Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 88: 383-408, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30939043

RESUMEN

The cellular thermal shift assay (CETSA) is a biophysical technique allowing direct studies of ligand binding to proteins in cells and tissues. The proteome-wide implementation of CETSA with mass spectrometry detection (MS-CETSA) has now been successfully applied to discover targets for orphan clinical drugs and hits from phenotypic screens, to identify off-targets, and to explain poly-pharmacology and drug toxicity. Highly sensitive multidimensional MS-CETSA implementations can now also access binding of physiological ligands to proteins, such as metabolites, nucleic acids, and other proteins. MS-CETSA can thereby provide comprehensive information on modulations of protein interaction states in cellular processes, including downstream effects of drugs and transitions between different physiological cell states. Such horizontal information on ligandmodulation in cells is largely orthogonal to vertical information on the levels of different proteins and therefore opens novel opportunities to understand operational aspects of cellular proteomes.


Asunto(s)
Desarrollo de Medicamentos/métodos , Proteoma/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Humanos , Ligandos , Espectrometría de Masas , Unión Proteica , Proteoma/química , Proteómica
2.
Cell ; 173(6): 1481-1494.e13, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29706543

RESUMEN

Global profiling of protein expression through the cell cycle has revealed subsets of periodically expressed proteins. However, expression levels alone only give a partial view of the biochemical processes determining cellular events. Using a proteome-wide implementation of the cellular thermal shift assay (CETSA) to study specific cell-cycle phases, we uncover changes of interaction states for more than 750 proteins during the cell cycle. Notably, many protein complexes are modulated in specific cell-cycle phases, reflecting their roles in processes such as DNA replication, chromatin remodeling, transcription, translation, and disintegration of the nuclear envelope. Surprisingly, only small differences in the interaction states were seen between the G1 and the G2 phase, suggesting similar hardwiring of biochemical processes in these two phases. The present work reveals novel molecular details of the cell cycle and establishes proteome-wide CETSA as a new strategy to study modulation of protein-interaction states in intact cells.


Asunto(s)
Ciclo Celular , Mapeo de Interacción de Proteínas , División Celular , Cromatina/química , Análisis por Conglomerados , Replicación del ADN , Fase G1 , Fase G2 , Humanos , Células K562 , Membrana Nuclear , Proteoma , Proteómica/métodos
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38557673

RESUMEN

IMPRINTS-CETSA (Integrated Modulation of Protein Interaction States-Cellular Thermal Shift Assay) provides a highly resolved means to systematically study the interactions of proteins with other cellular components, including metabolites, nucleic acids and other proteins, at the proteome level, but no freely available and user-friendly data analysis software has been reported. Here, we report IMPRINTS.CETSA, an R package that provides the basic data processing framework for robust analysis of the IMPRINTS-CETSA data format, from preprocessing and normalization to visualization. We also report an accompanying R package, IMPRINTS.CETSA.app, which offers a user-friendly Shiny interface for analysis and interpretation of IMPRINTS-CETSA results, with seamless features such as functional enrichment and mapping to other databases at a single site. For the hit generation part, the diverse behaviors of protein modulations have been typically segregated with a two-measure scoring method, i.e. the abundance and thermal stability changes. We present a new algorithm to classify modulated proteins in IMPRINTS-CETSA experiments by a robust single-measure scoring. In this way, both the numerical changes and the statistical significances of the IMPRINTS information can be visualized on a single plot. The IMPRINTS.CETSA and IMPRINTS.CETSA.app R packages are freely available on GitHub at https://github.com/nkdailingyun/IMPRINTS.CETSA and https://github.com/mgerault/IMPRINTS.CETSA.app, respectively. IMPRINTS.CETSA.app is also available as an executable program at https://zenodo.org/records/10636134.


Asunto(s)
Aplicaciones Móviles , Programas Informáticos , Proteoma , Algoritmos , Proyectos de Investigación
4.
J Biol Chem ; 300(1): 105586, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141766

RESUMEN

About 247 million cases of malaria occurred in 2021 with Plasmodium falciparum accounting for the majority of 619,000 deaths. In the absence of a widely available vaccine, chemotherapy remains crucial to prevent, treat, and contain the disease. The efficacy of several drugs currently used in the clinic is likely to suffer from the emergence of resistant parasites. A global effort to identify lead compounds led to several initiatives such as the Medicine for Malaria Ventures (MMV), a repository of compounds showing promising efficacy in killing the parasite in cell-based assays. Here, we used mass spectrometry coupled with cellular thermal shift assay to identify putative protein targets of MMV000848, a compound with an in vitro EC50 of 0.5 µM against the parasite. Thermal shift assays showed a strong increase of P. falciparum purine nucleoside phosphorylase (PfPNP) melting temperature by up to 15 °C upon incubation with MMV000848. Binding and enzymatic assays returned a KD of 1.52 ± 0.495 µM and an IC50 value of 21.5 ± 2.36 µM. The inhibition is competitive with respect to the substrate, as confirmed by a cocrystal structure of PfPNP bound with MMV000848 at the active site, determined at 1.85 Å resolution. In contrast to transition states inhibitors, MMV000848 specifically inhibits the parasite enzyme but not the human ortholog. An isobologram analysis shows subadditivity with immucillin H and with quinine respectively, suggesting overlapping modes of action between these compounds. These results point to PfPNP as a promising antimalarial target and suggest avenues to improve inhibitor potency.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Purina-Nucleósido Fosforilasa , Antimaláricos/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Purina-Nucleósido Fosforilasa/química , Quinina/química , Espectrometría de Masas , Unión Proteica
5.
Annu Rev Pharmacol Toxicol ; 62: 465-482, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34499524

RESUMEN

Drug target deconvolution can accelerate the drug discovery process by identifying a drug's targets (facilitating medicinal chemistry efforts) and off-targets (anticipating toxicity effects or adverse drug reactions). Multiple mass spectrometry-based approaches have been developed for this purpose, but thermal proteome profiling (TPP) remains to date the only one that does not require compound modification and can be used to identify intracellular targets in living cells. TPP is based on the principle that the thermal stability of a protein can be affected by its interactions. Recent developments of this approach have expanded its applications beyond drugs and cell cultures to studying protein-drug interactions and biological phenomena in tissues. These developments open up the possibility of studying drug treatment or mechanisms of disease in a holistic fashion, which can result in the design of better drugs and lead to a better understanding of fundamental biology.


Asunto(s)
Descubrimiento de Drogas , Proteoma , Humanos , Terapia Molecular Dirigida , Proteoma/análisis , Proteoma/antagonistas & inhibidores , Proteoma/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(11): e2118220119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35254915

RESUMEN

SignificanceChemical genetics, which investigates biological processes using small molecules, is gaining interest in plant research. However, a major challenge is to uncover the mode of action of the small molecules. Here, we applied the cellular thermal shift assay coupled with mass spectrometry (CETSA MS) to intact Arabidopsis cells and showed that bikinin, the plant-specific glycogen synthase kinase 3 (GSK3) inhibitor, changed the thermal stability of some of its direct targets and putative GSK3-interacting proteins. In combination with phosphoproteomics, we also revealed that GSK3s phosphorylated the auxin carrier PIN-FORMED1 and regulated its polarity that is required for the vascular patterning in the leaf.


Asunto(s)
Brasinoesteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Proteoma , Transducción de Señal , Aminopiridinas/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Estabilidad Proteica , Proteómica/métodos , Succinatos/metabolismo
7.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35246677

RESUMEN

The Cellular Thermal Shift Assay (CETSA) plays an important role in drug-target identification, and statistical analysis is a crucial step significantly affecting conclusion. We put forward ProSAP (Protein Stability Analysis Pod), an open-source, cross-platform and user-friendly software tool, which provides multiple methods for thermal proteome profiling (TPP) analysis, nonparametric analysis (NPA), proteome integral solubility alteration and isothermal shift assay (iTSA). For testing the performance of ProSAP, we processed several datasets and compare the performance of different algorithms. Overall, TPP analysis is more accurate with fewer false positive targets, but NPA methods are flexible and free from parameters. For iTSA, edgeR and DESeq2 identify more true targets than t-test and Limma, but when it comes to ranking, the four methods show not much difference. ProSAP software is available at https://github.com/hcji/ProSAP and https://zenodo.org/record/5763315.


Asunto(s)
Proteoma , Programas Informáticos , Estabilidad Proteica , Proteoma/análisis
8.
Expert Rev Proteomics ; : 1-14, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39317941

RESUMEN

INTRODUCTION: A comprehensive and global knowledge of protein target engagement is of vital importance for mechanistic studies and in drug development. Since its initial introduction, the cellular thermal shift assay (CETSA) has proven to be a reliable and flexible technique that can be widely applied to multiple contexts and has profound applications in facilitating the identification and assessment of protein target engagement. AREAS COVERED: This review introduces the principle of CETSA, elaborates on western blot-based CETSA and MS-based thermal proteome profiling (TPP) as well as the major applications and prospects of these approaches. EXPERT OPINION: CETSA primarily evaluates a given ligand binding to a particular target protein in cells and tissues with the protein thermal stabilities analyzed by western blot. When coupling mass spectrometry with CETSA, thermal proteome profiling allows simultaneous proteome-wide experiment that greatly increased the efficiency of target engagement evaluation, and serves as a promising strategy to identify protein targets and off-targets as well as protein-protein interactions to uncover the biological effects. The CETSA approaches have broad applications and potentials in drug development and clinical research.

9.
J Transl Med ; 21(1): 880, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049841

RESUMEN

BACKGROUND: Osteoarthritis is a degenerative joint disease. Cartilage degeneration is the earliest and most important pathological change in osteoarthritis, and persistent inflammation is one of the driving factors of cartilage degeneration. Cucurbitacin E, an isolated compound in the Cucurbitacin family, has been shown to have anti-inflammatory effects, but its role and mechanism in osteoarthritic chondrocytes are unclear. METHODS: For in vitro experiments, human chondrocytes were stimulated with IL-1ß, and the expression of inflammatory genes was measured by Western blotting and qPCR. The expression of extracellular matrix proteins was evaluated by immunofluorescence staining, Western blotting and saffron staining. Differences in gene expression between cartilage from osteoarthritis patients and normal cartilage were analysed by bioinformatics methods, and the relationship between Cucurbitacin E and its target was analysed by a cellular thermal shift assay, molecular docking analysis and molecular dynamics simulation. For in vivo experiments, knee osteoarthritis was induced by DMM in C57BL/6 mouse knee joints, and the effect of Cucurbitacin E on knee joint degeneration was evaluated. RESULTS: The in vitro experiments confirmed that Cucurbitacin E effectively inhibited the production of the inflammatory cytokine interleukin-1ß(IL-1ß) and cyclooxygenase-2 (COX-2) by IL-1ß-stimulated chondrocytes and alleviates extracellular matrix degradation. The in vivo experiments demonstrated that Cucurbitacin E had a protective effect on the knee cartilage of C57BL/6 mice with medial meniscal instability in the osteoarthritis model. Mechanistically, bioinformatic analysis of the GSE114007 and GSE117999 datasets showed that the PI3K/AKT pathway was highly activated in osteoarthritis. Immunohistochemical analysis of PI3K/Akt signalling pathway proteins in pathological slices of human cartilage showed that the level of p-PI3K in patients with osteoarthritis was higher than that in the normal group. PI3K/Akt were upregulated in IL-1ß-stimulated chondrocytes, and Cucurbitacin E intervention reversed this phenomenon. The cellular thermal shift assay, molecular docking analysis and molecular dynamics experiment showed that Cucurbitacin E had a strong binding affinity for the inhibitory target PI3K. SC79 activated Akt phosphorylation and reversed the effect of Cucurbitacin E on IL-1ß-induced chondrocyte degeneration, demonstrating that Cucurbitacin E inhibits IL-1ß-induced chondrocyte inflammation and degeneration by inhibiting the PI3K/AKT pathway. CONCLUSION: Cucurbitacin E inhibits the activation of the PI3K/AKT pathway, thereby alleviating the progression of OA. In summary, we believe that Cucurbitacin E is a potential drug for the treatment of OA.


Asunto(s)
Condrocitos , Osteoartritis de la Rodilla , Ratones , Animales , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Interleucina-1beta/metabolismo , Simulación del Acoplamiento Molecular , Ratones Endogámicos C57BL , Inflamación/patología , Meniscos Tibiales , Osteoartritis de la Rodilla/patología , FN-kappa B/metabolismo
10.
Dokl Biochem Biophys ; 510(1): 87-90, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37582868

RESUMEN

On the basis of literature data, an antibody-like molecule, monobody, was selected that is capable of interacting with the nucleocapsid protein (N protein) of the SARS-CoV-2 virus with a high affinity (dissociation constant 6.7 nM). We have previously developed modular nanotransporters (MNTs) to deliver various molecules to a selected compartment of target cells. In this work, a monobody to the N protein of the SARS-CoV-2 virus was inserted in the MNT using genetic engineering methods. In this MNT, a site for the cleavage of the monobody from the MNT in endosomes was also inserted. It was shown by thermophoresis that the cleavage of this monobody from the MNT by the endosomal protease cathepsin B leads to a 12-fold increase in the affinity of the monobody for the N protein. Cellular thermal shift assay showed the ability of the obtained MNT to interact with the N protein in A431 cells transfected with the SARS-CoV-2 N protein fused to the mRuby3 fluorescent protein.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Proteínas de la Nucleocápside
11.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628420

RESUMEN

Chemical biology and the application of small molecules has proven to be a potent perturbation strategy, especially for the functional elucidation of proteins, their networks, and regulators. In recent years, the cellular thermal shift assay (CETSA) and its proteome-wide extension, thermal proteome profiling (TPP), have proven to be effective tools for identifying interactions of small molecules with their target proteins, as well as off-targets in living cells. Here, we asked the question whether isothermal dose-response (ITDR) CETSA can be exploited to characterize secondary effects downstream of the primary binding event, such as changes in post-translational modifications or protein-protein interactions (PPI). By applying ITDR-CETSA to MAPK14 kinase inhibitor treatment of living HL-60 cells, we found similar dose-responses for the direct inhibitor target and its known interaction partners MAPKAPK2 and MAPKAPK3. Extension of the dose-response similarity comparison to the proteome wide level using TPP with compound concentration range (TPP-CCR) revealed not only the known MAPK14 interaction partners MAPKAPK2 and MAPKAPK3, but also the potentially new intracellular interaction partner MYLK. We are confident that dose-dependent small molecule treatment in combination with ITDR-CETSA or TPP-CCR similarity assessment will not only allow discrimination between primary and secondary effects, but will also provide a novel method to study PPI in living cells without perturbation by protein modification, which we named "small molecule arranged thermal proximity coaggregation" (smarTPCA).


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Proteoma , Humanos , Proteoma/metabolismo
12.
Dokl Biochem Biophys ; 506(1): 220-222, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36303056

RESUMEN

Based on previous studies, two antibody-like molecules, monobodies, capable of high-affinity interaction with the SARS-CoV-2 nucleocapsid protein (dissociation constant of tens of nM) were selected. For delivery to target cells, genetically engineered constructs containing monobody and TAT peptide, placed either at the N- or C-terminus of the resulting polypeptide, were produced and expressed in E. coli. The construct with the highest affinity to the SARS-CoV-2 nucleocapsid protein was revealed with the use of thermophoresis technique. Cellular thermal shift assay demonstrated the ability of this construct to interact with the nucleocapsid protein within HEK293T cells transfected with the SARS-CoV-2 nucleocapsid protein fused to the mRuby3 fluorescent protein. Replacement of TAT peptide to S10 shuttle peptide, containing endosomolytic peptide, significantly improved the penetration of the construct into the target cells.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Anticuerpos Antivirales
13.
J Biol Chem ; 295(9): 2601-2613, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31953320

RESUMEN

The nonreceptor protein-tyrosine phosphatase (PTP) SHP2 is encoded by the proto-oncogene PTPN11 and is a ubiquitously expressed key regulator of cell signaling, acting on a number of cellular processes and components, including the Ras/Raf/Erk, PI3K/Akt, and JAK/STAT pathways and immune checkpoint receptors. Aberrant SHP2 activity has been implicated in all phases of tumor initiation, progression, and metastasis. Gain-of-function PTPN11 mutations drive oncogenesis in several leukemias and cause developmental disorders with increased risk of malignancy such as Noonan syndrome. Until recently, small molecule-based targeting of SHP2 was hampered by the failure of orthosteric active-site inhibitors to achieve selectivity and potency within a useful therapeutic window. However, new SHP2 allosteric inhibitors with excellent potency and selectivity have sparked renewed interest in the selective targeting of SHP2 and other PTP family members. Crucially, drug discovery campaigns focusing on SHP2 would greatly benefit from the ability to validate the cellular target engagement of candidate inhibitors. Here, we report a cellular thermal shift assay that reliably detects target engagement of SHP2 inhibitors. Using this assay, based on the DiscoverX InCell Pulse enzyme complementation technology, we characterized the binding of several SHP2 allosteric inhibitors in intact cells. Moreover, we demonstrate the robustness and reliability of a 384-well miniaturized version of the assay for the screening of SHP2 inhibitors targeting either WT SHP2 or its oncogenic E76K variant. Finally, we provide an example of the assay's ability to identify and characterize novel compounds with specific cellular potency for either WT or mutant SHP2.


Asunto(s)
Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Animales , Carcinogénesis/genética , Línea Celular , Mutación con Ganancia de Función , Humanos , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proto-Oncogenes Mas
14.
Acta Pharmacol Sin ; 42(5): 791-800, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32868906

RESUMEN

Aberrant activation of signal transducer and activator of transcription 3 (STAT3) plays a critical role in many types of cancers. As a result, STAT3 has been identified as a potential target for cancer therapy. In this study we identified 10,11-dehydrocurvularin (DCV), a natural-product macrolide derived from marine fungus, as a selective STAT3 inhibitor. We showed that DCV (2-8 µM) dose-dependently inhibited the proliferation, migration and invasion of human breast cancer cell lines MDA-MB-231 and MDA-MB-468, and induced cell apoptosis. In the two breast cancer cell lines, DCV selectively inhibited the phosphorylation of STAT3 Tyr-705, but did not affect the upstream components JAK1 and JAK2, as well as dephosphorylation of STAT3. Furthermore, DCV treatment strongly inhibited IFN-γ-induced STAT3 phosphorylation but had no significant effect on IFN-γ-induced STAT1 and STAT5 phosphorylation in the two breast cancer cell lines. We demonstrated that the α, ß-unsaturated carbonyl moiety of DCV was essential for STAT3 inactivation. Cellular thermal shift assay (CETSA) further revealed the direct engagement of DCV with STAT3. In nude mice bearing breast cancer cell line MDA-MB-231 xenografts, treatment with DCV (30 mg·kg-1·d-1, ip, for 14 days) markedly suppressed the tumor growth via inhibition of STAT3 activation without observed toxicity. Our results demonstrate that DCV acts as a selective STAT3 inhibitor for breast cancer intervention.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Factor de Transcripción STAT3/antagonistas & inhibidores , Zearalenona/análogos & derivados , Animales , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Zearalenona/farmacología , Zearalenona/uso terapéutico , Zearalenona/toxicidad
15.
Annu Rev Pharmacol Toxicol ; 56: 141-61, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26566155

RESUMEN

A drug must engage its intended target to achieve its therapeutic effect. However, conclusively measuring target engagement (TE) in situ is challenging. This complicates preclinical development and is considered a key factor in the high rate of attrition in clinical trials. Here, we discuss a recently developed, label-free, biophysical assay, the cellular thermal shift assay (CETSA), which facilitates the direct assessment of TE in cells and tissues at various stages of drug development. CETSA also reveals biochemical events downstream of drug binding and therefore provides a promising means of establishing mechanistic biomarkers. The implementation of proteome-wide CETSA using quantitative mass spectrometry represents a novel strategy for defining off-target toxicity and polypharmacology and for identifying downstream mechanistic biomarkers. The first year of CETSA applications in the literature has focused on TE studies in cell culture systems and has confirmed the broad applicability of CETSA to many different target families. The next phase of CETSA applications will likely encompass comprehensive animal and patient studies, and CETSA will likely serve as a very valuable tool in many stages of preclinical and clinical drug development.


Asunto(s)
Bioensayo/métodos , Biomarcadores/metabolismo , Animales , Sistemas de Liberación de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Humanos , Proteoma/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-29555627

RESUMEN

In Toxoplasma gondii, calcium-dependent protein kinase 1 (CDPK1) is an essential protein kinase required for invasion of host cells. We have developed several hundred CDPK1 inhibitors, many of which block invasion. Inhibitors with similar 50% inhibitory concentrations (IC50s) were tested in thermal shift assays for their ability to stabilize CDPK1 in cell lysates, in intact cells, or in purified form. Compounds that inhibited parasite growth stabilized CDPK1 in all assays. In contrast, two compounds that showed poor growth inhibition stabilized CDPK1 in lysates but not in cells. Thus, cellular exclusion could explain exceptions in the correlation between the action on the target and cellular activity. We used thermal shift assays to examine CDPK1 in two clones that were independently selected by growth in the CDPK1 inhibitor RM-1-132 and that had increased 50% effective concentrations (EC50s) for the compound. The A and C clones had distinct point mutations in the CDPK1 kinase domain, H201Q and L96P, respectively, residues that lie near one another in the inactive isoform. Purified mutant proteins showed RM-1-132 IC50s and thermal shifts similar to those shown by wild-type CDPK1. Reduced inhibitor stabilization (and a presumed reduced interaction) was observed only in cellular thermal shift assays. This highlights the utility of cellular thermal shift assays in demonstrating that resistance involves reduced on-target engagement (even if biochemical assays suggest otherwise). Indeed, similar EC50s were observed upon overexpression of the mutant proteins, as in the corresponding drug-selected parasites, although high levels of CDPK1(H201Q) only modestly increased resistance compared to that achieved with high levels of wild-type enzyme.


Asunto(s)
Quinasa 2 de Adhesión Focal/antagonistas & inhibidores , Naftalenos/farmacología , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Toxoplasma/efectos de los fármacos , Toxoplasmosis/tratamiento farmacológico , Animales , Resistencia a Medicamentos/genética , Quinasa 2 de Adhesión Focal/genética , Humanos , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Toxoplasma/genética
17.
Bioorg Med Chem Lett ; 25(5): 998-1008, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25630223

RESUMEN

The pharmaceutical industry is currently facing multiple challenges, in particular the low number of new drug approvals in spite of the high level of R&D investment. In order to improve target selection and assess properly the clinical hypothesis, it is important to start building an integrated drug discovery approach during Lead Generation. This should include special emphasis on evaluating target engagement in the target tissue and linking preclinical to clinical readouts. In this review, we would like to illustrate several strategies and technologies for assessing target engagement and the value of its application to medicinal chemistry efforts.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Animales , Humanos , Mediciones Luminiscentes/métodos , Imagen Óptica/métodos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Tomografía de Emisión de Positrones/métodos
18.
Int Immunopharmacol ; 143(Pt 1): 113381, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39405934

RESUMEN

Artesunate holds excellent promise for lung cancer treatment, but its target is still unclear. We used molecular docking techniques to predict artesunate and Fatty acid binding protein 5 (FABP5) binding sites. Cellular thermal shift assay (CETSA) verified that artesunate treatment could promote the stability of the FABP5 protein. There was no significant change in the strength of the FABP5 protein after the mutation of binding sites by adding artesunate treatment. Mechanistically, artesunate promotes apoptosis in lung cancer cells by binding to FABP5, inhibiting the expression of the lipid metabolism gene SCD, and suppressing the expression of the SCD transcription factor regulated by the transcription factor PPARγ. In summary, our study shows that the protein targeted by artesunate is FABP5 and that artesunate promotes apoptosis through the FABP5-PPARγ-SCD pathway, which offers excellent potential for treating lung cancer.

19.
Life Sci ; 356: 123031, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226989

RESUMEN

AIMS: Nonalcoholic steatohepatitis (NASH) is the severe subtype of nonalcoholic fatty diseases (NAFLD) with few options for treatment. Patients with NASH exhibit partial responses to the current therapeutics and adverse effects. Identification of the binding proteins for the drugs is essential to understanding the mechanism and adverse effects of the drugs and fuels the discovery of potent and safe drugs. This paper aims to critically discuss recent advances in covalent and noncovalent approaches for identifying binding proteins that mediate NASH progression, along with an in-depth analysis of the mechanisms by which these targets regulate NASH. MATERIALS AND METHODS: A literature search was conducted to identify the relevant studies in the database of PubMed and the American Chemical Society. The search covered articles published from January 1990 to July 2024, using the search terms with keywords such as NASH, benzophenone, diazirine, photo-affinity labeling, thermal protein profiling, CETSA, target identification. KEY FINDINGS: The covalent approaches utilize drugs modified with diazirine and benzophenone to covalently crosslink with the target proteins, which facilitates the purification and identification of target proteins. In addition, they map the binding sites in the target proteins. By contrast, noncovalent approaches identify the binding targets of unmodified drugs in the intact cell proteome. The advantages and limitations of both approaches have been compared, along with a comprehensive analysis of recent innovations that further enhance the efficiency and specificity. SIGNIFICANCE: The analyses of the applicability of these approaches provide novel tools to delineate NASH pathogenesis and promote drug discovery.


Asunto(s)
Descubrimiento de Drogas , Hígado Graso , Proteínas , Quimera Dirigida a la Proteólisis , Bibliotecas de Moléculas Pequeñas , Hígado Graso/metabolismo , Unión Proteica , Dominios Proteicos , Quimera Dirigida a la Proteólisis/química , Quimera Dirigida a la Proteólisis/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteolisis , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Humanos , Animales , Línea Celular Tumoral
20.
Eur J Med Chem ; 267: 116203, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38342014

RESUMEN

BACKGROUND: Quercetin is widely distributed in nature and abundant in the human diet, which exhibits diverse biological activities and potential medical benefits. However, there remains a lack of comprehensive understanding about its cellular targets, impeding its in-depth mechanistic studies and clinical applications. PURPOSE: This study aimed to profile protein targets of quercetin at the proteome level. METHODS: A label-free CETSA-MS proteomics technique was employed for target enrichment and identification. The R package Inflect was used for melting curve fitting and target selection. D3Pocket and LiBiSco tools were used for binding pocket prediction and binding pocket analysis. Western blotting, molecular docking, site-directed mutagenesis and pull-down assays were used for target verification and validation. RESULTS: We curated a library of direct binding targets of quercetin in cells. This library comprises 37 proteins that show increased thermal stability upon quercetin binding and 33 proteins that display decreased thermal stability. Through Western blotting, molecular docking, site-directed mutagenesis and pull-down assays, we validated CBR1 and GSK3A from the stabilized protein group and MAPK1 from the destabilized group as direct binding targets of quercetin. Moreover, we characterized the shared chemical properties of the binding pockets of quercetin with targets. CONCLUSION: Our findings deepen our understanding of the proteins pivotal to the bioactivity of quercetin and lay the groundwork for further exploration into its mechanisms of action and potential clinical applications.


Asunto(s)
Proteoma , Quercetina , Humanos , Quercetina/farmacología , Quercetina/química , Simulación del Acoplamiento Molecular , Proteoma/metabolismo , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA