Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Digit Imaging ; 36(3): 827-836, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36596937

RESUMEN

Novel coronavirus disease 2019 (COVID-19) has rapidly spread throughout the world; however, it is difficult for clinicians to make early diagnoses. This study is to evaluate the feasibility of using deep learning (DL) models to identify asymptomatic COVID-19 patients based on chest CT images. In this retrospective study, six DL models (Xception, NASNet, ResNet, EfficientNet, ViT, and Swin), based on convolutional neural networks (CNNs) or transformer architectures, were trained to identify asymptomatic patients with COVID-19 on chest CT images. Data from Yangzhou were randomly split into a training set (n = 2140) and an internal-validation set (n = 360). Data from Suzhou was the external-test set (n = 200). Model performance was assessed by the metrics accuracy, recall, and specificity and was compared with the assessments of two radiologists. A total of 2700 chest CT images were collected in this study. In the validation dataset, the Swin model achieved the highest accuracy of 0.994, followed by the EfficientNet model (0.954). The recall and the precision of the Swin model were 0.989 and 1.000, respectively. In the test dataset, the Swin model was still the best and achieved the highest accuracy (0.980). All the DL models performed remarkably better than the two experts. Last, the time on the test set diagnosis spent by two experts-42 min, 17 s (junior); and 29 min, 43 s (senior)-was significantly higher than those of the DL models (all below 2 min). This study evaluated the feasibility of multiple DL models in distinguishing asymptomatic patients with COVID-19 from healthy subjects on chest CT images. It found that a transformer-based model, the Swin model, performed best.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , COVID-19/diagnóstico por imagen , Estudios Retrospectivos , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X
2.
Comput Electr Eng ; 105: 108479, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36406625

RESUMEN

Recent studies have shown that computed tomography (CT) scan images can characterize COVID-19 disease in patients. Several deep learning (DL) methods have been proposed for diagnosis in the literature, including convolutional neural networks (CNN). But, with inefficient patient classification models, the number of 'False Negatives' can put lives at risk. The primary objective is to improve the model so that it does not reveal 'Covid' as 'Non-Covid'. This study uses Dense-CNN to categorize patients efficiently. A novel loss function based on cross-entropy has also been used to improve the CNN algorithm's convergence. The proposed model is built and tested on a recently published large dataset. Extensive study and comparison with well-known models reveal the effectiveness of the proposed method over known methods. The proposed model achieved a prediction accuracy of 93.78%, while false-negative is only 6.5%. This approach's significant advantage is accelerating the diagnosis and treatment of COVID-19.

3.
Pattern Recognit ; 113: 107826, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33518813

RESUMEN

The current pandemic, caused by the outbreak of a novel coronavirus (COVID-19) in December 2019, has led to a global emergency that has significantly impacted economies, healthcare systems and personal wellbeing all around the world. Controlling the rapidly evolving disease requires highly sensitive and specific diagnostics. While RT-PCR is the most commonly used, it can take up to eight hours, and requires significant effort from healthcare professionals. As such, there is a critical need for a quick and automatic diagnostic system. Diagnosis from chest CT images is a promising direction. However, current studies are limited by the lack of sufficient training samples, as acquiring annotated CT images is time-consuming. To this end, we propose a new deep learning algorithm for the automated diagnosis of COVID-19, which only requires a few samples for training. Specifically, we use contrastive learning to train an encoder which can capture expressive feature representations on large and publicly available lung datasets and adopt the prototypical network for classification. We validate the efficacy of the proposed model in comparison with other competing methods on two publicly available and annotated COVID-19 CT datasets. Our results demonstrate the superior performance of our model for the accurate diagnosis of COVID-19 based on chest CT images.

4.
Pattern Recognit ; 118: 108005, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33972808

RESUMEN

Computer-aided diagnosis has been extensively investigated for more rapid and accurate screening during the outbreak of COVID-19 epidemic. However, the challenge remains to distinguish COVID-19 in the complex scenario of multi-type pneumonia classification and improve the overall diagnostic performance. In this paper, we propose a novel periphery-aware COVID-19 diagnosis approach with contrastive representation enhancement to identify COVID-19 from influenza-A (H1N1) viral pneumonia, community acquired pneumonia (CAP), and healthy subjects using chest CT images. Our key contributions include: 1) an unsupervised Periphery-aware Spatial Prediction (PSP) task which is designed to introduce important spatial patterns into deep networks; 2) an adaptive Contrastive Representation Enhancement (CRE) mechanism which can effectively capture the intra-class similarity and inter-class difference of various types of pneumonia. We integrate PSP and CRE to obtain the representations which are highly discriminative in COVID-19 screening. We evaluate our approach comprehensively on our constructed large-scale dataset and two public datasets. Extensive experiments on both volume-level and slice-level CT images demonstrate the effectiveness of our proposed approach with PSP and CRE for COVID-19 diagnosis.

5.
J Xray Sci Technol ; 29(2): 229-243, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33612539

RESUMEN

BACKGROUND AND OBJECTIVE: Radiomics has been widely used in quantitative analysis of medical images for disease diagnosis and prognosis assessment. The objective of this study is to test a machine-learning (ML) method based on radiomics features extracted from chest CT images for screening COVID-19 cases. METHODS: The study is carried out on two groups of patients, including 138 patients with confirmed and 140 patients with suspected COVID-19. We focus on distinguishing pneumonia caused by COVID-19 from the suspected cases by segmentation of whole lung volume and extraction of 86 radiomics features. Followed by feature extraction, nine feature-selection procedures are used to identify valuable features. Then, ten ML classifiers are applied to classify and predict COVID-19 cases. Each ML models is trained and tested using a ten-fold cross-validation method. The predictive performance of each ML model is evaluated using the area under the curve (AUC) and accuracy. RESULTS: The range of accuracy and AUC is from 0.32 (recursive feature elimination [RFE]+Multinomial Naive Bayes [MNB] classifier) to 0.984 (RFE+bagging [BAG], RFE+decision tree [DT] classifiers) and 0.27 (mutual information [MI]+MNB classifier) to 0.997 (RFE+k-nearest neighborhood [KNN] classifier), respectively. There is no direct correlation among the number of the selected features, accuracy, and AUC, however, with changes in the number of the selected features, the accuracy and AUC values will change. Feature selection procedure RFE+BAG classifier and RFE+DT classifier achieve the highest prediction accuracy (accuracy: 0.984), followed by MI+Gaussian Naive Bayes (GNB) and logistic regression (LGR)+DT classifiers (accuracy: 0.976). RFE+KNN classifier as a feature selection procedure achieve the highest AUC (AUC: 0.997), followed by RFE+BAG classifier (AUC: 0.991) and RFE+gradient boosting decision tree (GBDT) classifier (AUC: 0.99). CONCLUSION: This study demonstrates that the ML model based on RFE+KNN classifier achieves the highest performance to differentiate patients with a confirmed infection caused by COVID-19 from the suspected cases.


Asunto(s)
COVID-19/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Humanos , Pulmón/diagnóstico por imagen , Aprendizaje Automático , Valor Predictivo de las Pruebas , Curva ROC , Reproducibilidad de los Resultados , SARS-CoV-2
6.
Front Med (Lausanne) ; 11: 1360143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756944

RESUMEN

Introduction: Deep learning-based methods can promote and save critical time for the diagnosis of pneumonia from computed tomography (CT) images of the chest, where the methods usually rely on large amounts of labeled data to learn good visual representations. However, medical images are difficult to obtain and need to be labeled by professional radiologists. Methods: To address this issue, a novel contrastive learning model with token projection, namely CoTP, is proposed for improving the diagnostic quality of few-shot chest CT images. Specifically, (1) we utilize solely unlabeled data for fitting CoTP, along with a small number of labeled samples for fine-tuning, (2) we present a new Omicron dataset and modify the data augmentation strategy, i.e., random Poisson noise perturbation for the CT interpretation task, and (3) token projection is utilized to further improve the quality of the global visual representations. Results: The ResNet50 pre-trained by CoTP attained accuracy (ACC) of 92.35%, sensitivity (SEN) of 92.96%, precision (PRE) of 91.54%, and the area under the receiver-operating characteristics curve (AUC) of 98.90% on the presented Omicron dataset. On the contrary, the ResNet50 without pre-training achieved ACC, SEN, PRE, and AUC of 77.61, 77.90, 76.69, and 85.66%, respectively. Conclusion: Extensive experiments reveal that a model pre-trained by CoTP greatly outperforms that without pre-training. The CoTP can improve the efficacy of diagnosis and reduce the heavy workload of radiologists for screening of Omicron pneumonia.

7.
Jpn J Radiol ; 41(12): 1359-1372, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37440160

RESUMEN

PURPOSE: As of March 2023, the number of patients with COVID-19 worldwide is declining, but the early diagnosis of patients requiring inpatient treatment and the appropriate allocation of limited healthcare resources remain unresolved issues. In this study we constructed a deep-learning (DL) model to predict the need for oxygen supplementation using clinical information and chest CT images of patients with COVID-19. MATERIALS AND METHODS: We retrospectively enrolled 738 patients with COVID-19 for whom clinical information (patient background, clinical symptoms, and blood test findings) was available and chest CT imaging was performed. The initial data set was divided into 591 training and 147 evaluation data. We developed a DL model that predicted oxygen supplementation by integrating clinical information and CT images. The model was validated at two other facilities (n = 191 and n = 230). In addition, the importance of clinical information for prediction was assessed. RESULTS: The proposed DL model showed an area under the curve (AUC) of 89.9% for predicting oxygen supplementation. Validation from the two other facilities showed an AUC > 80%. With respect to interpretation of the model, the contribution of dyspnea and the lactate dehydrogenase level was higher in the model. CONCLUSIONS: The DL model integrating clinical information and chest CT images had high predictive accuracy. DL-based prediction of disease severity might be helpful in the clinical management of patients with COVID-19.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , Estudios Retrospectivos , Oxígeno , Tomografía Computarizada por Rayos X/métodos , Terapia por Inhalación de Oxígeno
8.
Multimed Tools Appl ; : 1-23, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37362648

RESUMEN

Chest computer tomography (CT) provides a readily available and efficient tool for COVID-19 diagnosis. Wavelet and contourlet transforms have the advantages of being localized in both space and time. In addition, multiresolution analysis allows for the separation of relevant image information in the different subbands. In the present study, transform-based features were investigated for COVID-19 classification using chest CT images. Several textural and statistical features were computed from the approximation and detail subbands in order to fully capture disease symptoms in the chest CT images. Initially, multiresolution analysis was performed considering three different wavelet and contourlet levels to determine the transform and decomposition level most suitable for feature extraction. Analysis showed that contourlet features computed from the first decomposition level (L1) led to the most reliable COVID-19 classification results. The complete feature vector was computed in less than 25 ms for a single image having of resolution 256 × 256 pixels. Next, particle swarm optimization (PSO) was implemented to find the best set of L1-Contourlet features for enhanced performance. Accuracy, sensitivity, specificity, precision, and F-score of a 100% were achieved by the reduced feature set using the support vector machine (SVM) classifier. The presented contourlet-based COVID-19 detection method was also shown to outperform several state-of-the-art deep learning approaches from literature. The present study demonstrates the reliability of transform-based features for COVID-19 detection with the advantage of reduced computational complexity. Transform-based features are thus suitable for integration within real-time automatic screening systems used for the initial screening of COVID-19.

9.
J Thorac Dis ; 15(5): 2668-2679, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37324101

RESUMEN

Background: Invasive puncture biopsy is currently the main method of identifying benign and malignant pulmonary nodules (PNs). This study aimed to investigate the application effect of chest computed tomography (CT) images, tumor markers (TMs), and metabolomics in the identification of benign and malignant PNs (MPNs). Methods: A total of 110 patients with PNs who were hospitalized in Dongtai Hospital of Traditional Chinese Medicine from March 2021 to March 2022 were selected as the study cohort. A retrospective analysis study of chest CT imaging, serum TMs testing, and plasma fatty acid (FA) metabolomics was performed on all participants. Results: According to the pathological results, participants were divided into a MPN group (n=72) and a benign PN (BPN) group (n=38). The morphological signs of CT images, the levels and positive rate of serum TMs, and the plasma FA indicator were compared between groups. There were significant differences between the MPN group and the BPN group in the CT morphological signs, including location of PN and the number of patients with or without lobulation sign, spicule sign, and vessel convergence sign (P<0.05). Serum carcinoembryonic antigen (CEA), cytokeratin-19 fragment (CYFRA 21-1), neuron-specific enolase (NSE), and squamous cell carcinoma antigen (SCC-Ag) were not significantly different between the 2 groups. The serum contents of CEA and CYFRA 21-1 in the MPN group were remarkably higher than those in the BPN group (P<0.05). The plasma levels of palmitic acid, total omega-3 polyunsaturated FA (W3), nervonic acid, stearic acid, docosatetraenoic acid, linolenic acid, eicosapentaenoic acid, total saturated FA, and total FA were much higher in the MPN group than the BPN group (P<0.05). Conclusions: In conclusion, chest CT images and TMs, combined with metabolomics, has a good application effect in the diagnosis of BPNs and MPNs, and is worthy of further promotion.

10.
PeerJ Comput Sci ; 9: e1537, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810355

RESUMEN

Background: With the wide application of CT scanning, the separation of pulmonary arteries and veins (A/V) based on CT images plays an important role for assisting surgeons in preoperative planning of lung cancer surgery. However, distinguishing between arteries and veins in chest CT images remains challenging due to the complex structure and the presence of their similarities. Methods: We proposed a novel method for automatically separating pulmonary arteries and veins based on vessel topology information and a twin-pipe deep learning network. First, vessel tree topology is constructed by combining scale-space particles and multi-stencils fast marching (MSFM) methods to ensure the continuity and authenticity of the topology. Second, a twin-pipe network is designed to learn the multiscale differences between arteries and veins and the characteristics of the small arteries that closely accompany bronchi. Finally, we designed a topology optimizer that considers interbranch and intrabranch topological relationships to optimize the results of arteries and veins classification. Results: The proposed approach is validated on the public dataset CARVE14 and our private dataset. Compared with ground truth, the proposed method achieves an average accuracy of 90.1% on the CARVE14 dataset, and 96.2% on our local dataset. Conclusions: The method can effectively separate pulmonary arteries and veins and has good generalization for chest CT images from different devices, as well as enhanced and noncontrast CT image sequences from the same device.

11.
Ing Rech Biomed ; 43(2): 87-92, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32837678

RESUMEN

The COVID-19 infection is increasing at a rapid rate, with the availability of limited number of testing kits. Therefore, the development of COVID-19 testing kits is still an open area of research. Recently, many studies have shown that chest Computed Tomography (CT) images can be used for COVID-19 testing, as chest CT images show a bilateral change in COVID-19 infected patients. However, the classification of COVID-19 patients from chest CT images is not an easy task as predicting the bilateral change is defined as an ill-posed problem. Therefore, in this paper, a deep transfer learning technique is used to classify COVID-19 infected patients. Additionally, a top-2 smooth loss function with cost-sensitive attributes is also utilized to handle noisy and imbalanced COVID-19 dataset kind of problems. Experimental results reveal that the proposed deep transfer learning-based COVID-19 classification model provides efficient results as compared to the other supervised learning models.

12.
Multimed Tools Appl ; : 1-29, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36570730

RESUMEN

SARS-CoV-2 is the causative agent of COVID-19 and leaves characteristic impressions on chest Computed Tomography (CT) images in infected patients and this analysis is performed by radiologists through visual reading of lung images, and failures may occur. In this article, we propose a classification model, called Wavelet Convolutional Neural Network (WCNN) that aims to improve the differentiation of images of patients with COVID-19 from images of patients with other lung infections. The WCNN model was based on a Convolutional Neural Network (CNN) and wavelet transform. The model proposes a new input layer added to the neural network, which was called Wave layer. The hyperparameters values were defined by ablation tests. WCNN was applied to chest CT images to images from two internal and one external repositories. For all repositories, the average results of Accuracy (ACC), Sensitivity (Sen) and Specificity (Sp) were calculated. Subsequently, the average results of the repositories were consolidated, and the final values were ACC = 0.9819, Sen = 0.9783 and Sp = 0.98. The WCNN model uses a new Wave input layer, which standardizes the network input, without using data augmentation, resizing and segmentation techniques, maintaining the integrity of the tomographic image analysis. Thus, applications developed based on WCNN have the potential to assist radiologists with a second opinion in the analysis.1.

13.
Phys Med Biol ; 66(24)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34715678

RESUMEN

Coronavirus disease 2019 (COVID-19) has brought huge losses to the world, and it remains a great threat to public health. X-ray computed tomography (CT) plays a central role in the management of COVID-19. Traditional diagnosis with pulmonary CT images is time-consuming and error-prone, which could not meet the need for precise and rapid COVID-19 screening. Nowadays, deep learning (DL) has been successfully applied to CT image analysis, which assists radiologists in workflow scheduling and treatment planning for patients with COVID-19. Traditional methods use cross-entropy as the loss function with a Softmax classifier following a fully-connected layer. Most DL-based classification methods target intraclass relationships in a certain class (early, progressive, severe, or dissipative phases), ignoring the natural order of different phases of the disease progression,i.e.,from an early stage and progress to a late stage. To learn both intraclass and interclass relationships among different stages and improve the accuracy of classification, this paper proposes an ensemble learning method based on ordinal regression, which leverages the ordinal information on COVID-19 phases. The proposed method uses multi-binary, neuron stick-breaking (NSB), and soft labels (SL) techniques, and ensembles the ordinal outputs through a median selection. To evaluate our method, we collected 172 confirmed cases. In a 2-fold cross-validation experiment, the accuracy is increased by 22% compared with traditional methods when we use modified ResNet-18 as the backbone. And precision, recall, andF1-score are also improved. The experimental results show that our proposed method achieves a better classification performance than the traditional methods, which helps establish guidelines for the classification of COVID-19 chest CT images.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Prueba de COVID-19 , Humanos , SARS-CoV-2 , Tomografía Computarizada por Rayos X
14.
Health Inf Sci Syst ; 9(1): 10, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33643612

RESUMEN

The COVID-19 coronavirus has spread rapidly around the world and has caused global panic. Chest CT images play a major role in confirming positive COVID-19 patients. The computer aided diagnosis of COVID-19 from CT images based on artificial intelligence have been developed and deployed in some hospitals. But environmental influences and the movement of lung will affect the image quality, causing the lung parenchyma and pneumonia area unclear in CT images. Therefore, the performance of COVID-19's artificial intelligence diagnostic algorithm is reduced. If chest CT images are reconstructed, the accuracy and performance of the aided diagnostic algorithm may be improved. In this paper, a new aided diagnostic algorithm for COVID-19 based on super-resolution reconstructed images and convolutional neural network is presented. Firstly, the SRGAN neural network is used to reconstruct super-resolution images from original chest CT images. Then COVID-19 images and Non-COVID-19 images are classified from super-resolution chest CT images by VGG16 neural network. Finally, the performance of this method is verified by the pubic COVID-CT dataset and compared with other aided diagnosis methods of COVID-19. The experimental results show that improving the data quality through SRGAN neural network can greatly improve the final classification accuracy when the data quality is low. This proves that this method can obtain high accuracy, sensitivity and specificity in the examined test image datasets and has similar performance to other state-of-the-art deep learning aided algorithms.

15.
Ing Rech Biomed ; 42(4): 207-214, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33527035

RESUMEN

OBJECTIVES: Coronavirus disease is a fatal epidemic that has originated in Wuhan, China in December 2019. This disease is diagnosed using radiological images taken with the help of basic scanning methods besides the test kits for Reverse Transcription Polymerase Chain Reaction (RT-PCR). Automatic analysis of chest Computed Tomography (CT) images that are based on image processing technology plays an important role in combating this infectious disease. MATERIAL AND METHODS: In this paper, a new Multiple Kernels-ELM-based Deep Neural Network (MKs-ELM-DNN) method is proposed for the detection of novel coronavirus disease - also known as COVID-19, through chest CT scanning images. In the model proposed, deep features are extracted from CT scan images using a Convolutional Neural Network (CNN). For this purpose, pre-trained CNN-based DenseNet201 architecture, which is based on the transfer learning approach is used. Extreme Learning Machine (ELM) classifier based on different activation methods is used to calculate the architecture's performance. Lastly, the final class label is determined using the majority voting method for prediction of the results obtained from each architecture based on ReLU-ELM, PReLU-ELM, and TanhReLU-ELM. RESULTS: In experimental works, a public dataset containing COVID-19 and Non-COVID-19 classes was used to verify the validity of the MKs-ELM-DNN model proposed. According to the results obtained, the accuracy score was obtained as 98.36% using the MKs-ELM-DNN model. The results have demonstrated that, when compared, the MKs-ELM-DNN model proposed is proven to be more successful than the state-of-the-art algorithms and previous studies. CONCLUSION: This study shows that the proposed Multiple Kernels-ELM-based Deep Neural Network model can effectively contribute to the identification of COVID-19 disease.

16.
Comput Methods Programs Biomed ; 209: 106336, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34403841

RESUMEN

BACKGROUND AND OBJECTIVE: Rapid and precise diagnosis of COVID-19 is very critical in hotspot regions. The main aim of this proposed work is to investigate the baseline, laboratory and CT features of COVID-19 affected patients of two groups (Early and Critical stages). The detection model for COVID-19 is built depending upon the manifestations that define the severity of the disease. METHODS: The CT scan images are fed into the various deep learning, machine learning and hybrid learning models to mine the necessary features and predict CT Score. The predicted CT score along with other clinical, laboratory and CT scan image features are then passed to train the various Regression models for predicting the COVID Criticality (CC) Score. These baseline, laboratory and CT features of COVID-19 are reduced using Statistical analysis and Univariate logistic regression analysis. RESULTS: When analysing the prediction of CT scores using images alone, AlexNet+Lasso yields better outcome with regression score of 0.9643 and RMSE of 0.0023 when compared with Decision tree (RMSE of 0.0034; Regression score of 0.9578) and GRU (RMSE of 0.1253; regression score of 0.9323). When analysing the prediction of CC scores using CT scores and other baseline, laboratory and CT features, VGG-16+Linear Regression yields better results with regression score of 0.9911 and RMSE of 0.0002 when compared with Linear SVR (RMSE of 0.0006; Regression score of 0.9911) and LSTM (RMSE of 0.0005; Regression score of 0.9877). The correlation analysis is performed to identify the significance of utilizing other features in prediction of CC Score. The correlation coefficient of CT scores with actual value is 0.93 and 0.92 for Early stage group and Critical stage group respectively. The correlation coefficient of CC scores with actual value is 0.96 for Early stage group and 0.95 for Critical stage group.The classification of COVID-19 patients are carried out with the help of predicted CC Scores. CONCLUSIONS: This proposed work is carried out in the motive of helping radiologists in faster categorization of COVID patients as Early or Severe staged using CC Scores. The automated prediction of COVID Criticality Score using our diagnostic model can help radiologists and physicians save time for carrying out further treatment and procedures.


Asunto(s)
COVID-19 , Laboratorios , Humanos , Aprendizaje Automático , SARS-CoV-2 , Tomografía Computarizada por Rayos X
17.
IEEE J Transl Eng Health Med ; 6: 1800513, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29910995

RESUMEN

OBJECTIVE: chest computed tomography (CT) images and their quantitative analyses have become increasingly important for a variety of purposes, including lung parenchyma density analysis, airway analysis, diaphragm mechanics analysis, and nodule detection for cancer screening. Lung segmentation is an important prerequisite step for automatic image analysis. We propose a novel lung segmentation method to minimize the juxta-pleural nodule issue, a notorious challenge in the applications. METHOD: we initially used the Chan-Vese (CV) model for active lung contours and adopted a Bayesian approach based on the CV model results, which predicts the lung image based on the segmented lung contour in the previous frame image or neighboring upper frame image. Among the resultant juxta-pleural nodule candidates, false positives were eliminated through concave points detection and circle/ellipse Hough transform. Finally, the lung contour was modified by adding the final nodule candidates to the area of the CV model results. RESULTS: to evaluate the proposed method, we collected chest CT digital imaging and communications in medicine images of 84 anonymous subjects, including 42 subjects with juxta-pleural nodules. There were 16 873 images in total. Among the images, 314 included juxta-pleural nodules. Our method exhibited a disc similarity coefficient of 0.9809, modified hausdorff distance of 0.4806, sensitivity of 0.9785, specificity of 0.9981, accuracy of 0.9964, and juxta-pleural nodule detection rate of 96%. It outperformed existing methods, such as the CV model used alone, the normalized CV model, and the snake algorithm. Clinical impact: the high accuracy with the juxta-pleural nodule detection in the lung segmentation can be beneficial for any computer aided diagnosis system that uses lung segmentation as an initial step.

18.
Rev. bras. eng. biomed ; 30(3): 207-214, Sept. 2014. ilus, tab
Artículo en Inglés | LILACS | ID: lil-723257

RESUMEN

INTRODUCTION: The World Health Organization estimates that by 2030 the Chronic Obstructive Pulmonary Disease (COPD) will be the third leading cause of death worldwide. Computerized Tomography (CT) images of lungs comprise a number of structures that are relevant for pulmonary disease diagnosis and analysis. METHODS: In this paper, we employ the Adaptive Crisp Active Contour Models (ACACM) for lung structure segmentation. And we propose a novel method for lung disease detection based on feature extraction of ACACM segmented images within the cooccurrence statistics framework. The spatial interdependence matrix (SIM) synthesizes the structural information of lung image structures in terms of three attributes. Finally, we perform a classification experiment on this set of attributes to discriminate two types of lung diseases and health lungs. We evaluate the discrimination ability of the proposed lung image descriptors using an extreme learning machine neural network (ELMNN) comprising 4-10 neurons in the hidden layer and 3 neurons in the output layer to map each pulmonary condition. This network was trained and validated by applying a holdout procedure. RESULTS: The experimental results achieved 96% accuracy demonstrating the effectiveness of the proposed method on identifying normal lungs and diseases as COPD and fibrosis. CONCLUSION: Our results lead to conclude that the method is suitable to integrate clinical decision support systems for pulmonary screening and diagnosis.

19.
Rev. bras. eng. biomed ; 29(4): 363-376, dez. 2013. ilus, graf, tab
Artículo en Portugués | LILACS | ID: lil-697283

RESUMEN

INTRODUÇÃO: Dentre as doenças que afetam a população mundial, destaca-se a preocupação com a Doença Pulmonar Obstrutiva Crônica (DPOC), que, segundo a Organização Mundial de Saúde, pode se constituir na terceira causa de morte mais importante em todo mundo no ano de 2030. Visando contribuir com o auxílio ao diagnóstico médico, esta pesquisa centraliza seus esforços na etapa de segmentação dos pulmões, visto que esta é a etapa básica de sistema de Visão Computacional na area de pneumologia. MÉTODOS: Este trabalho propõe um novo método de segmentação dos pulmões em imagens de Tomografia Computadorizada (TC) do tórax chamado de Método de Contorno Ativo (MCA) Crisp Adaptativo 2D. Este MCA consiste em traçar automaticamente uma curva inicial dentro dos pulmões, que se deforma por iterações sucessivas, minimizando energias que atuam sobre a mesma, deslocando-a até as bordas do objeto. O MCA proposto é o resultado do aperfeiçoamento do MCA Crisp desenvolvido previamente, visando aumentar a sua exatidão, diminuindo o tempo de análise e reduzindo a subjetividade na segmentação e análise dos pulmões dessas imagens pelos médicos especialistas. Este método por iterações sucessivas de minimização de sua energia, segmenta de forma automática os pulmões em imagens de TC do tórax. RESULTADOS: Para sua validação, o MCA Crisp Adaptativo é comparado com os MCAs THRMulti, THRMod, GVF, VFC, Crisp e também com o sistema SISDEP, sendo esta avaliação realizada utilizando como referência 24 imagens, sendo 12 de pacientes com DPOC e 12 de voluntários sadios, segmentadas manualmente por um pneumologista. Os resultados obtidos demonstram que o método proposto é superior aos demais. CONCLUSÃO: Diante dos resultados obtidos, pode-se concluir que este método pode integrar sistemas de auxílio ao diagnóstico médico na área de Pneumologia.


INTRODUCTION: Among the diseases that affect the world's population, there is concern about Chronic Obstructive Pulmonary Disease (COPD), that, according to the World Health Organization, could be the leading cause of death worldwide by the year 2030. Aiming to contribute to aid medical diagnosis, this research focuses its efforts on the segmentation of the lungs, since this is the basic step system in the area of Computer Vision pulmonology. METHODS: This paper proposes a new method for segmentation of lung images in Computed Tomography (CT) of the chest called Active Contour Method (MCA) Crisp Adaptive 2D. This MCA is to draw a curve starting inside an object of interest. This curve is deformed by successive iterations, minimizing energies that act on it, moving it to the edges of the object. The MCA is the improvement of the proposed MCA Crisp previously developed, aiming to increase the accuracy, decreasing analysis time and reducing the subjectivity in the segmentation and analysis of the lungs of these images by pulmonologists. This method is automatically initialized in the lungs and on successive iterations to minimize this energy, this MCA automatically targets the lungs in chest CT images. RESULTS: To evaluate the proposed method, the MCA Adaptive Crisp is compared with MCAs THRMulti, THRMod, GVF, VFC, Crisp and also with the system SISDEP, this assessment is performed using reference images 24, 12 COPD patients and 12 volunteers healthy, manually segmented by a pulmonologist. The results show that the proposed method is superior to the others. CONCLUSION: Based on the results, it can be concluded that this method can integrate systems aid in the medical diagnosis of Pulmonology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA