Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2313258121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38300869

RESUMEN

We report on the collective response of an assembly of chemomechanical Belousov-Zhabotinsky (BZ) hydrogel beads. We first demonstrate that a single isolated spherical BZ hydrogel bead with a radius below a critical value does not oscillate, whereas an assembly of the same BZ hydrogel beads presents chemical oscillation. A BZ chemical model with an additional flux of chemicals out of the BZ hydrogel captures the experimentally observed transition from oxidized nonoscillating to oscillating BZ hydrogels and shows this transition is due to a flux of inhibitors out of the BZ hydrogel. The model also captures the role of neighboring BZ hydrogel beads in decreasing the critical size for an assembly of BZ hydrogel beads to oscillate. We finally leverage the quorum sensing behavior of the collective to trigger their chemomechanical oscillation and discuss how this collective effect can be used to enhance the oscillatory strain of these active BZ hydrogels. These findings could help guide the eventual fabrication of a swarm of autonomous, communicating, and motile hydrogels.

2.
Small ; : e2306388, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088532

RESUMEN

Alloy-based anodes are regarded as safer and higher capacity alternatives to lithium metal and commercial graphite anodes respectively. However, their commercialization is hindered by poor stability and irreversible loss of active material during cycling. Combining non-flammable and electrochemically stable solid-state electrolytes with high-capacity alloy anodes has chemo-mechanical benefits that can address these long-standing issues. The distinctive interfacial characteristics of solid-state electrolytes reduce the impact of volume variation and dynamic reconstruction of the solid-electrolyte-interphase, thereby realizing the best of both worlds. In this perspective, the interfacial underpinnings for alloy anode based solid-state batteries that are crucial for their success are discussed. The goal is to update the audience with key recent findings that can lay the foundation for future research work in this area. The relevant steps toward commercialization of alloy anode based solid-state batteries are also discussed, starting from bulk and interface architectures to electrode composite preparation and final cell assembly.

3.
PNAS Nexus ; 2(3): pgad052, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37007709

RESUMEN

Addressing the existing gap between currently available mitigation strategies for greenhouse gas emissions associated with ordinary Portland cement production and the 2050 carbon neutrality goal represents a significant challenge. In order to bridge this gap, one potential option is the direct gaseous sequestration and storage of anthropogenic CO2 in concrete through forced carbonate mineralization in both the cementing minerals and their aggregates. To better clarify the potential strategic benefits of these processes, here, we apply an integrated correlative time- and space-resolved Raman microscopy and indentation approach to investigate the underlying mechanisms and chemomechanics of cement carbonation over time scales ranging from the first few hours to several days using bicarbonate-substituted alite as a model system. In these reactions, the carbonation of transient disordered calcium hydroxide particles at the hydration site leads to the formation of a series of calcium carbonate polymorphs including disordered calcium carbonate, ikaite, vaterite, and calcite, which serve as nucleation sites for the formation of a calcium carbonate/calcium-silicate-hydrate (C-S-H) composite, and the subsequent acceleration of the curing process. The results from these studies reveal that in contrast to late-stage cement carbonation processes, these early stage (precure) out-of-equilibrium carbonation reactions do not compromise the material's structural integrity, while allowing significant quantities of CO2 (up to 15 w%) to be incorporated into the cementing matrix. The out-of-equilibrium carbonation of hydrating clinker thus provides an avenue for reducing the environmental footprint of cementitious materials via the uptake and long-term storage of anthropogenic CO2.

4.
ACS Nano ; 17(7): 6698-6707, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36971281

RESUMEN

The ability for organic surface chemistry to influence the properties of inorganic nanomaterials is appreciated in some instances but is poorly understood in terms of mechanical behavior. Here we demonstrate that the global mechanical strength of a silver nanoplate can be modulated according to the local binding enthalpy of its surface ligands. A continuum-based core-shell model for nanoplate deformation shows that the interior of a particle retains bulk-like properties while the surface shell has yield strength values that depend on surface chemistry. Electron diffraction experiments reveal that, relative to the core, atoms at the nanoplate surface undergo lattice expansion and disordering directly related to the coordinating strength of the surface ligand. As a result, plastic deformation of the shell is more difficult, leading to an enhancement of the global mechanical strength of the plate. These results demonstrate a size-dependent coupling between chemistry and mechanics at the nanoscale.

5.
ACS Appl Mater Interfaces ; 15(6): 8492-8501, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36719130

RESUMEN

This study investigates the significance of the mechanics of hybrid particle-polymer separators in the stabilization of lithium metal interfaces by probing these properties in realistic conditions informed by X-ray microcomputed tomography (micro-CT). Elastic properties and viscoelastic behavior of inorganic microparticle-filled poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) films are characterized using a nanoindentation experiment whose displacement simulates the interfacial response seen in operando micro-CT. It is determined that the dominating mechanical behavior in this hybrid separator relevant to lithium metal cell conditions is comprised of viscoelasticity. Consistent with this finding, along with correlations across other physicochemical properties, a mechanism describing the improvement of lithium metal cycling performance according to inorganic filler type and content is proposed.

6.
Int J Numer Method Biomed Eng ; 39(7): e3713, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37073776

RESUMEN

Multi-faceted deformation capabilities of Annulus Fibrosus (AF) results from an intricate mechanical design by nature. Wherein, organization and interactions between the constituents, collagen type I (CI), collagen type II (C2), hyaluronan, aggrecan, and water are instrumental. However, mechanisms by which such interactions influence AF mechanics at tissue-scale is not well understood. This work investigates nanoscale interfacial interactions between CI and hyaluronan (CI-H) and presents insights into their influence on tissue-scale mechanics of AF. For this, three-dimensional molecular dynamics (MD) simulations of tensile and compressive deformation are conducted on atomistic model of CI-H interface at 0%, 65%, and 75% water concentrations (WC). Results show hyaluronan lowers local hydration around CI component of interface, owing to its hydrophilic nature. Analyses show that increase in WC from 65% to 75% leads to increased interchain sliding in hyaluronan, which further lowers tensile modulus of the interface from 2.1 GPa to 660 MPa, contributing to softening observed from outer to inner AF. Furthermore, increase in WC from 65% to 75%, shifts compressive deformation from buckling-dominant to non-buckling-dominant which contributes towards lower radial bulge at inner AF. Findings provide deeper insights into mechanistic interactions and mechanisms at fundamental length-scale which influence the AF structure-mechanics at tissue-scale.


Asunto(s)
Anillo Fibroso , Colágeno Tipo I , Ácido Hialurónico , Agua , Simulación de Dinámica Molecular
7.
Patterns (N Y) ; 3(12): 100634, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36569543

RESUMEN

The origins of performance degradation in batteries can be traced to atomistic phenomena, accumulated at mesoscale dimensions, and compounded up to the level of electrode architectures. Hyperspectral X-ray spectromicroscopy techniques allow for the mapping of compositional variations, and phase separation across length scales with high spatial and energy resolution. We demonstrate the design of workflows combining singular value decomposition, principal-component analysis, k-means clustering, and linear combination fitting, in conjunction with a curated spectral database, to develop high-accuracy quantitative compositional maps of the effective depth of discharge across individual positive electrode particles and ensembles of particles. Using curated reference spectra, accurate and quantitative mapping of inter- and intraparticle compositional heterogeneities, phase separation, and stress gradients is achieved for a canonical phase-transforming positive electrode material, α-V2O5. Phase maps from single-particle measurements are used to reconstruct directional stress profiles showcasing the distinctive insights accessible from a standards-informed application of high-dimensional chemical imaging.

8.
ACS Appl Mater Interfaces ; 14(15): 17674-17681, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35394744

RESUMEN

Electrochemo-mechanical failure of Ni-rich cathodes leads to rapid performance degradation, and thus hinders their practical implementation in all-solid-state lithium batteries (ASSLBs). To solve this problem, herein, we propose a bifunctional chemomechanics strategy by protecting polycrystalline LiNi0.6Co0.2Mn0.2O2 (NCM) cathodes using a high-mechanical-strength fast ionic conductor LiZr2(PO4)3 (LZP) coating layer. The coating layer's synergistic effect between mechanical strength and electrochemical stability is studied in Li6PS5Cl (LPSCl)-based ASSLBs for the first time. Using finite element method (FEM) simulations and various characterization techniques, we demonstrate that the robust and stable LZP (Young's modulus 140.7 GPa, electrochemical stability window >5 V) coating layer mitigates the volume change and particle disintegration of polycrystalline NCM and electrochemical decomposition of LPSCl on the LPSCl/NCM interface. As a result, the LZP-modified ASSLBs display remarkably improved reversible capacity, cycle life, and rate performance. The synergy of mechanical and electrochemical properties of the coating layer will provide valuable guidance for the development of high-energy-density ASSLBs.

9.
Materials (Basel) ; 14(7)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916332

RESUMEN

Microscopic phase-field chemomechanics (MPFCM) is employed in the current work to model solute segregation, dislocation-solute interaction, spinodal decomposition, and precipitate formation, at straight dislocations and configurations of these in a model binary solid alloy. In particular, (i) a single static edge dipole, (ii) arrays of static dipoles forming low-angle tilt (edge) and twist (screw) grain boundaries, as well as at (iii) a moving (gliding) edge dipole, are considered. In the first part of the work, MPFCM is formulated for such an alloy. Central here is the MPFCM model for the alloy free energy, which includes chemical, dislocation, and lattice (elastic), contributions. The solute concentration-dependence of the latter due to solute lattice misfit results in a strong elastic influence on the binodal (i.e., coexistence) and spinodal behavior of the alloy. In addition, MPFCM-based modeling of energy storage couples the thermodynamic forces driving (Cottrell and Suzuki) solute segregation, precipitate formation and dislocation glide. As implied by the simulation results for edge dislocation dipoles and their configurations, there is a competition between (i) Cottrell segregation to dislocations resulting in a uniform solute distribution along the line, and (ii) destabilization of this distribution due to low-dimensional spinodal decomposition when the segregated solute content at the line exceeds the spinodal value locally, i.e., at and along the dislocation line. Due to the completely different stress field of the screw dislocation configuration in the twist boundary, the segregated solute distribution is immediately unstable and decomposes into precipitates from the start.

10.
ACS Appl Mater Interfaces ; 12(43): 49182-49191, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-32972133

RESUMEN

The insertion and removal of Li+ ions into Li-ion battery electrodes can lead to severe mechanical fatigue because of the repeated expansion and compression of the host lattice during electrochemical cycling. In particular, the lithium manganese oxide spinel (LiMn2O4, LMO) experiences a significant surface stress contribution to electrode chemomechanics upon delithiation that is asynchronous with the potentials where bulk phase transitions occur. In this work, we probe the stress evolution and resulting mechanical fracture from LMO delithation using an integrated approach consisting of cyclic voltammetry, electron microscopy, and density functional theory (DFT) calculations. High-rate electrochemical cycling is used to exacerbate the mechanical deficiencies of the LMO electrode and demonstrates that mechanical degradation leads to slowing of delithiation and lithiation kinetics. These observations are further supported through the identification of significant fracturing in LMO using scanning electron microscopy. DFT calculations are used to model the mechanical response of LMO surfaces to electrochemical delithiation and suggest that particle fracture is unlikely in the [001] direction because of tensile stresses from delithiation near the (001) surface. Transmission electron microscopy and electron backscatter diffraction of the as-cycled LMO particles further support the computational analyses, indicating that particle fracture instead tends to preferentially occur along the {111} planes. This joint computational and experimental analysis provides molecular-level details of the chemomechanical response of the LMO electrode to electrochemical delithiation and how surface stresses may lead to particle fracture in Li-ion battery electrodes.

11.
ACS Nano ; 12(2): 1359-1372, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29338198

RESUMEN

Thin film nonstoichiometric oxides enable many high-temperature applications including solid oxide fuel cells, actuators, and catalysis. Large concentrations of point defects (particularly, oxygen vacancies) enable fast ionic conductivity or gas exchange kinetics in these materials but also manifest as coupling between lattice volume and chemical composition. This chemical expansion may be either detrimental or useful, especially in thin film devices that may exhibit enhanced performance through strain engineering or decreased operating temperatures. However, thin film nonstoichiometric oxides can differ from bulk counterparts in terms of operando defect concentrations, transport properties, and mechanical properties. Here, we present an in situ investigation of atomic-scale chemical expansion in PrxCe1-xO2-δ (PCO), a mixed ionic-electronic conducting oxide relevant to electrochemical energy conversion and high-temperature actuation. Through a combination of electron energy loss spectroscopy and transmission electron microscopy with in situ heating, we characterized chemical strains and changes in oxidation state in cross sections of PCO films grown on yttria-stabilized zirconia (YSZ) at temperatures reaching 650 °C. We quantified, both statically and dynamically, the nanoscale chemical expansion induced by changes in PCO redox state as a function of position and direction relative to the film-substrate interface. Additionally, we observed dislocations at the film-substrate interface, as well as reduced cation localization to threading defects within PCO films. These results illustrate several key aspects of atomic-scale structure and mechanical deformation in nonstoichiometric oxide films that clarify distinctions between films and bulk counterparts and that hold several implications for operando chemical expansion or "breathing" of such oxide films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA