Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 299(9): 105099, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507014

RESUMEN

Methionine sulfoxide reductases (MSRs) are key enzymes in the cellular oxidative defense system. Reactive oxygen species oxidize methionine residues to methionine sulfoxide, and the methionine sulfoxide reductases catalyze their reduction back to methionine. We previously identified the cholesterol transport protein STARD3 as an in vivo binding partner of MSRA (methionine sulfoxide reductase A), an enzyme that reduces methionine-S-sulfoxide back to methionine. We hypothesized that STARD3 would also bind the cytotoxic cholesterol hydroperoxides and that its two methionine residues, Met307 and Met427, could be oxidized, thus detoxifying cholesterol hydroperoxide. We now show that in addition to binding MSRA, STARD3 binds all three MSRB (methionine sulfoxide reductase B), enzymes that reduce methionine-R-sulfoxide back to methionine. Using pure 5, 6, and 7 positional isomers of cholesterol hydroperoxide, we found that both Met307 and Met427 on STARD3 are oxidized by 6α-hydroperoxy-3ß-hydroxycholest-4-ene (cholesterol-6α-hydroperoxide) and 7α-hydroperoxy-3ß-hydroxycholest-5-ene (cholesterol-7α-hydroperoxide). MSRs reduce the methionine sulfoxide back to methionine, restoring the ability of STARD3 to bind cholesterol. Thus, the cyclic oxidation and reduction of methionine residues in STARD3 provides a catalytically efficient mechanism to detoxify cholesterol hydroperoxide during cholesterol transport, protecting membrane contact sites and the entire cell against the toxicity of cholesterol hydroperoxide.


Asunto(s)
Colesterol , Peróxido de Hidrógeno , Proteínas de la Membrana , Metionina Sulfóxido Reductasas , Colesterol/análogos & derivados , Colesterol/metabolismo , Peróxido de Hidrógeno/metabolismo , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Sulfóxidos/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo
2.
Biochem Biophys Res Commun ; 591: 82-87, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34999258

RESUMEN

Steroid hormone synthesis in steroidogenic cells requires cholesterol (Ch) delivery to/into mitochondria via StAR family trafficking proteins. In previous work, we discovered that 7-OOH, an oxidative stress-induced cholesterol hydroperoxide, can be co-trafficked with Ch, thereby causing mitochondrial redox damage/dysfunction. We now report that exposing MA-10 Leydig cells to Ch/7-OOH-containing liposomes (SUVs) results in (i) a progressive increase in fluorescence probe-detected lipid peroxidation in mitochondrial membranes, (ii) a reciprocal decrease in immunoassay-detected progesterone generation, and ultimately (iii) loss of cell viability with increasing 7-OOH concentration. No significant effects were observed with a phospholipid hydroperoxide over the same concentration range. Glutathione peroxidase GPx4, which can catalyze lipid hydroperoxide detoxification, was detected in mitochondria of MA-10 cells. Mitochondrial lipid peroxidation and progesterone shortfall were exacerbated when MA-10 cells were treated with Ch/7-OOH in the presence of RSL3, a GPx4 inhibitor. However, Ebselen, a selenoperoxidase mimetic, substantially reduced RSL3's negative effects, thereby partially rescuing the cells from peroxidative damage. These findings demonstrate that co-trafficking of oxidative stress-induced 7-OOH can disable steroidogenesis, and that GPx4 can significantly protect against this.


Asunto(s)
Colesterol/análogos & derivados , Células Intersticiales del Testículo/metabolismo , Peroxidación de Lípido , Mitocondrias/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Esteroides/metabolismo , Animales , Carbolinas/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Colesterol/metabolismo , Fluorescencia , Isoindoles/farmacología , Células Intersticiales del Testículo/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Compuestos de Organoselenio/farmacología , Fosfatidilcolinas/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Progesterona/biosíntesis , Sustancias Protectoras/farmacología
3.
Arterioscler Thromb Vasc Biol ; 35(10): 2104-13, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26315403

RESUMEN

OBJECTIVE: Oxidative stress associated with cardiovascular disease can produce various oxidized lipids, including cholesterol oxides, such as 7-hydroperoxide (7-OOH), 7-hydroxide (7-OH), and 7-ketone (7=O). Unlike 7=O and 7-OH, 7-OOH is redox active, giving rise to the others via potentially toxic-free radical reactions. We tested the novel hypothesis that under oxidative stress conditions, steroidogenic acute regulatory (StAR) family proteins not only deliver cholesterol to/into mitochondria of vascular macrophages, but also 7-OOH, which induces peroxidative damage that impairs early stage reverse cholesterol transport. APPROACH AND RESULTS: Stimulation of human monocyte-derived THP-1 macrophages with dibutyryl-cAMP resulted in substantial upregulation of StarD1 and ATP-binding cassette (ABC) transporter, ABCA1. Small interfering RNA-induced StarD1 knockdown before stimulation had no effect on StarD4, but reduced ABCA1 upregulation, linking the latter to StarD1 functionality. Mitochondria in stimulated StarD1-knockdown cells internalized 7-OOH slower than nonstimulated controls and underwent less 7-OOH-induced lipid peroxidation and membrane depolarization, as probed with C11-BODIPY (4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-inda-cene-3-undecanoic acid) and JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolylcarbocyanine iodide), respectively. Major functional consequences of 7-OOH exposure were (1) loss of mitochondrial CYP27A1 activity, (2) reduced 27-hydroxycholesterol (27-OH) output, and (3) downregulation of cholesterol-exporting ABCA1 and ABCG1. Consistently, 7-OOH-challenged macrophages exported less cholesterol to apoA-I or high-density lipoprotein than did nonchallenged controls. StarD1-mediated 7-OOH transport was also found to be highly cytotoxic, whereas 7=O and 7-OH were minimally toxic. CONCLUSIONS: This study describes a previously unrecognized mechanism by which macrophage cholesterol efflux can be incapacitated under oxidative stress-linked disorders, such as chronic obesity and hypertension. Our findings provide new insights into the role of macrophage redox damage/dysfunction in atherogenesis.


Asunto(s)
Aterosclerosis/metabolismo , Colesterol/análogos & derivados , Peroxidación de Lípido/fisiología , Macrófagos/metabolismo , Estrés Oxidativo/fisiología , Transporte Biológico , Células Cultivadas , Colesterol/metabolismo , CMP Cíclico/análogos & derivados , CMP Cíclico/farmacología , Humanos , Macrófagos/citología , Mitocondrias/metabolismo , Transporte de Proteínas , Sensibilidad y Especificidad
4.
Cell Biochem Biophys ; 82(1): 213-222, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37995086

RESUMEN

Trafficking of intracellular cholesterol (Ch) to and into mitochondria of steroidogenic cells is required for steroid hormone biosynthesis. This trafficking is typically mediated by one or more proteins of the steroidogenic acute regulatory (StAR) family. Our previous studies revealed that 7-OOH, a redox-active cholesterol hydroperoxide, could be co-trafficked with Ch to/into mitochondria of MA-10 Leydig cells, thereby inducing membrane lipid peroxidation (LPO) which impaired progesterone biosynthesis. These negative effects of 7-OOH were inhibited by endogenous selenoperoxidase GPx4, indicating that this enzyme could protect against 7-OOH-induced oxidative damage/dysfunction. In the present study, we advanced our Leydig focus to cultured murine TM3 cells and then to primary cells from rat testis, both of which produce testosterone. Using a fluorescent probe, we found that extensive free radical-mediated LPO occurred in mitochondria of stimulated primary Leydig cells during treatment with liposomal Ch+7-OOH, resulting in a significant decline in testosterone output relative to that with Ch alone. Strong enhancement of LPO and testosterone shortfall by RSL3 (a GPx4 inhibitor) and reversal thereof by Ebselen (a GPx4 mimetic), suggested that endogenous GPx4 was playing a key antioxidant role. 7-OOH in increasing doses was also cytotoxic to these cells, RSL3 exacerbating this in Ebselen-reversable fashion. Moreover, GPx4 knockdown increased cell sensitivity to LPO with reduced testosterone output. These findings, particularly with primary Leydigs (which best represent cells in intact testis) suggest that GPx4 plays a key protective role against peroxidative damage/dysfunction induced by 7-OOH co-trafficking with Ch.


Asunto(s)
Colesterol/análogos & derivados , Isoindoles , Células Intersticiales del Testículo , Compuestos de Organoselenio , Testosterona , Ratas , Masculino , Ratones , Animales , Células Intersticiales del Testículo/metabolismo , Testosterona/farmacología , Testosterona/metabolismo , Colesterol/metabolismo , Fosfoproteínas/metabolismo
5.
Contact (Thousand Oaks) ; 7: 25152564231223480, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108634

RESUMEN

In this News and Views, I discuss our recent publication that established how steroidogenic acute regulatory-related lipid transfer domain-3 (STARD3), a membrane contact protein situated at lysosomal membranes, plays a role in the detoxification of cholesterol hydroperoxide. STARD3's methionine residues can be oxidized to methionine sulfoxide by cholesterol hydroperoxide, after which methionine sulfoxide reductases reduce the methionine sulfoxide residues back to methionine. The reaction also results in the reduction of the cholesterol hydroperoxide to an alcohol. The cyclic oxidation and reduction of methionine residues in STARD3 at membrane contact sites creates a catalytically efficient mechanism for detoxification of cholesterol hydroperoxide during cholesterol transport, thus protecting membrane contact sites and the entire cell against the toxicity of cholesterol hydroperoxide.

6.
Redox Biol ; 46: 102096, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34418596

RESUMEN

Peroxidation of unsaturated phospholipids, glycolipids, and cholesterol in biological membranes under oxidative stress conditions can underlie a variety of pathological conditions, including atherogenesis, neurodegeneration, and carcinogenesis. Lipid hydroperoxides (LOOHs) are key intermediates in the peroxidative process. Nascent LOOHs may either undergo one-electron reduction to exacerbate membrane damage/dysfunction or two-electron reduction to attenuate this. Another possibility is LOOH translocation to an acceptor site, followed by either of these competing reductions. Cholesterol (Ch)-derived hydroperoxides (ChOOHs) have several special features that will be highlighted in this review. In addition to being susceptible to one-electron vs. two-electron reduction, ChOOHs can translocate from a membrane of origin to another membrane, where such turnover may ensue. Intracellular StAR family proteins have been shown to deliver not only Ch to mitochondria, but also ChOOHs. StAR-mediated transfer of free radical-generated 7-hydroperoxycholesterol (7-OOH) results in impairment of (a) Ch utilization in steroidogenic cells, and (b) anti-atherogenic reverse Ch transport in vascular macrophages. This is the first known example of how a peroxide derivative can be recognized by a natural lipid trafficking pathway with deleterious consequences. For each example above, we will discuss the underlying mechanism of oxidative damage/dysfunction, and how this might be mitigated by antioxidant intervention.


Asunto(s)
Colesterol , Peróxidos Lipídicos , Colesterol/análogos & derivados , Peroxidación de Lípido , Estrés Oxidativo , Fosfolípidos
7.
Cell Biochem Biophys ; 75(3-4): 413-419, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28434137

RESUMEN

Cholesterol is like other unsaturated lipids in being susceptible to peroxidative degradation upon exposure to strong oxidants like hydroxyl radical or peroxynitrite generated under conditions of oxidative stress. In the eukaryotic cell plasma membrane, where most of the cellular cholesterol resides, peroxidation leads to membrane structural and functional damage from which pathological states may arise. In low density lipoprotein, cholesterol and phospholipid peroxidation have long been associated with atherogenesis. Among the many intermediates/products of cholesterol oxidation, hydroperoxide species (ChOOHs) have a number of different fates and deserve special attention. These fates include (a) damage-enhancement via iron-catalyzed one-electron reduction, (b) damage containment via two-electron reduction, and (c) inter-membrane, inter-lipoprotein, and membrane-lipoprotein translocation, which allows dissemination of one-electron damage or off-site suppression thereof depending on antioxidant location and capacity. In addition, ChOOHs can serve as reliable and conveniently detected mechanistic reporters of free radical-mediated reactions vs. non-radical (e.g., singlet oxygen)-mediated reactions. Iron-stimulated peroxidation of cholesterol and other lipids underlies a newly discovered form of regulated cell death called ferroptosis. These and other deleterious consequences of radical-mediated lipid peroxidation will be discussed in this review.


Asunto(s)
Colesterol/análogos & derivados , Animales , Colesterol/química , Colesterol/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido , Lípidos/química , Liposomas/química , Liposomas/metabolismo , Oxidación-Reducción , Transducción de Señal , Glutatión Peroxidasa GPX1
8.
Springerplus ; 3: 550, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25279334

RESUMEN

BACKGROUND: α-Tocopherol (α-T) and α-tocotrienol (α-T3) are well recognized as lipophilic antioxidants. Nevertheless, there is limited knowledge on their location in heterogeneous cell membranes. We first investigated the distribution of α-T and α-T3 to the cholesterol-rich microdomains (lipid rafts and caveolae) of heterogeneous cell membranes by incubating these antioxidants with cultured mouse fibroblasts. FINDINGS: Levels of cellular uptake for α-T and α-T3 were adjusted to the same order, as that of the latter was much more efficient than that of the former in the cultured cells. After ultracentrifugation, α-T and α-T3 were partitioned to the microdomain fractions. When the distribution of α-T and α-T3 was further confirmed by using methyl-ß-cyclodextrin (which removes cholesterol from membranes), α-T was suggested to be distributed to the microdomains (approx. 9% of the total uptake). The same treatment did not affect α-T3 content in the microdomain fractions, indicating that α-T3 is not located in these cholesterol-rich domains. However, α-T and α-T3 significantly inhibited the production of peroxidized cholesterol when cells were exposed to ultraviolet-A light. CONCLUSIONS: These results suggest that α-T and α-T3 can act as membranous antioxidants against photo-irradiated cholesterol peroxidation irrespective of their distribution to cholesterol-rich microdomains.

9.
FEBS Lett ; 588(1): 65-70, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24269887

RESUMEN

StAR family proteins in vascular macrophages participate in reverse cholesterol transport (RCT). We hypothesize that under pathophysiological oxidative stress, StARs will transport not only cholesterol to macrophage mitochondria, but also pro-oxidant cholesterol hydroperoxides (7-OOHs), thereby impairing early-stage RCT. Upon stimulation with dibutyryl-cAMP, RAW264.7 macrophages exhibited a strong time-dependent induction of mitochondrial StarD1 and plasma membrane ABCA1, which exports cholesterol. 7α-OOH uptake by stimulated RAW cell mitochondria (like cholesterol uptake) was strongly reduced by StarD1 knockdown, consistent with StarD1 involvement. Upon uptake by mitochondria, 7α-OOH (but not redox-inactive 7α-OH) triggered lipid peroxidation and membrane depolarization while reducing ABCA1 upregulation. These findings provide strong initial support for our hypothesis.


Asunto(s)
Colesterol/análogos & derivados , Macrófagos/metabolismo , Mitocondrias/metabolismo , Fosfoproteínas/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Western Blotting , Bucladesina/farmacología , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Colesterol/metabolismo , Colesterol/farmacología , Relación Dosis-Respuesta a Droga , Peroxidación de Lípido/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Estrés Oxidativo , Fosfoproteínas/genética , Interferencia de ARN , Factores de Tiempo
10.
Chem Phys Lipids ; 174: 17-23, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23751409

RESUMEN

Cholesterol hydroperoxides (ChOOHs) are included as lipid peroxidation products in the skin exposed to ultraviolet (UV) light irradiation. They may exert physicochemical actions affecting biomembrane rigidity because cholesterol is one of the major components of cell membranes. We investigated the distribution of isomeric ChOOHs in heterogeneous cell membranes with different lipid profiles using mouse fibroblast NIH-3T3 cells as a model of the dermis. Before and after UVA irradiation in the presence of hematoporphyrin, cell membranes were partitioned to microdomains (lipid rafts and caveolae) containing a higher amount of cholesterol and non-microdomains (containing a lower amount of cholesterol) by ultracentrifugation. By a combination of diphenylpyrenylphosphine-thin-layer chromatography blotting analyses and gas chromatography-electron ionization-mass spectrometry/selected ion monitoring analyses, ChOOH isomers were determined as their trimethylsilyloxyl derivatives. Cholesterol 5α-, 7α- and 7ß-hydroperoxide were found as isomeric ChOOHs before irradiation. The amounts of the three ChOOH isomers increased significantly after photoirradiation for 2h. No difference was observed between microdomains and non-microdomains with regard to the ratio of the amounts of isomeric ChOOHs to that of cholesterol, suggesting that these ChOOH isomers were distributed equally in both parts depending on cholesterol content. When cells were treated with a purified mixture of ChOOH isomers, cell membranes incorporated ChOOHs into microdomains as well as non-microdomains evenly. Cellular matrix metalloproteinase-9 (MMP-9) activity was elevated by treatment with the purified mixture of ChOOH isomers. These results strongly suggest that ChOOHs accumulate in cell membranes irrespective of the heterogeneous microstructure and promote MMP activity if dermal cells are exposed to photodynamic actions.


Asunto(s)
Membrana Celular/química , Colesterol/análogos & derivados , Metaloproteinasa 9 de la Matriz/metabolismo , Microdominios de Membrana/química , Animales , Colesterol/química , Cromatografía en Capa Delgada , Dermis/citología , Cromatografía de Gases y Espectrometría de Masas , Hematoporfirinas/química , Isomerismo , Peroxidación de Lípido , Metaloproteinasa 9 de la Matriz/química , Ratones , Modelos Biológicos , Células 3T3 NIH , Rayos Ultravioleta
11.
J Clin Biochem Nutr ; 48(1): 57-62, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21297913

RESUMEN

Carotenoids are known to be potent quenchers of singlet molecular oxygen [O(2) ((1)Δ(g))]. Solar light-induced photooxidative stress causes skin photoaging by accelerating the generation of reactive oxygen species via photodynamic actions in which O(2) ((1)Δ(g)) can be generated by energy transfer from excited sensitizers. Thus, dietary carotenoids seem to participate in the prevention of photooxidative stress by accumulating as antioxidants in the skin. An in vivo study using hairless mice clarified that a O(2) ((1)Δ(g)) oxygenation-specific peroxidation product of cholesterol, cholesterol 5α-hydroperoxide, accumulates in skin lipids due to ultraviolet-A exposure. Matrix metalloproteinase-9, a metalloproteinase family enzyme responsible for the formation of wrinkles and sagging, was enhanced in the skin of ultraviolet-A -irradiated hairless mice. The activation of metalloproteinase-9 and the accumulation of 5α-hydroperoxide, as well as formation of wrinkles and sagging, were lowered in mice fed a ß-carotene diet. These results strongly suggest that dietary ß-carotene prevents the expression of metalloproteinase-9 (at least in part), by inhibiting the photodynamic action involving the formation of 5α-hydroperoxide in the skin. Intake of ß-Carotene therefore appears to be helpful in slowing down ultraviolet-A -induced photoaging in human skin by acting as a O(2) ((1)Δ(g)) quencher.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA