Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.839
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(13): 2722-2735.e9, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077757

RESUMEN

Lipid droplets are important for cancer cell growth and survival. However, the mechanism underlying the initiation of lipid droplet lipolysis is not well understood. We demonstrate here that glucose deprivation induces the binding of choline kinase (CHK) α2 to lipid droplets, which is sequentially mediated by AMPK-dependent CHKα2 S279 phosphorylation and KAT5-dependent CHKα2 K247 acetylation. Importantly, CHKα2 with altered catalytic domain conformation functions as a protein kinase and phosphorylates PLIN2 at Y232 and PLIN3 at Y251. The phosphorylated PLIN2/3 dissociate from lipid droplets and are degraded by Hsc70-mediated autophagy, thereby promoting lipid droplet lipolysis, fatty acid oxidation, and brain tumor growth. In addition, levels of CHKα2 S279 phosphorylation, CHKα2 K247 acetylation, and PLIN2/3 phosphorylation are positively correlated with one another in human glioblastoma specimens and are associated with poor prognosis in glioblastoma patients. These findings underscore the role of CHKα2 as a protein kinase in lipolysis and glioblastoma development.


Asunto(s)
Colina Quinasa/metabolismo , Glioblastoma/enzimología , Gotas Lipídicas/enzimología , Lipólisis , Proteínas de Neoplasias/metabolismo , Proteínas Quinasas/metabolismo , Acetilación , Línea Celular Tumoral , Colina Quinasa/genética , Glioblastoma/genética , Humanos , Proteínas de Neoplasias/genética , Proteínas Quinasas/genética
2.
Circ Res ; 134(4): 425-441, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38299365

RESUMEN

BACKGROUND: Human cardiac long noncoding RNA (lncRNA) profiles in patients with dilated cardiomyopathy (DCM) were previously analyzed, and the long noncoding RNA CHKB (choline kinase beta) divergent transcript (CHKB-DT) levels were found to be mostly downregulated in the heart. In this study, the function of CHKB-DT in DCM was determined. METHODS: Long noncoding RNA expression levels in the human heart tissues were measured via quantitative reverse transcription-polymerase chain reaction and in situ hybridization assays. A CHKB-DT heterozygous or homozygous knockout mouse model was generated using the clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9 system, and the adeno-associated virus with a cardiac-specific promoter was used to deliver the RNA in vivo. Sarcomere shortening was performed to assess the primary cardiomyocyte contractility. The Seahorse XF cell mitochondrial stress test was performed to determine the energy metabolism and ATP production. Furthermore, the underlying mechanisms were explored using quantitative proteomics, ribosome profiling, RNA antisense purification assays, mass spectrometry, RNA pull-down, luciferase assay, RNA-fluorescence in situ hybridization, and Western blotting. RESULTS: CHKB-DT levels were remarkably decreased in patients with DCM and mice with transverse aortic constriction-induced heart failure. Heterozygous knockout of CHKB-DT in cardiomyocytes caused cardiac dilation and dysfunction and reduced the contractility of primary cardiomyocytes. Moreover, CHKB-DT heterozygous knockout impaired mitochondrial function and decreased ATP production as well as cardiac energy metabolism. Mechanistically, ALDH2 (aldehyde dehydrogenase 2) was a direct target of CHKB-DT. CHKB-DT physically interacted with the mRNA of ALDH2 and fused in sarcoma (FUS) through the GGUG motif. CHKB-DT knockdown aggravated ALDH2 mRNA degradation and 4-HNE (4-hydroxy-2-nonenal) production, whereas overexpression of CHKB-DT reversed these molecular changes. Furthermore, restoring ALDH2 expression in CHKB-DT+/- mice alleviated cardiac dilation and dysfunction. CONCLUSIONS: CHKB-DT is significantly downregulated in DCM. CHKB-DT acts as an energy metabolism-associated long noncoding RNA and represents a promising therapeutic target against DCM.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial , Cardiomiopatía Dilatada , ARN Largo no Codificante , Animales , Humanos , Ratones , Adenosina Trifosfato/metabolismo , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Regulación hacia Abajo , Hibridación Fluorescente in Situ , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
Cell Mol Life Sci ; 81(1): 166, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581583

RESUMEN

The Feline Leukemia Virus Subgroup C Receptor 1a (FLVCR1a) is a member of the SLC49 Major Facilitator Superfamily of transporters. Initially recognized as the receptor for the retrovirus responsible of pure red cell aplasia in cats, nearly two decades since its discovery, FLVCR1a remains a puzzling transporter, with ongoing discussions regarding what it transports and how its expression is regulated. Nonetheless, despite this, the substantial body of evidence accumulated over the years has provided insights into several critical processes in which this transporter plays a complex role, and the health implications stemming from its malfunction. The present review intends to offer a comprehensive overview and a critical analysis of the existing literature on FLVCR1a, with the goal of emphasising the vital importance of this transporter for the organism and elucidating the interconnections among the various functions attributed to this transporter.


Asunto(s)
Proteínas de Transporte de Membrana , Receptores Virales , Gatos , Animales , Proteínas de Transporte de Membrana/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo
4.
J Allergy Clin Immunol ; 154(3): 707-718, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38734385

RESUMEN

BACKGROUND: While the daily rhythm of allergic rhinitis (AR) has long been recognized, the molecular mechanism underlying this phenomenon remains enigmatic. OBJECTIVE: We aimed to investigate the role of circadian clock in AR development and to clarify the mechanism by which the daily rhythm of AR is generated. METHODS: AR was induced in mice with ovalbumin. Toluidine blue staining, liquid chromatography-tandem mass spectrometry analysis, real-time quantitative PCR, and immunoblotting were performed with AR and control mice. RESULTS: Ovalbumin-induced AR is diurnally rhythmic and associated with clock gene disruption in nasal mucosa. In particular, Rev-erbα is generally downregulated and its rhythm retained, but with a near-12-hour phase shift. Furthermore, global knockout of core clock gene Bmal1 or Rev-erbα increases the susceptibility of mice to AR and blunts AR rhythmicity. Importantly, nasal solitary chemosensory cells (SCCs) are rhythmically activated, and inhibition of the SCC pathway leads to attenuated AR and a loss of its rhythm. Moreover, rhythmic activation of SCCs is accounted for by diurnal expression of ChAT (an enzyme responsible for the synthesis of acetylcholine) and temporal generation of the neurotransmitter acetylcholine. Mechanistically, Rev-erbα trans-represses Chat through direct binding to a specific response element, generating a diurnal oscillation in this target gene. CONCLUSION: SCCs, under the control of Rev-erbα, are a driver of AR rhythmicity; targeting SCCs should be considered as a new avenue for AR management.


Asunto(s)
Ritmo Circadiano , Modelos Animales de Enfermedad , Mucosa Nasal , Rinitis Alérgica , Animales , Rinitis Alérgica/inmunología , Rinitis Alérgica/metabolismo , Ratones , Mucosa Nasal/metabolismo , Mucosa Nasal/inmunología , Mucosa Nasal/patología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Ratones Noqueados , Ovalbúmina/inmunología , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos/genética , Ratones Endogámicos BALB C
5.
J Allergy Clin Immunol ; 153(3): 793-808.e2, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38000698

RESUMEN

BACKGROUND: Nonneuronal cells, including epithelial cells, can produce acetylcholine (ACh). Muscarinic ACh receptor antagonists are used clinically to treat asthma and other medical conditions; however, knowledge regarding the roles of ACh in type 2 immunity is limited. OBJECTIVE: Our aim was to investigate the roles of epithelial ACh in allergic immune responses. METHODS: Human bronchial epithelial (HBE) cells were cultured with allergen extracts, and their ACh production and IL-33 secretion were studied in vitro. To investigate immune responses in vivo, naive BALB/c mice were treated intranasally with different muscarinic ACh receptor antagonists and then exposed intranasally to allergens. RESULTS: At steady state, HBE cells expressed cellular components necessary for ACh production, including choline acetyltransferase and organic cation transporters. Exposure to allergens caused HBE cells to rapidly release ACh into the extracellular medium. Pharmacologic or small-interfering RNA-based blocking of ACh production or autocrine action through the M3 muscarinic ACh receptors in HBE cells suppressed allergen-induced ATP release, calcium mobilization, and extracellular secretion of IL-33. When naive mice were exposed to allergens, ACh was quickly released into the airway lumen. A series of clinical M3 muscarinic ACh receptor antagonists inhibited allergen-induced IL-33 secretion and innate type 2 immune response in the mouse airways. In a preclinical murine model of asthma, an ACh receptor antagonist suppressed allergen-induced airway inflammation and airway hyperreactivity. CONCLUSIONS: ACh is released quickly by airway epithelial cells on allergen exposure, and it plays an important role in type 2 immunity. The epithelial ACh system can be considered a therapeutic target in allergic airway diseases.


Asunto(s)
Asma , Interleucina-33 , Ratones , Animales , Humanos , Interleucina-33/metabolismo , Ratones Noqueados , Pulmón , Epitelio , Acetilcolina , Alérgenos , Colinérgicos , Receptores Colinérgicos/metabolismo
6.
J Bacteriol ; 206(4): e0008124, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38501746

RESUMEN

Paracoccus denitrificans is a facultative methylotroph that can grow on methanol and methylamine as sole sources of carbon and energy. Both are oxidized to formaldehyde and then to formate, so growth on C1 substrates induces the expression of genes encoding enzymes required for the oxidation of formaldehyde and formate. This induction involves a histidine kinase response regulator pair (FlhSR) that is likely triggered by formaldehyde. Catabolism of some complex organic substrates (e.g., choline and L-proline betaine) also generates formaldehyde. Thus, flhS and flhR mutants that fail to induce expression of the formaldehyde catabolic enzymes cannot grow on methanol, methylamine, and choline. Choline is oxidized to glycine via glycine betaine, dimethylglycine, and sarcosine. By exploring flhSR growth phenotypes and the activities of a promoter and enzyme known to be upregulated by formaldehyde, we identify the oxidative demethylations of glycine betaine, dimethylglycine, and sarcosine as sources of formaldehyde. Growth on glycine betaine, dimethylglycine, and sarcosine is accompanied by the production of up to three, two, and one equivalents of formaldehyde, respectively. Genetic evidence implicates two orthologous monooxygenases in the oxidation of glycine betaine. Interestingly, one of these appears to be a bifunctional enzyme that also oxidizes L-proline betaine (stachydrine). We present preliminary evidence to suggest that growth on L-proline betaine induces expression of a formaldehyde dehydrogenase distinct from the enzyme induced during growth on other formaldehyde-generating substrates.IMPORTANCEThe bacterial degradation of one-carbon compounds (methanol and methylamine) and some complex multi-carbon compounds (e.g., choline) generates formaldehyde. Formaldehyde is toxic and must be removed, which can be done by oxidation to formate and then to carbon dioxide. These oxidations provide a source of energy; in some species, the CO2 thus generated can be assimilated into biomass. Using the Gram-negative bacterium Paracoccus denitrificans as the experimental model, we infer that oxidation of choline to glycine generates up to three equivalents of formaldehyde, and we identify the three steps in the catabolic pathway that are responsible. Our work sheds further light on metabolic pathways that are likely important in a variety of environmental contexts.


Asunto(s)
Betaína , Paracoccus denitrificans , Betaína/metabolismo , Sarcosina/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Metanol , Colina/metabolismo , Glicina , Formaldehído , Formiatos , Metilaminas
7.
J Neurosci ; 43(7): 1111-1124, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36604172

RESUMEN

Fast cholinergic neurotransmission is mediated by acetylcholine-gated ion channels; in particular, excitatory nicotinic acetylcholine receptors play well established roles in virtually all nervous systems. Acetylcholine-gated inhibitory channels have also been identified in some invertebrate phyla, yet their roles in the nervous system are less well understood. We report the existence of multiple new inhibitory ion channels with diverse ligand activation properties in Caenorhabditis elegans We identify three channels, LGC-40, LGC-57, and LGC-58, whose primary ligand is choline rather than acetylcholine, as well as the first evidence of a truly polymodal channel, LGC-39, which is activated by both cholinergic and aminergic ligands. Using our new ligand-receptor pairs we uncover the surprising extent to which single neurons in the hermaphrodite nervous system express both excitatory and inhibitory channels, not only for acetylcholine but also for the other major neurotransmitters. The results presented in this study offer new insight into the potential evolutionary benefit of a vast and diverse repertoire of ligand-gated ion channels to generate complexity in an anatomically compact nervous system.SIGNIFICANCE STATEMENT Here we describe the diversity of cholinergic signaling in the nematode Caenorhabditis elegans We identify and characterize a novel family of ligand-gated ion channels and show that they are preferentially gated by choline rather than acetylcholine and expressed broadly in the nervous system. Interestingly, we also identify one channel gated by chemically diverse ligands including acetylcholine and aminergic ligands. By using our new knowledge of these ligand-gated ion channels, we built a model to predict the synaptic polarity in the C. elegans connectome. This model can be used for generating hypotheses on neural circuit function.


Asunto(s)
Canales Iónicos Activados por Ligandos , Receptores Nicotínicos , Animales , Caenorhabditis elegans/fisiología , Acetilcolina , Ligandos , Colinérgicos , Colina
8.
J Proteome Res ; 23(1): 483-493, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38109371

RESUMEN

Proton magnetic resonance spectroscopy (1H-MRS) of surgically collected tumor specimens may contribute to investigating cancer metabolism and the significance of the "total choline" (tCho) peak (3.2 ppm) as malignancy and therapy response biomarker. To ensure preservation of intrinsic metabolomic information, standardized handling procedures are needed. The effects of time to freeze (cold ischemia) were evaluated in (a) surgical epithelial ovarian cancer (EOC) specimens using high-resolution (HR) 1H-MRS (9.4 T) of aqueous extracts and (b) preclinical EOC samples (xenografts in SCID mice) investigated by in vivo MRI-guided 1H-MRS (4.7 T) and by HR-1H-MRS (9.4 T) of tumor extracts or intact fragments (using magic-angle-spinning (MAS) technology). No significant changes were found in the levels of 27 of 29 MRS-detected metabolites (including the tCho profile) in clinical specimens up to 2 h cold ischemia, besides an increase in lysine and a decrease in glutathione. EOC xenografts showed a 2-fold increase in free choline within 2 h cold ischemia, without further significant changes for any MRS-detected metabolite (including phosphocholine and tCho) up to 6 h. At shorter times (≤1 h), HR-MAS analyses showed unaltered tCho components, along with significant changes in lactate, glutamate, and glutamine. Our results support the view that a time to freeze of 1 h represents a safe threshold to ensure the maintenance of a reliable tCho profile in EOC specimens.


Asunto(s)
Isquemia Fría , Neoplasias Ováricas , Ratones , Animales , Humanos , Femenino , Espectroscopía de Resonancia Magnética/métodos , Ratones SCID , Metaboloma , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/metabolismo , Colina/metabolismo
9.
J Cell Mol Med ; 28(6): e18161, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445787

RESUMEN

Cisplatin is an antimitotic drug able to cause acute and chronic gastrointestinal side effects. Acute side effects are attributable to mucositis while chronic ones are due to neuropathy. Cisplatin has also antibiotic properties inducing dysbiosis which enhances the inflammatory response, worsening local damage. Thus, a treatment aimed at protecting the microbiota could prevent or reduce the toxicity of chemotherapy. Furthermore, since a healthy microbiota enhances the effects of some chemotherapeutic drugs, prebiotics could also improve this drug effectiveness. We investigated whether chronic cisplatin administration determined morphological and functional alterations in mouse proximal colon and whether a diet enriched in prebiotics had protective effects. The results showed that cisplatin caused lack of weight gain, increase in kaolin intake, decrease in stool production and mucus secretion. Prebiotics prevented increases in kaolin intake, changes in stool production and mucus secretion, but had no effect on the lack of weight gain. Moreover, cisplatin determined a reduction in amplitude of spontaneous muscular contractions and of Connexin (Cx)43 expression in the interstitial cells of Cajal, changes that were partially prevented by prebiotics. In conclusion, the present study shows that daily administration of prebiotics, likely protecting the microbiota, prevents most of the colonic cisplatin-induced alterations.


Asunto(s)
Cisplatino , Prebióticos , Animales , Ratones , Cisplatino/efectos adversos , Caolín , Aumento de Peso , Colon
10.
BMC Genomics ; 25(1): 301, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515015

RESUMEN

BACKGROUND: Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS: Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS: This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.


Asunto(s)
Deficiencias de Hierro , Hierro , Embarazo , Femenino , Animales , Ratas , Masculino , Hierro/metabolismo , Cromatina/genética , Cromatina/metabolismo , Animales Recién Nacidos , Ratas Sprague-Dawley , Epigénesis Genética , Colina/farmacología , Colina/metabolismo , Hipocampo
11.
Breast Cancer Res ; 26(1): 87, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816770

RESUMEN

BACKGROUND: Despite progress understanding the mechanisms underlying tumor spread, metastasis remains a clinical challenge. We identified the choline-producing glycerophosphodiesterase, EDI3 and reported its association with metastasis-free survival in endometrial cancer. We also observed that silencing EDI3 slowed cell migration and other cancer-relevant phenotypes in vitro. Recent work demonstrated high EDI3 expression in ER-HER2+ breast cancer compared to the other molecular subtypes. Silencing EDI3 in ER-HER2+ cells significantly reduced cell survival in vitro and decreased tumor growth in vivo. However, a role for EDI3 in tumor metastasis in this breast cancer subtype was not explored. Therefore, in the present work we investigate whether silencing EDI3 in ER-HER2+ breast cancer cell lines alters phenotypes linked to metastasis in vitro, and metastasis formation in vivo using mouse models of experimental metastasis. METHODS: To inducibly silence EDI3, luciferase-expressing HCC1954 cells were transduced with lentiviral particles containing shRNA oligos targeting EDI3 under the control of doxycycline. The effect on cell migration, adhesion, colony formation and anoikis was determined in vitro, and significant findings were confirmed in a second ER-HER2+ cell line, SUM190PT. Doxycycline-induced HCC1954-luc shEDI3 cells were injected into the tail vein or peritoneum of immunodeficient mice to generate lung and peritoneal metastases, respectively and monitored using non-invasive bioluminescence imaging. Metabolite levels in cells and tumor tissue were analyzed using targeted mass spectrometry and MALDI mass spectrometry imaging (MALDI-MSI), respectively. RESULTS: Inducibly silencing EDI3 reduced cell adhesion and colony formation, as well as increased susceptibility to anoikis in HCC1954-luc cells, which was confirmed in SUM190PT cells. No influence on cell migration was observed. Reduced luminescence was seen in lungs and peritoneum of mice injected with cells expressing less EDI3 after tail vein and intraperitoneal injection, respectively, indicative of reduced metastasis. Importantly, mice injected with EDI3-silenced cells survived longer. Closer analysis of the peritoneal organs revealed that silencing EDI3 had no effect on metastatic organotropism but instead reduced metastatic burden. Finally, metabolic analyses revealed significant changes in choline and glycerophospholipid metabolites in cells and in pancreatic metastases in vivo. CONCLUSIONS: Reduced metastasis upon silencing supports EDI3's potential as a treatment target in metastasizing ER-HER2+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Receptor ErbB-2 , Receptores de Estrógenos , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptores de Estrógenos/metabolismo , Modelos Animales de Enfermedad , Movimiento Celular , Técnicas de Silenciamiento del Gen , Carga Tumoral , Metástasis de la Neoplasia , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proliferación Celular
12.
Neurobiol Dis ; 191: 106390, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145852

RESUMEN

Anxiety and depression caused by inflammatory bowel disease (IBD) negatively affect the mental health of patients. Emerging studies have demonstrated that the gut-brain axis (GBA) mediates IBD-induced mood disorders, but the underlying mechanisms of these findings remain unknown. Therefore, it's vital to conduct comprehensive research on the GBA in IBD. Multi-omics studies can provide an understanding of the pathological mechanisms of the GBA in the development of IBD, helping to uncover the mechanisms underlying the onset and progression of the disease. Thus, we analyzed the prefrontal cortex (PFC) of Dextran Sulfate Sodium Salt (DSS)-induced IBD mice using transcriptomics and metabolomics. We observed increased mRNA related to acetylcholine synthesis and secretion, along with decreased phosphatidylcholine (PC) levels in the PFC of DSS group compared to the control group. Fecal metagenomics also revealed abnormalities in the microbiome and lipid metabolism in the DSS group. Since both acetylcholine and PC are choline metabolites, we posited that the DSS group may experience choline deficiency and choline metabolism disorders. Subsequently, when we supplemented CDP-choline, IBD mice exhibited improvements, including decreased anxiety-like behaviors, reduced PC degradation, and increased acetylcholine synthesis in the PFC. In addition, administration of CDP-choline can restore imbalances in the gut microbiome and disruptions in lipid metabolism caused by DSS treatment. This study provides compelling evidence to suggest that choline metabolism plays a crucial role in the development and treatment of mood disorders in IBD. Choline and its metabolites appear to have a significant role in maintaining the stability of the GBA.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Colitis/inducido químicamente , Colitis/patología , Eje Cerebro-Intestino , Acetilcolina , Multiómica , Trastornos de Ansiedad , Colina , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
13.
Kidney Int ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39084256

RESUMEN

Choline has important physiological functions as a precursor for essential cell components, signaling molecules, phospholipids, and the neurotransmitter acetylcholine. Choline is a water-soluble charged molecule requiring transport proteins to cross biological membranes. Although transporters continue to be identified, membrane transport of choline is incompletely understood and knowledge about choline transport into intracellular organelles such as mitochondria remains limited. Here we show that SLC25A48 imports choline into human mitochondria. Human loss-of-function mutations in SLC25A48 show impaired choline transport into mitochondria and are associated with elevated urine and plasma choline levels. Thus, our studies may have implications for understanding and treating conditions related to choline metabolism.

14.
Cancer ; 130(11): 1982-1990, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285606

RESUMEN

BACKGROUND: Dietary intake influences gut microbiome composition, which in turn may be associated with colorectal cancer (CRC). Associations of the gut microbiome with colorectal carcinogenesis may be mediated through bacterially regulated, metabolically active metabolites, including trimethylamine N-oxide (TMAO) and its precursors, choline, L-carnitine, and betaine. METHODS: Prospective associations of circulating TMAO and its precursors with CRC risk were investigated. TMAO, choline, betaine, and L-carnitine were measured in baseline serum samples from 761 incident CRC cases and 1:1 individually matched controls in the prospective Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial Cohort using targeted fully quantitative liquid chromatography tandem mass spectrometry panels. Prospective associations of the metabolites with CRC risk, using multivariable conditional logistic regression, were measured. Associations of a priori-selected dietary exposures with the four metabolites were also investigated. RESULTS: TMAO and its precursors were not associated with CRC risk overall, but TMAO and choline were positively associated with higher risk for distal CRC (continuous ORQ90 vs. Q10 [95% CI] = 1.90 [CI, 1.24-2.92; p = .003] and 1.26 [1.17-1.36; p < .0001], respectively). Conversely, choline was inversely associated with rectal cancer (ORQ90 vs. Q10 [95% CI] = 0.77 [0.76-0.79; p < .001]). Red meat, which was previously associated with CRC risk in the Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial Cohort , was positively associated with TMAO (Spearman rho = 0.10; p = .0003). CONCLUSIONS: Serum TMAO and choline may be associated with higher risk of distal CRC, and red meat may be positively associated with serum TMAO. These findings provide insight into a potential microbially mediated mechanism underlying CRC etiology.


Asunto(s)
Colina , Neoplasias Colorrectales , Detección Precoz del Cáncer , Metilaminas , Neoplasias de la Próstata , Humanos , Metilaminas/sangre , Masculino , Femenino , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/epidemiología , Persona de Mediana Edad , Anciano , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/diagnóstico , Colina/sangre , Detección Precoz del Cáncer/métodos , Estudios Prospectivos , Carnitina/sangre , Neoplasias Ováricas/sangre , Neoplasias Ováricas/epidemiología , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/epidemiología , Estudios de Casos y Controles , Betaína/sangre , Factores de Riesgo , Microbioma Gastrointestinal
15.
Eur J Neurosci ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230060

RESUMEN

Acetylcholine esterases (AChEs) are essential enzymes in cholinergic synapses, terminating neurotransmission by hydrolysing acetylcholine. While membrane bound AChEs at synaptic clefts efficiently perform this task, soluble AChEs are less stable and effective, but function over broader areas. In vertebrates, a single gene produces alternatively spliced forms of AChE, whereas invertebrates often have multiple genes, producing both enzyme types. Despite their significance as pesticide targets, the physiological roles of invertebrate AChEs remain unclear. Here, we characterized seven putative AChEs in the wandering spider, Cupiennius salei, a model species for neurophysiological studies. Sequence analyses and homology modeling predicted CsAChE7 as the sole stable, membrane-bound enzyme functioning at synaptic clefts, while the others are likely soluble enzymes. In situ hybridization of sections from the spider's nervous system revealed CsAChE7 transcripts co-localizing with choline acetyltransferase in cells that also exhibited AChE activity. CsAChE7 transcripts were also found in rapidly adapting mechanosensory neurons, suggesting a role in precise and transient activation of postsynaptic cells, contrasting with slowly adapting, also cholinergic, neurons expressing only soluble AChEs, which allow prolonged activation of postsynaptic cells. These findings suggest that cholinergic transmission is influenced not only by postsynaptic receptors but also by the enzymatic properties regulating acetylcholine clearance. We also show that acetylcholine is a crucial neurotransmitter in the spider's visual system and sensory and motor pathways, but absent in excitatory motor neurons at neuromuscular junctions, consistent with other arthropods. Our findings on sequence structures may have implications for the development of neurological drugs and pesticides.

16.
Am J Physiol Gastrointest Liver Physiol ; 327(4): G571-G585, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39041677

RESUMEN

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) is increasing, and translational animal models are needed to develop novel treatments for this disease. The physiology and metabolism of pigs have a relatively high resemblance to humans, and the present study aimed to characterize choline-deficient and high-fat diet (CDAHFD)-fed Göttingen Minipigs as a novel animal model of MASLD/MASH. Göttingen Minipigs were fed CDAHFD for up to 5 mo, and the phenotype was investigated by the analysis of plasma parameters and repeated collection of liver biopsies. Furthermore, changes in hepatic gene expression during the experiment were explored by RNA sequencing. For a subset of the minipigs, the diet was changed from CDAHFD back to chow to investigate whether the liver pathology was reversible. Göttingen Minipigs on CDAHFD gained body weight, and plasma levels of cholesterol, AST, ALT, ALP, and GGT were increased. CDAHFD-fed minipigs developed hepatic steatosis, inflammation, and fibrosis, which in 5 of 16 animals progressed to cirrhosis. During an 11-wk chow reversal period, steatosis regressed, while fibrosis persisted. Regarding inflammation, the findings were less clear, depending on the type of readout. MASH Human Proximity Scoring (combined evaluation of transcriptional, phenotypic, and histopathological parameters) showed that CDAHFD-fed Göttingen Minipigs resemble human MASLD/MASH better than most rodent models. In conclusion, CDAHFD-fed minipigs develop a MASH-like phenotype, which, in several aspects, resembles the changes observed in human patients with MASLD/MASH. Furthermore, repeated collection of liver biopsies allows detailed characterization of histopathological changes over time in individual animals.NEW & NOTEWORTHY The physiology and metabolism of pigs have a relatively high resemblance to humans. This study characterizes a new animal model of MASLD/MASH using CDAHFD-fed Göttingen Minipigs. Göttingen Minipigs fed CDAHFD gained weight and developed hepatic steatosis, inflammation, fibrosis, and cirrhosis. After an 11-wk chow-reversal period, hepatic steatosis and some inflammatory parameters reversed. Combined evaluation of phenotypic, transcriptional, and histological parameters revealed the minipig model showed a higher resemblance to human disease than many rodent models.


Asunto(s)
Deficiencia de Colina , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado , Porcinos Enanos , Animales , Dieta Alta en Grasa/efectos adversos , Porcinos , Hígado/patología , Hígado/metabolismo , Deficiencia de Colina/complicaciones , Hígado Graso/patología , Hígado Graso/metabolismo , Masculino , Colina/metabolismo , Femenino
17.
Mol Med ; 30(1): 128, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180015

RESUMEN

BACKGROUND: Tissue fibrosis is a common pathway to failure in many organ systems and is the cellular and molecular driver of myriad chronic diseases that are incompletely understood and lack effective treatment. Recent studies suggest that gut microbe-dependent metabolites might be involved in the initiation and progression of fibrosis in multiple organ systems. MAIN BODY OF THE MANUSCRIPT: In a meta-organismal pathway that begins in the gut, gut microbiota convert dietary precursors such as choline, phosphatidylcholine, and L-carnitine into trimethylamine (TMA), which is absorbed and subsequently converted to trimethylamine N-oxide (TMAO) via the host enzyme flavin-containing monooxygenase 3 (FMO3) in the liver. Chronic exposure to elevated TMAO appears to be associated with vascular injury and enhanced fibrosis propensity in diverse conditions, including chronic kidney disease, heart failure, metabolic dysfunction-associated steatotic liver disease, and systemic sclerosis. CONCLUSION: Despite the high prevalence of fibrosis, little is known to date about the role of gut dysbiosis and of microbe-dependent metabolites in its pathogenesis. This review summarizes recent important advances in the understanding of the complex metabolism and functional role of TMAO in pathologic fibrosis and highlights unanswered questions.


Asunto(s)
Fibrosis , Microbioma Gastrointestinal , Metilaminas , Metilaminas/metabolismo , Humanos , Animales , Disbiosis/metabolismo , Oxigenasas/metabolismo
18.
Small ; 20(16): e2307627, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38063849

RESUMEN

The high freezing point of polybromides, charging products, is a significant obstacle to the rapid development of zinc-bromine flow batteries (Zn-Br2 FBs). Here, a choline-based complexing agent (CCA) is constructed to liquefy the polybromides at low temperatures. Depending on quaternary ammonium group, choline can effectively complex with polybromide anions and form dense oil-phase that has excellent antifreezing property. Benefiting from indispensable strong ion-ion interaction, the highly selectively compatible CCA, consisting of choline and N-methyl-N-ethyl-morpholinium salts (CCA-M), can be achieved to further enhance bromine fixing ability. Interestingly, the formed polybromides with CCA-M are able to keep liquid even at -40 °C. The CCA-M endows Zn-Br2 FBs at 40 mA cm-2 with unprecedented long cycle life (over 150 cycles) and high Coulombic efficiency (CE, average ≈98.8%) at -20 °C, but also at room temperature (over 1200 cycles, average CE: ≈94.7%). The CCA shows a promising prospect of application and should be extended to other antifreezing bromine-based energy storage systems.

19.
Small ; 20(35): e2400692, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38651492

RESUMEN

Aqueous rechargeable zinc-ion batteries (ARZIBs) are considered as an emerging energy storage technology owing to their low cost, inherent safety, and reasonable energy density. However, significant challenges associated with electrodes, and aqueous electrolytes restrict their rapid development. Herein, ethylene glycol-choline chloride (Eg-ChCl) based hydrated deep-eutectic electrolytes (HDEEs) are proposed for RZIBs. Also, a novel V10O24·nH2O@rGO composite is prepared and investigated in combination with HDEEs. The formulated HDEEs, particularly the composition of 1 ml of EG, 0.5 g of ChCl, 4 ml of H2O, and 2 M ZnTFS (1-0.5-4-2 HDEE), not only exhibit the lowest viscosity, highest Zn2+ conductivity (20.38 mS cm-1), and the highest zinc (Zn) transference number (t+ = 0.937), but also provide a wide electrochemical stability window (>3.2 V vs ZnǁZn2+) and enabledendrite-free Zn stripping/plating cycling over 1000 hours. The resulting ZnǁV10O24·nH2O@rGO cell with 1-0.5-4-2 HDEE manifests high reversible capacity of ≈365 mAh g-1 at 0.1 A g-1, high rate-performance (delivered ≈365/223 mAh g-1 at 0.1/10 mA g-1) and enhanced cycling performance (≈63.10% capacity retention in the 4000th cycle at 10 A g-1). Furthermore, 1-0.5-4-2 HDEE support feasible Zn-ion storage performance across a wide temperature range (0-80 °C) FInally, a ZnǁV10O24·nH2O@rGO pouch-cell prototype fabricated with 1-0.5-4-2 HDEE demonstrates good flexibility, safety, and durability.

20.
Small ; 20(31): e2311745, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38587168

RESUMEN

Choline is an essential micronutrient for infants' brain development and health. To ensure that infants receive the needed daily dose of choline, the U.S. Food and Drug Administration (FDA) has set requirements for choline levels in commercialized infant formulas. Unfortunately, not all families can access well-regulated formulas, leading to potential inadequacies in choline intake. Economic constraints or difficulties in obtaining formulas, exacerbated by situations like COVID-19, prompt families to stretch formulas. Accurate measurement of choline in infant formulas becomes imperative to guarantee that infants receive the necessary nutritional support. Yet, accessible tools for this purpose are lacking. An innovative integrated sensor for the periodic observation of choline (SPOOC) designed for at-home quantification of choline in infants' formulas and milk powders is reported. This system is composed of a choline potentiometric sensor and ionic-liquid reference electrode developed on laser-induced graphene (LIG) and integrated into a spoon-like device. SPOOC includes a micro-potentiometer that conducts the measurements and transmits results wirelessly to parents' mobile devices. SPOOC demonstrated rapid and accurate assessment of choline levels directly in pre-consuming infant formulas without any sample treatment. This work empowers parents with a user-friendly tool for choline monitoring promoting informed nutritional decision-making in the care of infants.


Asunto(s)
Colina , Fórmulas Infantiles , Colina/análisis , Colina/química , Fórmulas Infantiles/química , Humanos , Lactante , COVID-19 , Grafito/química , Potenciometría/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA