell junctions of fixed cells, although no obvious cell junction labeling was observed clearly in live cells, probably due to the inadequate affinity. These findings suggest that labeling cell junctions using a peptide-based strategy is feasible. Further efforts to improve its affinity are warranted in the future.


Asunto(s)
Conexina 43 , Uniones Comunicantes , Humanos , Conexina 43/química , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Proteínas de la Membrana/metabolismo , Células CACO-2 , Péptidos/metabolismo , Fosfoproteínas/metabolismo
11.
Am J Physiol Cell Physiol ; 324(5): C1158-C1170, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37067458

RESUMEN

In Caenorhabditis elegans, rhythmic posterior body wall muscle contractions mediate the highly regular defecation cycle. These contractions are regulated by inositol-1,4,5-trisphosphate (InsP3) receptor-dependent Ca2+ oscillations in intestinal epithelial cells. Here, we find that mutations in dec-7, which encodes the nematode ortholog of the human Sushi domain-containing 2 protein (SUSD2), lead to an increase in InsP3 receptor-dependent rhythmic posterior body wall muscle contractions. DEC-7 is highly expressed in the intestinal epithelia and localizes to the cell-cell junction. The increase in rhythmic activity caused by the loss of dec-7 is dependent on the innexin gap junction protein INX-16. Moreover, DEC-7 is required for the clustering of INX-16 to the cell-cell junction of the intestinal epithelia. We hypothesize that DEC-7/SUSD2 regulates INX-16 activity to mediate the rhythmic frequency of the defecation motor program. Thus, our data indicate a critical role of a phylogenetically conserved cell-cell junction protein in mediating an ultradian rhythm in the intestinal epithelia of C. elegans.NEW & NOTEWORTHY The conserved complement group protein DEC-7/SUSD2 acts at the apical cell-cell junction of C. elegans intestinal epithelia to mediate gap junction protein organization and function to facilitate a Ca2+ wave-regulated ultradian behavior.


Asunto(s)
Proteínas de Caenorhabditis elegans , Ritmo Ultradiano , Animales , Humanos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Intestinos/fisiología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Conexinas/metabolismo , Glicoproteínas de Membrana/metabolismo
12.
Infect Immun ; 91(9): e0021323, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37607057

RESUMEN

Streptococcus pneumoniae, a common cause of community-acquired bacterial pneumonia, can cross the respiratory epithelial barrier to cause lethal septicemia and meningitis. S. pneumoniae pore-forming toxin pneumolysin (PLY) triggers robust neutrophil (PMN) infiltration that promotes bacterial transepithelial migration in vitro and disseminated disease in mice. Apical infection of polarized respiratory epithelial monolayers by S. pneumoniae at a multiplicity of infection (MOI) of 20 resulted in recruitment of PMNs, loss of 50% of the monolayer, and PMN-dependent bacterial translocation. Reducing the MOI to 2 decreased PMN recruitment two-fold and preserved the monolayer, but apical-to-basolateral translocation of S. pneumoniae remained relatively efficient. At both MOI of 2 and 20, PLY was required for maximal PMN recruitment and bacterial translocation. Co-infection by wild-type S. pneumoniae restored translocation by a PLY-deficient mutant, indicating that PLY can act in trans. Investigating the contribution of S. pneumoniae infection on apical junction complexes in the absence of PMN transmigration, we found that S. pneumoniae infection triggered the cleavage and mislocalization of the adherens junction (AJ) protein E-cadherin. This disruption was PLY-dependent at MOI of 2 and was recapitulated by purified PLY, requiring its pore-forming activity. In contrast, at MOI of 20, E-cadherin disruption was independent of PLY, indicating that S. pneumoniae encodes multiple means to disrupt epithelial integrity. This disruption was insufficient to promote bacterial translocation in the absence of PMNs. Thus, S. pneumoniae triggers cleavage and mislocalization of E-cadherin through PLY-dependent and -independent mechanisms, but maximal bacterial translocation across epithelial monolayers requires PLY-dependent neutrophil transmigration.


Asunto(s)
Uniones Adherentes , Streptococcus pneumoniae , Animales , Ratones , Proteínas Bacterianas , Cadherinas
13.
J Cell Physiol ; 238(6): 1141-1147, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36960617

RESUMEN

The microtubule cytoskeleton plays a critical role in a variety of cellular activities, and its structures and functions have been extensively studied. However, little is known about cell differentiation-related microtubule remodeling, its regulatory mechanisms, and its physiological functions. Recent studies have shown that microtubule-binding proteins as well as cell junctions, such as desmosomes and adherens junctions, are involved in the remodeling of microtubules in response to cell differentiation. In addition, the microtubule-organizing activity and structural integrity of centrosomes undergo dramatic changes during cell differentiation to promote microtubule remodeling. Here we summarize recent advances revealing the dynamic changes in microtubule organization and functions during cell differentiation. We also highlight the molecular mechanisms underlying microtubule modeling in differentiated cells, focusing on the key roles played by microtubule-binding proteins, cell junctions, and centrosomes.


Asunto(s)
Diferenciación Celular , Microtúbulos , Uniones Adherentes , Centrosoma/metabolismo , Citoesqueleto , Microtúbulos/metabolismo
14.
Neurobiol Dis ; 176: 105961, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526091

RESUMEN

Diabetic retinopathy, also defined as microvascular complication of diabetes mellitus, affects the entire neurovascular unit with specific aberrations in every compartment. Neurodegeneration, glial activation and vasoregression are observed consistently in models of diabetic retinopathy. However, the order and the severity of these aberrations varies in different models, which is also true in patients. In this study, we analysed rat models of diabetic retinopathy with similar phenotypes to identify key differences in the pathogenesis. For this, we focussed on intercellular junction-associated gene expression, which are important for the communication and homeostasis within the neurovascular unit. Streptozotocin-injected diabetic Wistar rats, methylglyoxal supplemented Wistar rats and polycystin-2 transgenic (PKD) rats were analysed for neuroretinal function, vasoregression and retinal expression of junction-associated proteins. In all three models, neuroretinal impairment and vasoregression were observed, but gene expression profiling of junction-associated proteins demonstrated nearly no overlap between the three models. However, the differently expressed genes were from the main classes of claudins, connexins and integrins in all models. Changes in Rcor1 expression in diabetic rats and Egr1 expression in PKD rats confirmed the differences in upstream transcription factor level between the models. In PKD rats, a possible role for miRNA regulation was observed, indicated by an upregulation of miR-26b-5p, miR-122-5p and miR-300-3p, which was not observed in the other models. In silico allocation of connexins revealed not only differences in regulated subtypes, but also in affected retinal cell types, as well as connexin specific upstream regulators Sox7 and miR-92a-3p. In this study, we demonstrate that, despite their similar phenotype, models for diabetic retinopathy exhibit significant differences in their pathogenic pathways and primarily affected cell types. These results underline the importance for more sensitive diagnostic tools to identify pathogenic clusters in patients as the next step towards a desperately needed personalized therapy.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , MicroARNs , Ratas , Animales , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Ratas Wistar , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fenotipo , Expresión Génica
15.
Crit Rev Biochem Mol Biol ; 55(1): 17-32, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32069425

RESUMEN

AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that functions to restore the energy balance by phosphorylating its substrates during altered metabolic conditions. AMPK activity is tightly controlled by diverse regulators including its upstream kinases LKB1 and CaMKK2. Recent studies have also identified the localization of AMPK at different intracellular compartments as another key mechanism for regulating AMPK signaling in response to specific stimuli. This review discusses the AMPK signaling associated with different subcellular compartments, including lysosomes, endoplasmic reticulum, mitochondria, Golgi apparatus, nucleus, and cell junctions. Because altered AMPK signaling is associated with various pathologic conditions including cancer, targeting AMPK signaling in different subcellular compartments may present attractive therapeutic approaches for treatment of disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Orgánulos/enzimología , Transducción de Señal , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Humanos , Neoplasias/patología , Orgánulos/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
16.
J Biol Chem ; 296: 100644, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839152

RESUMEN

Exposure of mucosal epithelial cells to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is known to disrupt epithelial cell junctions by impairing stathmin-mediated microtubule depolymerization. However, the pathological significance of this process and its underlying molecular mechanism remain unclear. Here we show that treatment of epithelial cells with pseudotyped HIV-1 viral particles or recombinant gp120 protein results in the activation of protein kinase G 1 (PKG1). Examination of epithelial cells by immunofluorescence microscopy reveals that PKG1 activation mediates the epithelial barrier damage upon HIV-1 exposure. Immunoprecipitation experiments show that PKG1 interacts with stathmin and phosphorylates stathmin at serine 63 in the presence of gp120. Immunoprecipitation and immunofluorescence microscopy further demonstrate that PKG1-mediated phosphorylation of stathmin promotes its autophagic degradation by enhancing the interaction between stathmin and the autophagy adaptor protein p62. Collectively, these results suggest that HIV-1 exposure exploits the PKG1/stathmin axis to affect the microtubule cytoskeleton and thereby perturbs epithelial cell junctions. Our findings reveal a novel molecular mechanism by which exposure to HIV-1 increases epithelial permeability, which has implications for the development of effective strategies to prevent mucosal HIV-1 transmission.


Asunto(s)
Permeabilidad de la Membrana Celular , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Células Epiteliales/patología , VIH-1/fisiología , Microtúbulos/metabolismo , Estatmina/metabolismo , Movimiento Celular , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Células Epiteliales/metabolismo , Células Epiteliales/virología , Infecciones por VIH/virología , Humanos , Microtúbulos/virología , Fosforilación , Estatmina/genética
17.
J Biol Chem ; 296: 100239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33372035

RESUMEN

Proinflammatory cytokines such as IL-6 induce endothelial cell (EC) barrier disruption and trigger an inflammatory response in part by activating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. The protein suppressor of cytokine signaling-3 (SOCS3) is a negative regulator of JAK-STAT, but its role in modulation of lung EC barrier dysfunction caused by bacterial pathogens has not been investigated. Using human lung ECs and EC-specific SOCS3 knockout mice, we tested the hypothesis that SOCS3 confers microtubule (MT)-mediated protection against endothelial dysfunction. SOCS3 knockdown in cultured ECs or EC-specific SOCS3 knockout in mice resulted in exacerbated lung injury characterized by increased permeability and inflammation in response to IL-6 or heat-killed Staphylococcus aureus (HKSA). Ectopic expression of SOCS3 attenuated HKSA-induced EC dysfunction, and this effect required assembled MTs. SOCS3 was enriched in the MT fractions, and treatment with HKSA disrupted SOCS3-MT association. We discovered that-in addition to its known partners gp130 and JAK2-SOCS3 interacts with MT plus-end binding proteins CLIP-170 and CLASP2 via its N-terminal domain. The resulting SOCS3-CLIP-170/CLASP2 complex was essential for maximal SOCS3 anti-inflammatory effects. Both IL-6 and HKSA promoted MT disassembly and disrupted SOCS3 interaction with CLIP-170 and CLASP2. Moreover, knockdown of CLIP-170 or CLASP2 impaired SOCS3-JAK2 interaction and abolished the anti-inflammatory effects of SOCS3. Together, these findings demonstrate for the first time an interaction between SOCS3 and CLIP-170/CLASP2 and reveal that this interaction is essential to the protective effects of SOCS3 in lung endothelium.


Asunto(s)
Inflamación/genética , Lesión Pulmonar/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/microbiología , Lesión Pulmonar Aguda/patología , Animales , Citoesqueleto/genética , Células Endoteliales , Endotelio Vascular/metabolismo , Endotelio Vascular/microbiología , Endotelio Vascular/patología , Humanos , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Uniones Intercelulares/genética , Interleucina-6/genética , Lesión Pulmonar/metabolismo , Lesión Pulmonar/microbiología , Lesión Pulmonar/patología , Ratones , Ratones Noqueados , Permeabilidad , Staphylococcus aureus/patogenicidad
18.
J Cell Sci ; 133(23)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33172988

RESUMEN

Proper epithelial development and homeostasis depends on strict control of oriented cell division. Current evidence shows that this process is regulated by intrinsic polarity factors and external spatial cues. Owing to the lack of an appropriate model system that can recapitulate the architecture of the skin, deregulation of spindle orientation in human epithelial carcinoma has never been investigated. Here, using an inducible model of human squamous cell carcinoma (SCC), we demonstrate that RAS-dependent suppression of PAR3 (encoded by PARD3) accelerates epithelial disorganization during early tumorigenesis. Diminished PAR3 led to loss of E-cadherin-mediated cell adhesion, which in turn contributed to misoriented cell division. Pharmacological inhibition of the MAPK pathway downstream of RAS activation reversed the defects in PAR3 expression, E-cadherin-mediated cell adhesion and mitotic spindle orientation. Thus, temporal analysis of human neoplasia provides a powerful approach to study cellular and molecular transformations during early oncogenesis, which allowed identification of PAR3 as a critical regulator of tissue architecture during initial human SCC development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinoma de Células Escamosas , Proteínas de Ciclo Celular , Proteínas ras , Carcinogénesis/genética , Carcinoma de Células Escamosas/genética , Adhesión Celular , Proteínas de Ciclo Celular/metabolismo , División Celular , Polaridad Celular , Humanos , Hiperplasia , Huso Acromático/metabolismo
19.
Biomed Microdevices ; 24(4): 33, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36207557

RESUMEN

We previously reported a single-cell adhesion micro tensile tester (SCAµTT) fabricated from IP-S photoresin with two-photon polymerization (TPP) for investigating the mechanics of a single cell-cell junction under defined tensile loading. A major limitation of the platform is the autofluorescence of IP-S, the photoresin for TPP fabrication, which significantly increases background signal and makes fluorescent imaging of stretched cells difficult. In this study, we report the design and fabrication of a new SCAµTT platform that mitigates autofluorescence and demonstrate its capability in imaging a single cell pair as its mutual junction is stretched. By employing a two-material design using IP-S and IP-Visio, a photoresin with reduced autofluorescence, we show a significant reduction in autofluorescence of the platform. Further, by integrating apertures onto the substrate with a gold coating, the influence of autofluorescence on imaging is almost completely mitigated. With this new platform, we demonstrate the ability to image a pair of epithelial cells as they are stretched up to 250% strain, allowing us to observe junction rupture and F-actin retraction while simultaneously recording the accumulation of over 800 kPa of stress in the junction. The platform and methodology presented here can potentially enable detailed investigation of the mechanics of and mechanotransduction in cell-cell junctions and improve the design of other TPP platforms in mechanobiology applications.


Asunto(s)
Actinas , Mecanotransducción Celular , Actinas/metabolismo , Oro , Uniones Intercelulares/metabolismo , Polimerizacion
20.
Proc Natl Acad Sci U S A ; 116(48): 24108-24114, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31699818

RESUMEN

Metastasis is the main cause of cancer-related deaths. How a single oncogenic cell evolves within highly organized epithelium is still unknown. Here, we found that the overexpression of the protein kinase atypical protein kinase C ι (aPKCi), an oncogene, triggers basally oriented epithelial cell extrusion in vivo as a potential mechanism for early breast tumor cell invasion. We found that cell segregation is the first step required for basal extrusion of luminal cells and identify aPKCi and vinculin as regulators of cell segregation. We propose that asymmetric vinculin levels at the junction between normal and aPKCi+ cells trigger an increase in tension at these cell junctions. Moreover, we show that aPKCi+ cells acquire promigratory features, including increased vinculin levels and vinculin dynamics at the cell-substratum contacts. Overall, this study shows that a balance between cell contractility and cell-cell adhesion is crucial for promoting basally oriented cell extrusion, a mechanism for early breast cancer cell invasion.


Asunto(s)
Neoplasias de la Mama/metabolismo , Isoenzimas/fisiología , Proteína Quinasa C/fisiología , Vinculina/metabolismo , Neoplasias de la Mama/patología , Adhesión Celular , Línea Celular Tumoral , Separación Celular , Humanos , Uniones Intercelulares/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Invasividad Neoplásica , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA