Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 667
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 237, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566021

RESUMEN

BACKGROUND: Onions are economically and nutritionally important vegetable crops. Despite advances in technology and acreage, Indian onion growers face challenges in realizing their full productivity potential. This study examines the technical efficiency of onion growers, the factors influencing it, and the constraints faced by those adopting drip irrigation in the Ghod river basin of western Maharashtra. A sample of 480 farmers including those practicing drip irrigation and those not practicing it, was selected from Junnar, Shirur, Parner, and Shrigonda blocks of the basin. The primary data was collected through semi-structured interviews. Analytical tools such as the Cobb-Douglas production function (represents technological relationship between multiple inputs and the resulting output), a single-stage stochastic frontier model, the Tobit model, and descriptive statistics were used to assess the technical efficiency of onion production at the farm level. RESULTS: According to the maximum likelihood estimates of the stochastic frontier analysis, drip adopters exhibited a mean technical efficiency of 92%, while for non-adopters it was 65%. It indicates that the use of drip irrigation technology is associated with higher technical efficiency. The association of technical efficiency and socio-economic characters of households showed that education, extension contacts, social participation, and use of information sources had a positive influence on technical efficiency, while family size had a negative influence on the drip irrigation adopters. For non-drip adopters, significant positive effects were observed for landholding, extension contact, and information source use. The major constraints faced by drip system adopters included a lack of knowledge about the proper operating techniques for drip systems and the cost of maintenance. CONCLUSION: The differences with inputs associated with two irrigation methods showed that the response of inputs to increase onion yield is greater for farmers who use drip irrigation than for farmers who do not, and are a result of the large differences in the technical efficiencies. These inefficiencies and other limitations following the introduction of drip irrigation, such as lack of knowledge about the proper operations, need to be addressed through tailored training for farmers and further interventions.


Asunto(s)
Riego Agrícola , Cebollas , Riego Agrícola/métodos , India , Granjas , Productos Agrícolas
2.
Fungal Genet Biol ; 170: 103860, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38114016

RESUMEN

Fusarium oxysporum f. sp. cepae (Foc) is the causative agent of Fusarium basal rot disease in onions, which leads to catastrophic global crop production losses. Therefore, the interaction of Foc with its host has been actively investigated, and the pathogen-specific (PS) regions of the British strain Foc_FUS2 have been identified. However, it has not been experimentally determined whether the identified PS region plays a role in pathogenicity. To identify the pathogenicity chromosome in the Japanese strain Foc_TA, we initially screened effector candidates, defined as small proteins with a signal peptide that contain two or more cysteines, from genome sequence data. Twenty-one candidate effectors were identified, five of which were expressed during infection. Of the expressed effector candidates, four were located on the 4-Mb-sized chromosome in Foc_TA. To clarify the relationship between pathogenicity and the 4-Mb-sized chromosome in Foc_TA, nine putative 4-Mb-sized chromosome loss strains were generated by treatment with benomyl (a mitotic inhibitor drug). A pathogenicity test with putative 4-Mb-sized chromosome loss strains showed that these strains were impaired in their pathogenicity toward onions. Genome analysis of three putative 4-Mb-sized chromosome loss strains revealed that two strains lost a 4-Mb-sized chromosome in common, and another strain maintained a 0.9-Mb region of the 4-Mb-sized chromosome. Our findings show that the 4-Mb-sized chromosome is the pathogenicity chromosome in Foc_TA, and the 3.1-Mb region within the 4-Mb-sized chromosome is required for full pathogenicity toward onion.


Asunto(s)
Fusarium , Virulencia/genética , Fusarium/genética , Cromosomas , Enfermedades de las Plantas/genética
3.
Exp Eye Res ; 240: 109816, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309514

RESUMEN

The ocular surface is subject to a range of potentially hazardous environmental factors and substances, owing to its anatomical location, sensitivity, and physiological makeup. Xenobiotic stress exerted by chronic pesticide exposure on the cornea is primarily responsible for ocular irritation, excessive tear production (hyper-lacrimation), corneal abrasions and decreased visual acuity. Traditional medicine hails the humble onion (Allium cepa) for its multi-faceted properties including but not limited to anti-microbial, antioxidant, anti-inflammatory and wound healing. However, there is a lacuna regarding its impact on the ocular surface. Thereby, the current study investigated whether topical application of crude extract of Allium cepa aided in mitigating pesticide-induced damage to the ocular surface. The deleterious effects of pesticide exposure and their mitigation through the topical application of herbal extract of Allium cepa were analysed initially through in vitro evaluation on cell lines and then on the ocular surface via various in-vivo and ex-vivo techniques. Pathophysiological alterations to the ocular surface that impacted vision were explored through detailed neurophysiological screening with special emphasis on visual acuity wherein it was observed that the murine group treated with topical application of Allium cepa extract had comparable visual capacity to the non-pesticide exposed group. Additionally, SOD2 was utilized as an oxidative stress marker along with the expression of cellular apoptotic markers such as Bcl-xL to analyse the impact of pesticide exposure and subsequent herbal intervention on oxidative stress-induced corneal damage. The impact on the corneal epithelial progenitor cell population (ABCG2 and TERT positive cells) was also flowcytometrically analysed. Therefore, from our observations, it can be postulated that the topical application of Allium cepa extract might serve as an effective strategy to alleviate pesticide exposure related ocular damage.


Asunto(s)
Cebollas , Plaguicidas , Ratones , Animales , Cebollas/fisiología , Plaguicidas/toxicidad , Córnea , Antioxidantes/farmacología , Estrés Oxidativo
4.
Microb Cell Fact ; 23(1): 17, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200553

RESUMEN

BACKGROUND: Yeast treatment has been used for purification of fructooligosaccharides (FOSs). However, the main drawback of this approach is that yeast can only partially remove sucrose from crude FOSs. The main objective of this research was to screen yeast strains for the capability of selectively consuming unwanted sugars, namely fructose, glucose, and sucrose, in crude FOSs extracted from red onion (Allium cepa var. viviparum) with minimal effect on FOS content. RESULTS: Among 43 yeast species isolated from Miang, ethnic fermented tea leaves, and Assam tea flowers, Candida orthopsilosis FLA44.2 and Priceomyces melissophilus FLA44.8 exhibited the greatest potential to specifically consume these unwanted sugars. In a shake flask, direct cultivation of C. orthopsilosis FLA44.2 was achieved in the original crude FOSs containing an initial FOSs concentration of 88.3 ± 1.2 g/L and 52.9 ± 1.2 g/L of the total contents of fructose, glucose, and sucrose. This was successful with 93.7% purity and 97.8% recovery after 24 h of cultivation. On the other hand, P. melissophilus FLA48 was limited by initial carbohydrate concentration of crude FOSs in terms of growth and sugar utilization. However, it could directly purify two-fold diluted crude FOSs to 95.2% purity with 92.2% recovery after 72 h of cultivation. Purification of crude FOSs in 1-L fermenter gave similar results to the samples purified in a shake flask. Extracellular ß-fructosidase was assumed to play a key role in the effective removal of sucrose. Both Candida orthopsilosis FLA44.2 and P. melissophilus FLA44.8 showed γ-hemolytic activity, while their culture broth had no cytotoxic effect on viability of small intestinal epithelial cells, preliminarily indicating their safety for food processing. The culture broth obtained from yeast treatment was passed through an activated charcoal column for decolorization and deodorization. After being freeze dried, the final purified FOSs appeared as a white granular powder similar to refined sugar and was odorless since the main sulfur-containing volatile compounds, including dimethyl disulfide and dipropyl trisulfide, were almost completely removed. CONCLUSION: The present purification process is considered simple and straight forward, and provides new and beneficial insight into utilization of alternative yeast species for purification of FOSs.


Asunto(s)
Glucosa , Oligosacáridos , Cebollas , Sacarosa , Candida parapsilosis , Fructosa ,
5.
BMC Vet Res ; 20(1): 334, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39061083

RESUMEN

BACKGROUND: Gills monogenean infestation causes significant mortalities in cultured fishes as a result of respiratory manifestation. Medicinal plants are currently being heavily emphasized in aquaculture due to their great nutritional, therapeutic, antimicrobial activities, and financial value. METHODS: The current study is designed to assess the effect of garlic (Allium sativum) and onion (Allium cepa) extracts as a water treatment on the hematological profile, innate immunity, and immune cytokines expression besides histopathological features of gills of Nile tilapia (Oreochromis niloticus L.) infected with gills monogenetic trematodes (Dactylogyrus sp.). Firstly, the 96-hour lethal concentration 50 (96 h-LC50) of garlic extract (GE) and onion extract (OE) were estimated to be 0.4 g/ L and 3.54 g/ L for GE and OE, respectively. Moreover, the in-vitro anti-parasitic potential for (GE) was found between 0.02 and 0.18 mg/mL and 0.4 to 1.8 mg/mL for OE. For the therapeutic trial, fish (n = 120; body weight: 40-60 g) were randomly distributed into four groups in triplicates (30 fish/group, 10 fish/replicate) for 3 days. Group1 (G1) was not infected or treated and served as control. G2 was infected with Dactylogyrus spp. and not exposed to any treatment. G3, G4 were infected with Dactylogyrus sp. and treated with 1/10 and 1/5 of 96 h LC50 of OE, respectively. G5, G6 were infected with Dactylogyrus sp. and treated with 1/10 and 1/5 of 96 h LC50 of GE, respectively. RESULTS: No apparent signs or behaviors were noted in the control group. Dactylogyrus spp. infected group suffered from clinical signs as Pale color and damaged tissue. Dactylogyrus spp. infection induced lowering of the hematological (HB, MCH, MCHC and WBCs), and immunological variables (lysozyme, nitric oxide, serum Anti- protease activities, and complement 3). the expression of cytokine genes IL-ß and TNF-α were modulated and improved by treatment with A. sativum and A. cepa extracts. The obtained histopathological alterations of the gills of fish infected with (Dactylogyrus spp.) were hyperplasia leading to fusion of the gill filament, lifting of epithelial tissue, aneurism and edema. The results indecated that G4 and G5 is more regenarated epithelium in compare with the control group. CONCLUSION: A. sativum and A. cepa extracts enhance the blood profile and nonspecific immune parameters, and down-regulated the expression level of (IL-1ß and TNF-α).


Asunto(s)
Cíclidos , Citocinas , Enfermedades de los Peces , Ajo , Branquias , Cebollas , Extractos Vegetales , Trematodos , Infecciones por Trematodos , Animales , Branquias/parasitología , Branquias/patología , Branquias/efectos de los fármacos , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/inmunología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Cíclidos/inmunología , Cíclidos/parasitología , Ajo/química , Citocinas/genética , Citocinas/metabolismo , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/tratamiento farmacológico , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/inmunología , Trematodos/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos
6.
J Toxicol Environ Health A ; 87(3): 108-119, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37942923

RESUMEN

Heavy metals (HMs) are natural components of the Earth's crust that might originate from natural and anthropogenic sources. In excess quantities, the presence of these metals is harmful for both environment and human health. Taking this into account, various investigators examined bioaccumulator species in order to reduce environmental toxicity, among these Baccharis trimera. Therefore, the present study aimed to determine the capacity of B. trimera to bioaccumulate HMs and assess consequent cytogenotoxicity following exposure. B. trimera vegetative parts were collected from two groups (1) control, in which plants were cultivated in soil exposed to distilled water, and (2) exposed, in which plants were cultivated in soil exposed to HMs including manganese (Mn), iron (Fe), lead (Pb), copper (Cu), cobalt (Co), zinc (Zn), and chromium (Cr). HMs were quantified in cultivation soil and extracts (aqueous and ethanolic) as well as infusion of B. trimera vegetative parts. Root lengths and cytogenotoxic effects were determined using Allium cepa test. Results demonstrated that all HMs studied were absorbed and bioaccumulated by B. trimera. Root lengths were decreased when exposed to ethanolic extract of B. trimera cultivated in soil exposed to HMs solution, which was the extract that exhibited the highest cytogenotoxicity values. Thus, data demonstrated that B. trimera might serve as a bioaccumulator for the reduction of environmental toxicity associated with the presence of certain HMs.


Asunto(s)
Baccharis , Metales Pesados , Contaminantes del Suelo , Humanos , Metales Pesados/toxicidad , Metales Pesados/análisis , Cobre , Extractos Vegetales/toxicidad , Suelo , Contaminantes del Suelo/toxicidad , Monitoreo del Ambiente/métodos
7.
Ecotoxicol Environ Saf ; 274: 116185, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489906

RESUMEN

This study explores the environmental effects of five common veterinary antibiotics widely detected in the environment, (chlortetracycline,CTC; oxytetracycline,OTC; florfenicol,FF; neomycin, NMC; and sulfadiazine, SDZ) on four bioindicators: Daphnia magna, Vibrio fischeri, Eisenia fetida, and Allium cepa, representing aquatic and soil environments. Additionally, microbial communities characterized through 16 S rRNA gene sequencing from a river and natural soil were exposed to the antibiotics to assess changes in population growth and metabolic profiles using Biolog EcoPlates™. Tetracyclines are harmful to Vibrio fisheri (LC50 ranges of 15-25 µg/mL), and the other three antibiotics seem to only affect D. magna, especially, SDZ. None of the antibiotics produced mortality in E. fetida at concentrations below 1000 mg/kg. NMC and CTC had the highest phytotoxicities in A. cepa (LC50 = 97-174 µg/mL, respectively). Antibiotics significantly reduced bacterial metabolism at 0.1-10 µg/mL. From the highest to the lowest toxicity on aquatic communities: OTC > FF > SDZ ≈ CTC > NMC and on edaphic communities: CTC ≈ OTC > FF > SDZ > NMC. In river communities, OTC and FF caused substantial decreases in bacterial metabolism at low concentrations (0.1 µg/mL), impacting carbohydrates, amino acids (OTC), and polymers (FF). At 10 µg/mL and above, OTC, CTC, and FF significantly decreased metabolizing all tested metabolites. In soil communities, a more pronounced decrease in metabolizing ability, detectable at 0.1 µg/mL, particularly affected amines/amides and carboxylic and ketonic acids (p < 0.05). These new ecotoxicity findings underscore that the concentrations of these antibiotics in the environment can significantly impact both aquatic and terrestrial ecosystems.


Asunto(s)
Antibacterianos , Oxitetraciclina , Antibacterianos/toxicidad , Suelo , Ecosistema , Agua , Oxitetraciclina/toxicidad
8.
Pestic Biochem Physiol ; 203: 105997, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084771

RESUMEN

In this study, the toxicity of the pesticide cypermethrin and the protective properties of royal jelly against this toxicity were investigated using Allium cepa L., a model organism. Toxicity was evaluated using 6 mg/L cypermethrin, while royal jelly (250 mg/L and 500 mg/L) was used in combination with cypermethrin to test the protective effect. To comprehend toxicity and protective impact, growth, genotoxicity, biochemical, comet assay and anatomical parameters were employed. Royal jelly had no harmful effects when applied alone. On the other hand, following exposure to cypermethrin, there was a reduction in weight increase, root elongation, rooting percentage, mitotic index (MI), and chlorophyll a and b. Cypermethrin elevated the frequencies of micronucleus (MN) and chromosomal aberrations (CAs), levels of proline and malondialdehyde (MDA), and the activity rates of the enzymes catalase (CAT) and superoxide dismutase (SOD). A spectral change in the DNA spectrum indicated that the interaction of cypermethrin with DNA was one of the reasons for its genotoxicity, and molecular docking investigations suggested that tubulins, histones, and topoisomerases might also interact with this pesticide. Cypermethrin also triggered some critical meristematic cell damage in the root tissue. At the same time, DNA tail results obtained from the comet assay revealed that cypermethrin caused DNA fragmentation. When royal jelly was applied together with cypermethrin, all negatively affected parameters due to the toxicity of cypermethrin were substantially restored. However, even at the maximum studied dose of 500 mg/L of royal jelly, this restoration did not reach the levels of the control group. Thus, the toxicity of cypermethrin and the protective function of royal jelly against this toxicity in A. cepa, the model organism studied, were determined by using many different approaches. Royal jelly is a reliable, well-known and easily accessible protective functional food candidate against the harmful effects of hazardous substances such as pesticides.


Asunto(s)
Ácidos Grasos , Simulación del Acoplamiento Molecular , Cebollas , Piretrinas , Piretrinas/toxicidad , Cebollas/efectos de los fármacos , Ácidos Grasos/metabolismo , Daño del ADN/efectos de los fármacos , Ensayo Cometa , Insecticidas/toxicidad , Catalasa/metabolismo , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo , Aberraciones Cromosómicas/inducido químicamente , Aberraciones Cromosómicas/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo
9.
Chem Biodivers ; : e202401406, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103292

RESUMEN

Toxicological studies are important to investigate the genotoxic effects of various substances. Allium cepa can be used as test model for this purpose. This review summarizes the scope and applications for this A. cepa test model. For this, an up-to-date (April 2023) literature search was made in the Science Direct, PubMed, and Web of Science databases to find published evidence on studies performed using A. cepa as a test model. Out of 3,748 studies, 74 fit the inclusion criteria. The results showed that the use of the test model A. cepa contributed considerably to measuring the toxicological potential of plant extracts, proving the efficacy of the test as a potent bioindicator of toxic effects. In addition, 27 studies used more than one test system to verify the toxicological potential of extracts and fractions. Studies have shown that the A. cepa model has the potential to replace other test systems that make use of animals and cell cultures, besides having other advantages such as low cost, ease of execution, and good conditions for the observation of chromosomes. In conclusion, the A. cepa test can be considered one of the potential biomonitoring systems in toxicological studies of crude extracts.

10.
Plant Dis ; 108(3): 684-693, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37775924

RESUMEN

In 2021, two gram-negative bacterial strains were isolated from garlic (Allium sativum) bulbs showing decay and soft rot symptoms in Central Iran. The bacterial strains were aggressively pathogenic on cactus, garlic, gladiolus, onion, potato, and saffron plants and induced soft rot symptoms on carrot, cucumber, potato, and radish discs. Furthermore, they were pathogenic on sporophores of cultivated and wild mushrooms. Phylogenetic analyses revealed that the bacterial strains belong to Burkholderia gladioli. Garlic bulb rot caused by B. gladioli has rarely been reported in the literature. Historically, B. gladioli strains had been assigned to four pathovars, namely, B. gladioli pv. alliicola, B. gladioli pv. gladioli, B. gladioli pv. agaricicola, and B. gladioli pv. cocovenenans, infecting onion, Gladiolus sp., and mushrooms and poisoning foods, respectively. Multilocus (i.e., 16S rRNA, atpD, gyrB, and lepA genes) sequence-based phylogenetic investigations including reference strains of B. gladioli pathovars showed that the two garlic strains belong to phylogenomic clade 2 of the species, which includes the pathotype strain of B. gladioli pv. alliicola. Although the garlic strains were phylogenetically closely related to the B. gladioli pv. alliicola reference strains, they possessed pathogenicity characteristics that overlapped with three of the four historical pathovars, including the ability to rot onion (pv. alliicola), gladiolus (pv. gladioli), and mushrooms (pv. agaricicola). Furthermore, the pathotype of each pathovar could infect the hosts of other pathovars, undermining the utility of the pathovar concept in this species. Overall, using phenotypic pathovar-oriented assays to classify B. gladioli strains should be replaced by phylogenetic or phylogenomic analysis.


Asunto(s)
Burkholderia gladioli , Ajo , Burkholderia gladioli/genética , Ajo/genética , Filogenia , ARN Ribosómico 16S/genética , Cebollas
11.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928460

RESUMEN

Osteoporosis, a prevalent chronic health issue among the elderly, is a global bone metabolic disease. Flavonoids, natural active compounds widely present in vegetables, fruits, beans, and cereals, have been reported for their anti-osteoporotic properties. Onion is a commonly consumed vegetable rich in flavonoids with diverse pharmacological activities. In this study, the trabecular structure was enhanced and bone mineral density (BMD) exhibited a twofold increase following oral administration of onion flavonoid extract (OFE). The levels of estradiol (E2), calcium (Ca), and phosphorus (P) in serum were significantly increased in ovariectomized (OVX) rats, with effects equal to alendronate sodium (ALN). Alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) levels in rat serum were reduced by 35.7% and 36.9%, respectively, compared to the OVX group. In addition, the effects of OFE on bone health were assessed using human osteoblast-like cells MG-63 and osteoclast precursor RAW 264.7 cells in vitro as well. Proliferation and mineralization of MG-63 cells were promoted by OFE treatment, along with increased ALP activity and mRNA expression of osteoprotegerin (OPG)/receptor activator of nuclear factor-kappaB ligand (RANKL). Additionally, RANKL-induced osteoclastogenesis and osteoclast activity were inhibited by OFE treatment through decreased TRAP activity and down-regulation of mRNA expression-related enzymes in RAW 264.7 cells. Overall findings suggest that OFE holds promise as a natural functional component for alleviating osteoporosis.


Asunto(s)
Flavonoides , Cebollas , Osteoblastos , Osteogénesis , Osteoporosis , Extractos Vegetales , Animales , Femenino , Humanos , Ratones , Ratas , Densidad Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Flavonoides/farmacología , Cebollas/química , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis/patología , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Ovariectomía , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ligando RANK/metabolismo , Ratas Sprague-Dawley , Células RAW 264.7
12.
Molecules ; 29(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39064972

RESUMEN

Nanoscale geranium waste (GW) and magnesium nanoparticle/GW nanocomposites (Mg NP/GW) were prepared using green synthesis. The Mg NP/GW samples were subjected to characterization using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR-FT). The surface morphology of the materials was examined using a scanning electron microscope (SEM), and their thermal stability was assessed through thermal gravimetric analysis (TG). The BET-specific surface area, pore volume, and pore size distribution of the prepared materials were determined using the N2 adsorption-desorption method. Additionally, the particle size and zeta potentials of the materials were also measured. The influence of the prepared nanomaterials on seed germination was intensively investigated. The results revealed an increase in seed germination percent at low concentrations of Mg NP/GWs. Upon treatment with Mg NP/GW nanoparticles, a reduction in the mitotic index (MI) was observed, indicating a decrease in cell division. Additionally, an increase in chromosomal abnormalities was detected. The efficacy of GW and Mg NP/GW nanoparticles as new elicitors was evaluated by studying their impact on the expression levels of the farnesyl diphosphate synthase (FPPS1) and geranylgeranyl pyrophosphate (GPPS1) genes. These genes play a crucial role in the terpenoid biosynthesis pathway in Sinapis alba (S. alba) and Pelargonium graveolens (P. graveolens) plants. The expression levels were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The qRT-PCR analysis of FPPS and GPPS gene expression was performed. The outputs of FPPS1 gene expression demonstrated high levels of mRNA in both S. alba and P. graveolens with fold changes of 25.24 and 21.68, respectively. In contrast, the minimum expression levels were observed for the GPPS1 gene, with fold changes of 11.28 and 6.48 in S. alba and P. graveolens, respectively. Thus, this study offers the employment of medicinal plants as an alternative to fertilizer usage resulting in promoting environmental preservation, optimal waste utilization, reducing water consumption, and cost reduction.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pelargonium , Sinapis , Sinapis/genética , Sinapis/efectos de los fármacos , Sinapis/crecimiento & desarrollo , Pelargonium/genética , Pelargonium/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nanopartículas/química , Tecnología Química Verde , Germinación/efectos de los fármacos , Nanopartículas del Metal/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
13.
Water Sci Technol ; 90(4): 1181-1197, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39215731

RESUMEN

Groundwater and soil contamination by aromatic amines (AAs), used in the production of polymers, plastics, and pesticides, often results from improper waste disposal and accidental leaks. These compounds are resistant to anaerobic degradation; however, micro-aeration can enhance this process by promoting microbial interactions. In batch assays, anaerobic degradation of aniline (0.14 mM), a model AA, was tested under three micro-aeration conditions: T30, T15, and T10 (30, 15, and 10 min of micro-aeration every 2 h, respectively). Aniline degradation occurred in all conditions, producing both aerobic (catechol) and anaerobic (benzoic acid) byproducts. The main genera involved in T30 and T15 were Comamonas, Clostridium, Longilinea, Petrimonas, Phenylobacterium, Pseudoxanthomonas, and Thiobacillus. In contrast, in T10 were Pseudomonas, Delftia, Leucobacter, and Thermomonas. While T30 and T15 promoted microbial cooperation for anaerobic degradation and facultative respiration, T10 resulted in a competitive environment due to dominance and oxygen scarcity. Despite aniline degradation in 9.4 h under T10, this condition was toxic to Allium cepa seeds and exhibited cytogenotoxic effects. Therefore, T15 emerged as the optimal condition, effectively promoting anaerobic degradation without accumulating toxic byproducts. Intermittent micro-aeration emerges as a promising strategy for enhancing the anaerobic degradation of AA-contaminated effluents.


Asunto(s)
Compuestos de Anilina , Biodegradación Ambiental , Compuestos de Anilina/toxicidad , Compuestos de Anilina/metabolismo , Anaerobiosis , Cinética , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
14.
Environ Geochem Health ; 46(3): 87, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367090

RESUMEN

The ecotoxic effect of Zn species arising from the weathering of the marmatite-like sphalerite ((Fe, Zn)S) in Allium cepa systems was herein evaluated in calcareous soils and connected with its sulfide oxidation mechanism to determine the chemical speciation responsible of this outcome. Mineralogical analyses (X-ray diffraction patterns, Raman spectroscopy, scanning electron microscopy and atomic force microscopy), chemical study of leachates (total Fe, Zn, Cd, oxidation-reduction potential, pH, sulfates and total alkalinity) and electrochemical assessments (chronoamperometry, chronopotentiometry, cyclic voltammetry, and electrochemical impedance spectroscopy) were carried out using (Fe, Zn)S samples to elucidate interfacial mechanisms simulating calcareous soil conditions. Results indicate the formation of polysulfides (Sn2-), elemental sulfur (S0), siderite (FeCO3)-like, hematite (Fe2O3)-like with sorbed CO32- species, gunningite (ZnSO4·H2O)-like phase and smithsonite (ZnCO3)-like compounds in altered surface under calcareous conditions. However, the generation of gunningite (ZnSO4·H2O)-like phase was predominant bulk-solution system. Quantification of damage rates ranges from 75 to 90% of bulb cells under non-carbonated conditions after 15-30 days, while 50-75% of damage level is determined under neutral-alkaline carbonated conditions. Damage ratios are 70.08 and 30.26 at the highest level, respectively. These findings revealed lower ecotoxic damage due to ZnCO3-like precipitation, indicating the effect of carbonates on Zn compounds during vegetable up-taking (exposure). Other environmental suggestions of the (Fe, Zn)S weathering and ecotoxic effects under calcareous soil conditions are discussed.


Asunto(s)
Cebollas , Contaminantes del Suelo , Compuestos de Zinc , Suelo/química , Sulfuros/química , Tiempo (Meteorología) , Contaminantes del Suelo/análisis
15.
Artículo en Inglés | MEDLINE | ID: mdl-37191986

RESUMEN

Three bacterial strains, H21R-40T and H21R-36 from garlic (Allium sativum) and H25R-14T from onion (Allium cepa), were isolated from plant rhizospheres sampled in the Republic of Korea. Results of 16S rRNA gene sequence analysis revealed the highest sequence similarity of strain H21R-40T to Leucobacter celer subsp. astrifaciens CBX151T (97.3 %) and Leucobacter triazinivorans JW-1T (97.2 %), and strain H25R-14T to Leucobacter insecticola HDW9BT (98.8 %) and Leucobacter humi Re6T (98.4 %), while the sequence similarity between strains H21R-40T and H21R-36 was 99.8 %. According to the phylogenomic tree, strains H21R-40T with H21R-36 formed an independent clade separable from other Leucobacter species within the genus Leucobacter and strain H25R-14T clustered with Leucobacter insecticola HDW9BT, Leucobacter coleopterorum HDW9AT and Leucobacter viscericola HDW9CT. Strains H21R-40T and H21R-36 had orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) values (98.1 % and 86.9 %, respectively) higher than the threshold ranges for species delineation (95-96 % and 70 %, respectively). The OrthoANI and dDDH values between two strains (H21R-40T and H25R-14T) and the type strains of species of the genus Leucobacter were lower than 81 and 24 %, respectively. The peptidoglycan type of three strains was type B1. The major menaquinones and major polar lipids of the strains were MK-11 and MK-10, and diphosphatidylglycerol, phatidylglycerol and an unidentified glycolipid, respectively. The major fatty acids (more than 10 % of the total fatty acids) of strains H21R-40T and H21R-36 were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0, and those of strain H25R-14T were anteiso-C15 : 0 and iso-C16 : 0. The phenotypic, chemotaxonomic and genotypic data obtained in this study showed that the strains represent two novel species of the genus Leucobacter, named Leucobacter allii sp. nov. (H21R-40T and H21R-36) and Leucobacter rhizosphaerae sp. nov. (H25R-14T). The respective type strains are H21R-40T (=DSM 114348T=JCM 35241T=KACC 21839T=NBRC 115481T) and H25R-14T (=DSM 114346T=JCM 35239T=KACC 21837T=NBRC 115479T).


Asunto(s)
Actinomycetales , Ajo , Ácidos Grasos/química , Cebollas , Ajo/genética , Fosfolípidos , ARN Ribosómico 16S/genética , Rizosfera , Análisis de Secuencia de ADN , Filogenia , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Vitamina K 2 , Antioxidantes
16.
Environ Res ; 224: 115497, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36805894

RESUMEN

In the present study, the maximum yield of quercetin was optimized for the ethanol extraction of small onions (Allium cepa L. var. aggregatum Don.), and the antioxidant activity was investigated in vitro. The extraction of quercetin from the small onion skin was carried out through ethanol solvent extraction with different ratios of ethanol and water. Ethanol: water ratio produced the highest quercetin from the onion skin. RP-HPLC analysis of the extracted material showed 2, 122 mg/g of quercetin and 0.34 mg/g of isorhamnetin. A total of 301.03 mg GAE/g dry weight and 156 mg/g quercetin equivalents were found in the onion skin extract. DPPH and ABTS free radical scavenging potentials of the tested extract (90:10 v/v) were dose-dependent, with IC50 values of 62.27 µg/mL and 53.65 µg/mL, respectively. Therefore, the present study reports that small onion skin extract rich in quercetin may serve as a promising antioxidant and anticancer agent.


Asunto(s)
Quercetina , Chalotes , Antioxidantes/análisis , Cebollas , Etanol , Extractos Vegetales , Agua
17.
J Toxicol Environ Health A ; 86(23): 871-897, 2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-37682045

RESUMEN

Heliotropium elongatum is used to treat inflammation, cough, and flu. This study aimed to characterize the phytochemical profile and determine the total phenolic content (TPC), antioxidant and cytogenotoxic activity of the ethanolic extract (EE), and fractions of H. elongatum leaves. In the phytochemical profile analysis, organic acids, reducing sugars, flavonoids, saponins, anthraquinones, steroids/triterpenes, and depsides/depsidones were detected in the EE and/or fractions (hexanic/FH, chloroformic/FC, ethyl acetate/FAE, and hydromethanolic/FHM). The highest TPC and highest antioxidant activity (DPPH and ABTS) was detected in FHM. In FH, 16 compounds were identified by GC-MS, and ursolic acid was isolated by 1H NMR and 13C NMR. HPLC-DAD from EE, FAE, and FHM demonstrated characteristic wavelengths for flavonoids, flavonols, flavones, and anthraquinones. ESI-IT/MSn analysis of EE, FC, FAE, and FHM revealed alkaloids, steroids, terpenoids, flavonoids, and phenolic acids. In Allium cepa assay there was no significant cytotoxic effect initiated by EE (62.5 to 1,000 µg/ml), FHM (1,000 µg/ml), and FAE (62.5 µg/ml). Genotoxicity was evidenced only with EE at 500 and 1,000 µg/ml, and FHM (62.5 to 1,000 µg/ml) as evidenced by presence of micronuclei (MN) and nuclear buds (NB). Our results identified compounds of medicinal interest with antioxidant activity; however observed cytogenotoxic changes indicated the need for caution when using these compounds for therapeutic purposes.


Asunto(s)
Antioxidantes , Heliotropium , Flavonoides , Antraquinonas , Bioensayo , Etanol
18.
J Toxicol Environ Health A ; 86(4): 119-134, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36744625

RESUMEN

Agroecology, the application of ecological concepts to agricultural production, has been developing over the last years with consequent promotion for discovery of bioactive compounds to control pests and abolish crop diseases. In this context, algae from Nitella genus are characterized by high potential for bioeconomic applications due to (1) available biomass for harvesting or cultivation and (2) production of allelochemicals, which present a potential to protect field crops from insect infestation. Therefore, this study aimed to determine primary and secondary metabolites derived from aqueous and hydroethanolic extracts of Nitella furcata and to evaluate phytotoxic, cytogenotoxic, insecticidal, and pro-oxidative activities of these extracts. Determination of metabolites showed the presence predominantly of carbohydrates, proteins, phenols, and flavonoids in hydroethanolic extract. Both extracts of N. furcata interfered in the germination of seeds and development of seedlings of Lactuca sativa, with hydroethanolic extract exhibiting greater inhibition. Both extracts also interfered with meristematic cells of Allium cepa as evidenced by chromosomal alterations and higher pro-oxidative activity. Aqueous extract at 5 and 0 mg/ml produced 100% insect mortality. Further, hydroethanolic extract at 0 mg/ml was lethal immediately upon exposure. Therefore, results demonstrate that N. furcata is potential algae species to be considered for development of environmental and ecotoxicological studies as a source of compounds with potential use in agroecological strategies.


Asunto(s)
Alcaloides , Insecticidas , Nitella , Extractos Vegetales/toxicidad , Extractos Vegetales/química , Biomasa , Insecticidas/toxicidad , Agua Dulce
19.
J Toxicol Environ Health A ; 86(19): 707-719, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37598363

RESUMEN

The aim of this study was to examine the water quality of the Extrema River spring in a Brazilian Cerrado area. Three collection sites (P1 - P3) were sampled in the dry and rainy seasons, which are close to industries from different sectors. In the physicochemical analysis, a decrease in dissolved oxygen levels (<5 mg/L) and pH (< 6) at P3 was detected. An increase in heterotrophic bacteria count was recorded at all sites (> 500 colonies/ml). In ecotoxicological analyses, P2 and P3 exhibited toxicity using Vibrio fischeri (> 20%). In evaluating toxicity, the reduction in seed germination was significant utilizing Lactuca sativa at all locations and with Allium cepa only at P2; rootlet length was decreased at P3 on L. sativa and at all sites with A. cepa. In contrast, loss of membrane integrity and mitochondrial function of meristems was adversely affected at all locations using both L. sativa and A. cepa assays. Principal components analysis (PCA) approach indicated that seasonality apparently did not markedly interfere with the obtained data, but it is important to include more collection locations to be evaluated with multiple bioindicators in the spring region. Our data indicate the urgent need for more rigorous programs to monitor the discharge of effluents into water springs.


Asunto(s)
Biomarcadores Ambientales , Calidad del Agua , Aliivibrio fischeri , Bioensayo , Brasil
20.
J Toxicol Environ Health A ; 86(1): 36-50, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36529899

RESUMEN

Momordica charantia L. (Cucurbitaceae), popularly known as "bitter melon" or "bitter gourd," is a climbing plant well-adapted to tropical countries. This plant is used traditionally to treat several conditions including diabetes mellitus, inflammation, liver dysfunctions, and cancer. Given the widespread ethnopharmacological use, this study aimed to examine the cytogenetic, maternal, and developmental toxicity attributed to exposure to dry extract of M. charantia leaves using Allium cepa and Wistar rats as test models. First, phytochemical characterization of the dry extract by high performance liquid chromatography (HPLC) analyses was performed. Then, Allium cepa roots were exposed to three different concentrations of the dry extract (0.25, 0.5, or 1 mg/ml) to determine the mitotic index, frequency of chromosomal aberrations, and nuclear abnormalities. In addition, pregnant Wistar rats were administered either 500; 1,000 or 2,000 mg/kg dry extract during the gestational period (GD) days 6-15, and subsequently possible toxic effect on the dams and fetuses were recorded. HPLC analyses confirmed rutin as the main secondary metabolite present in the dry extract. In the Allium cepa test, the dry extract was cytotoxic. In Wistar rats, dry extract administration reduced water and feed intake and mean body mass gain, indicating maternal toxicity during the organogenesis period. However, the dry extract did not markedly affect reproductive outcome parameters evaluated. Regarding developmental toxicity assessment, the dry extract treatment did not significantly alter number of skeletal malformations in the offspring. Data demonstrated that the dry extract of M. charantia leaves presents cytotoxicity and low maternal toxicity, indicating indiscriminate use needs to be avoided.


Asunto(s)
Cucurbitaceae , Momordica charantia , Neoplasias , Ratas , Embarazo , Animales , Femenino , Momordica charantia/química , Extractos Vegetales/farmacología , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA