RESUMEN
Cortical circuits are composed predominantly of pyramidal-to-pyramidal neuron connections, yet their assembly during embryonic development is not well understood. We show that mouse embryonic Rbp4-Cre cortical neurons, transcriptomically closest to layer 5 pyramidal neurons, display two phases of circuit assembly in vivo. At E14.5, they form a multi-layered circuit motif, composed of only embryonic near-projecting-type neurons. By E17.5, this transitions to a second motif involving all three embryonic types, analogous to the three adult layer 5 types. In vivo patch clamp recordings and two-photon calcium imaging of embryonic Rbp4-Cre neurons reveal active somas and neurites, tetrodotoxin-sensitive voltage-gated conductances, and functional glutamatergic synapses, from E14.5 onwards. Embryonic Rbp4-Cre neurons strongly express autism-associated genes and perturbing these genes interferes with the switch between the two motifs. Hence, pyramidal neurons form active, transient, multi-layered pyramidal-to-pyramidal circuits at the inception of neocortex, and studying these circuits could yield insights into the etiology of autism.
Asunto(s)
Trastorno Autístico , Neocórtex , Células Piramidales , Animales , Femenino , Ratones , Embarazo , Trastorno Autístico/genética , Trastorno Autístico/patología , Mutación , Neocórtex/fisiología , Neuronas/fisiología , Células Piramidales/fisiologíaRESUMEN
The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein-nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.
Asunto(s)
Replicación del ADN , ADN/biosíntesis , Eucariontes/genética , Complejo de Reconocimiento del Origen/metabolismo , Animales , ADN/química , ADN Polimerasa III/química , ADN Polimerasa III/metabolismo , Humanos , Complejo de Reconocimiento del Origen/química , Complejo de Reconocimiento del Origen/genética , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismoRESUMEN
Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying essential physiological functions such as touch and pain sensing, hearing, and proprioception. Although the mechanisms for some of these functions have been identified, the molecules essential to the sense of pain have remained elusive. Here we report identification of TACAN (Tmem120A), an ion channel involved in sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, a nociceptor-specific inducible knockout of TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to painful mechanical stimuli but not to thermal or touch stimuli. We propose that TACAN is an ion channel that contributes to sensing mechanical pain.
Asunto(s)
Canales Iónicos/fisiología , Mecanotransducción Celular/genética , Nociceptores/metabolismo , Dolor/genética , Tacto/genética , Animales , Regulación de la Expresión Génica/genética , Humanos , Canales Iónicos/genética , Lípidos/genética , Ratones , Ratones Noqueados , Dolor/fisiopatología , Técnicas de Placa-Clamp , Estrés Mecánico , Tacto/fisiologíaRESUMEN
The biophysical features of neurons shape information processing in the brain. Cortical neurons are larger in humans than in other species, but it is unclear how their size affects synaptic integration. Here, we perform direct electrical recordings from human dendrites and report enhanced electrical compartmentalization in layer 5 pyramidal neurons. Compared to rat dendrites, distal human dendrites provide limited excitation to the soma, even in the presence of dendritic spikes. Human somas also exhibit less bursting due to reduced recruitment of dendritic electrogenesis. Finally, we find that decreased ion channel densities result in higher input resistance and underlie the lower coupling of human dendrites. We conclude that the increased length of human neurons alters their input-output properties, which will impact cortical computation. VIDEO ABSTRACT.
Asunto(s)
Dendritas/fisiología , Células Piramidales/fisiología , Potenciales de Acción , Adulto , Animales , Femenino , Humanos , Canales Iónicos/metabolismo , Masculino , Células Piramidales/citología , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Potenciales SinápticosRESUMEN
Vision influences behavior, but ongoing behavior also modulates vision in animals ranging from insects to primates. The function and biophysical mechanisms of most such modulations remain unresolved. Here, we combine behavioral genetics, electrophysiology, and high-speed videography to advance a function for behavioral modulations of visual processing in Drosophila. We argue that a set of motion-sensitive visual neurons regulate gaze-stabilizing head movements. We describe how, during flight turns, Drosophila perform a set of head movements that require silencing their gaze-stability reflexes along the primary rotation axis of the turn. Consistent with this behavioral requirement, we find pervasive motor-related inputs to the visual neurons, which quantitatively silence their predicted visual responses to rotations around the relevant axis while preserving sensitivity around other axes. This work proposes a function for a behavioral modulation of visual processing and illustrates how the brain can remove one sensory signal from a circuit carrying multiple related signals.
Asunto(s)
Drosophila melanogaster/fisiología , Vías Visuales , Animales , Drosophila melanogaster/citología , Vuelo Animal , Movimientos de la Cabeza , Neuronas/citología , Flujo Optico , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/metabolismoRESUMEN
Recent studies of bacterial DNA replication have led to a picture of the replisome as an entity that freely exchanges DNA polymerases and displays intermittent coupling between the helicase and polymerase(s). Challenging the textbook model of the polymerase holoenzyme acting as a stable complex coordinating the replisome, these observations suggest a role of the helicase as the central organizing hub. We show here that the molecular origin of this newly found plasticity lies in the 500-fold increase in strength of the interaction between the polymerase holoenzyme and the replicative helicase upon association of the primase with the replisome. By combining in vitro ensemble-averaged and single-molecule assays, we demonstrate that this conformational switch operates during replication and promotes recruitment of multiple holoenzymes at the fork. Our observations provide a molecular mechanism for polymerase exchange and offer a revised model for the replication reaction that emphasizes its stochasticity.
Asunto(s)
ADN Primasa/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , AdnB Helicasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Holoenzimas/química , ADN Primasa/genética , ADN Bacteriano , ADN Polimerasa Dirigida por ADN/genética , AdnB Helicasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Holoenzimas/genética , Holoenzimas/metabolismo , Conformación Molecular , Unión Proteica , Conformación ProteicaRESUMEN
Apicomplexan parasites discharge specialized organelles called rhoptries upon host cell contact to mediate invasion. The events that drive rhoptry discharge are poorly understood, yet essential to sustain the apicomplexan parasitic life cycle. Rhoptry discharge appears to depend on proteins secreted from another set of organelles called micronemes, which vary in function from allowing host cell binding to facilitation of gliding motility. Here we examine the function of the microneme protein CLAMP, which we previously found to be necessary for Toxoplasma gondii host cell invasion, and demonstrate its essential role in rhoptry discharge. CLAMP forms a distinct complex with two other microneme proteins, the invasion-associated SPATR, and a previously uncharacterized protein we name CLAMP-linked invasion protein (CLIP). CLAMP deficiency does not impact parasite adhesion or microneme protein secretion; however, knockdown of any member of the CLAMP complex affects rhoptry discharge. Phylogenetic analysis suggests orthologs of the essential complex components, CLAMP and CLIP, are ubiquitous across apicomplexans. SPATR appears to act as an accessory factor in Toxoplasma, but despite incomplete conservation is also essential for invasion during Plasmodium falciparum blood stages. Together, our results reveal a new protein complex that mediates rhoptry discharge following host-cell contact.
Asunto(s)
Toxoplasma , Toxoplasma/metabolismo , Micronema , Proteínas Protozoarias/metabolismo , Filogenia , Orgánulos/metabolismoRESUMEN
Cys-loop receptors are a large superfamily of pentameric ligand-gated ion channels with various physiological roles, especially in neurotransmission in the central nervous system. Among them, zinc-activated channel (ZAC) is a Zn2+-activated ion channel that is widely expressed in the human body and is conserved among eukaryotes. Due to its gating by extracellular Zn2+, ZAC has been considered a Zn2+ sensor, but it has undergone minimal structural and functional characterization since its molecular cloning. Among the families in the Cys-loop receptor superfamily, only the structure of ZAC has yet to be determined. Here, we determined the cryo-EM structure of ZAC in the apo state and performed structure-based mutation analyses. We identified a few residues in the extracellular domain whose mutations had a mild impact on Zn2+ sensitivity. The constriction site in the ion-conducting pore differs from the one in other Cys-loop receptor structures, and further mutational analysis identified a key residue that is important for ion selectivity. In summary, our work provides a structural framework for understanding the ion-conducting mechanism of ZAC.
Asunto(s)
Microscopía por Crioelectrón , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando , Zinc , Zinc/metabolismo , Humanos , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/química , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/genética , Modelos Moleculares , Mutación , Conformación Proteica , Activación del Canal IónicoRESUMEN
The DNA sliding clamp PCNA is a multipurpose platform for DNA polymerases and many other proteins involved in DNA metabolism. The topologically closed PCNA ring needs to be cracked open and loaded onto DNA by a clamp loader, e.g., the well-studied pentameric ATPase complex RFC (RFC1-5). The CTF18-RFC complex is an alternative clamp loader found recently to bind the leading strand DNA polymerase ε and load PCNA onto leading strand DNA, but its structure and the loading mechanism have been unknown. By cryo-EM analysis of in vitro assembled human CTF18-RFC-DNA-PCNA complex, we have captured seven loading intermediates, revealing a detailed PCNA loading mechanism onto a 3'-ss/dsDNA junction by CTF18-RFC. Interestingly, the alternative loader has evolved a highly mobile CTF18 AAA+ module likely to lower the loading activity, perhaps to avoid competition with the RFC and to limit its role to leading strand clamp loading. To compensate for the lost stability due to the mobile AAA+ module, CTF18 has evolved a unique ß-hairpin motif that reaches across RFC2 to interact with RFC5, thereby stabilizing the pentameric complex. Further, we found that CTF18 also contains a separation pin to locally melt DNA from the 3'-end of the primer; this ensures its ability to load PCNA to any 3'-ss/dsDNA junction, facilitated by the binding energy of the E-plug to the major groove. Our study reveals unique structural features of the human CTF18-RFC and contributes to a broader understanding of PCNA loading by the alternative clamp loaders.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Microscopía por Crioelectrón , Proteínas Nucleares , Antígeno Nuclear de Célula en Proliferación , Proteína de Replicación C , Humanos , Microscopía por Crioelectrón/métodos , ADN/metabolismo , ADN/química , Replicación del ADN , Modelos Moleculares , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Unión Proteica , Proteína de Replicación C/metabolismo , Proteína de Replicación C/químicaRESUMEN
Clearance of serotonin (5-hydroxytryptamine, 5-HT) from the synaptic cleft after neuronal signaling is mediated by serotonin transporter (SERT), which couples this process to the movement of a Na+ ion down its chemical gradient. After release of 5-HT and Na+ into the cytoplasm, the transporter faces a rate-limiting challenge of resetting its conformation to be primed again for 5-HT and Na+ binding. Early studies of vesicles containing native SERT revealed that K+ gradients can provide an additional driving force, via K+ antiport. Moreover, under appropriate conditions, a H+ ion can replace K+. Intracellular K+ accelerates the resetting step. Structural studies of SERT have identified two binding sites for Na+ ions, but the K+ site remains enigmatic. Here, we show that K+ antiport can drive substrate accumulation into vesicles containing SERT extracted from a heterologous expression system, allowing us to study the residues responsible for K+ binding. To identify candidate binding residues, we examine many cation binding configurations using molecular dynamics simulations, predicting that K+ binds to the so-called Na2 site. Site-directed mutagenesis of residues in this site can eliminate the ability of both K+ and H+ to drive 5-HT accumulation into vesicles and, in patch clamp recordings, prevent the acceleration of turnover rates and the formation of a channel-like state by K+ or H+. In conclusion, the Na2 site plays a pivotal role in orchestrating the sequential binding of Na+ and then K+ (or H+) ions to facilitate 5-HT uptake in SERT.
Asunto(s)
Simulación de Dinámica Molecular , Potasio , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Sodio , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Potasio/metabolismo , Sitios de Unión , Humanos , Sodio/metabolismo , Serotonina/metabolismo , Unión Proteica , AnimalesRESUMEN
Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives.
Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Fidaxomicina/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Diseño de Fármacos , Farmacorresistencia Bacteriana/genética , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/ultraestructura , Fidaxomicina/química , Fidaxomicina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Mutación , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestructura , Unión Proteica , Conformación Proteica , Imagen Individual de Molécula , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Relación Estructura-ActividadRESUMEN
Two-pore channels (TPCs) are activated by phosphatidylinositol bisphosphate (PIP2) binding to domain I and/or by voltage sensing in domain II (DII). Little is known about how these two stimuli are integrated, and how each TPC subtype achieves its unique preference. Here, we show that distinct conformations of DII-S4 in the voltage-sensor domain determine the two gating modes. DII-S4 adopts an intermediate conformation, and forced stabilization in this conformation was found to result in a high PIP2-dependence in primarily voltage-dependent TPC3. In TPC2, which is PIP2-gated and nonvoltage-dependent, a stabilized intermediate conformation does not affect the PIP2-gated currents. These results indicate that the intermediate state represents the PIP2-gating mode, which is distinct from the voltage-gating mode in TPCs. We also found in TPC2 that the tricyclic antidepressant desipramine induces DII-S4-based voltage dependence and that naringenin, a flavonoid, biases the mode preference from PIP2-gating to desipramine-induced voltage gating. Taken together, our study on TPCs revealed an unprecedented mode-switching mechanism involving conformational changes in DII-S4, and its active role in integrating voltage and PIP2 stimuli.
Asunto(s)
Desipramina , Activación del Canal Iónico , Estructura Terciaria de Proteína , Fosfatos de Fosfatidilinositol/metabolismoRESUMEN
TRAAK channels are mechano-gated two-pore-domain K+ channels. Up to now, activity of these channels has been reported in neurons but not in skeletal muscle, yet an archetype of tissue challenged by mechanical stress. Using patch clamp methods on isolated skeletal muscle fibers from adult zebrafish, we show here that single channels sharing properties of TRAAK channels, i.e., selective to K+ ions, of 56 pS unitary conductance in the presence of 5 mM external K+, activated by membrane stretch, heat, arachidonic acid, and internal alkaline pH, are present in enzymatically isolated fast skeletal muscle fibers from adult zebrafish. The kcnk4b transcript encoding for TRAAK channels was cloned and found, concomitantly with activity of mechano-gated K+ channels, to be absent in zebrafish fast skeletal muscles at the larval stage but arising around 1 mo of age. The transfer of the kcnk4b gene in HEK cells and in the adult mouse muscle, that do not express functional TRAAK channels, led to expression and activity of mechano-gated K+ channels displaying properties comparable to native zebrafish TRAAK channels. In whole-cell voltage-clamp and current-clamp conditions, membrane stretch and heat led to activation of macroscopic K+ currents and to acceleration of the repolarization phase of action potentials respectively, suggesting that heat production and membrane deformation associated with skeletal muscle activity can control muscle excitability through TRAAK channel activation. TRAAK channels may represent a teleost-specific evolutionary product contributing to improve swimming performance for escaping predators and capturing prey at a critical stage of development.
Asunto(s)
Calor , Pez Cebra , Animales , Ratones , Chlorocebus aethiops , Pez Cebra/genética , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético , Células COSRESUMEN
Gonadotropin-releasing hormone (GnRH)-synthesizing neurons orchestrate reproduction centrally. Early studies have proposed the contribution of acetylcholine (ACh) to hypothalamic control of reproduction, although the causal mechanisms have not been clarified. Here, we report that in vivo pharmacogenetic activation of the cholinergic system increased the secretion of luteinizing hormone (LH) in orchidectomized mice. 3DISCO immunocytochemistry and electron microscopy revealed the innervation of GnRH neurons by cholinergic axons. Retrograde viral labeling initiated from GnRH-Cre neurons identified the medial septum and the diagonal band of Broca as exclusive sites of origin for cholinergic afferents of GnRH neurons. In acute brain slices, ACh and carbachol evoked a biphasic effect on the firing rate in GnRH neurons, first increasing and then diminishing it. In the presence of tetrodotoxin, carbachol induced an inward current, followed by a decline in the frequency of miniature postsynaptic currents (mPSCs), indicating a direct influence on GnRH cells. RT-PCR and whole-cell patch-clamp studies revealed that GnRH neurons expressed both nicotinic (α4ß2, α3ß4, and α7) and muscarinic (M1-M5) AChRs. The nicotinic AChRs contributed to the nicotine-elicited inward current and the rise in firing rate. Muscarine via M1 and M3 receptors increased, while via M2 and M4 reduced the frequency of both mPSCs and firing. Optogenetic activation of channelrhodopsin-2-tagged cholinergic axons modified GnRH neuronal activity and evoked cotransmission of ACh and GABA from a subpopulation of boutons. These findings confirm that the central cholinergic system regulates GnRH neurons and activates the pituitary-gonadal axis via ACh and ACh/GABA neurotransmissions in male mice.
Asunto(s)
Acetilcolina , Hormona Liberadora de Gonadotropina , Ratones , Animales , Masculino , Acetilcolina/farmacología , Carbacol/farmacología , Neuronas/fisiología , Colinérgicos/farmacología , Nicotina/farmacología , Hormona Luteinizante , Ácido gamma-Aminobutírico/farmacologíaRESUMEN
The resurgent sodium current (INaR) activates on membrane repolarization, such as during the downstroke of neuronal action potentials. Due to its unique activation properties, INaR is thought to drive high rates of repetitive neuronal firing. However, INaR is often studied in combination with the persistent or noninactivating portion of sodium currents (INaP). We used dynamic clamp to test how INaR and INaP individually affect repetitive firing in adult cerebellar Purkinje neurons from male and female mice. We learned INaR does not scale repetitive firing rates due to its rapid decay at subthreshold voltages and that subthreshold INaP is critical in regulating neuronal firing rate. Adjustments to the voltage-gated sodium conductance model used in these studies revealed INaP and INaR can be inversely scaled by adjusting occupancy in the slow-inactivated kinetic state. Together with additional dynamic clamp experiments, these data suggest the regulation of sodium channel slow inactivation can fine-tune INaP and Purkinje neuron repetitive firing rates.
Asunto(s)
Potenciales de Acción , Células de Purkinje , Canales de Sodio , Animales , Ratones , Femenino , Masculino , Potenciales de Acción/fisiología , Células de Purkinje/fisiología , Canales de Sodio/fisiología , Canales de Sodio/metabolismo , Sodio/metabolismo , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Modelos NeurológicosRESUMEN
Recent work demonstrated that activation of spinal D1 and D5 dopamine receptors (D1/D5Rs) facilitates non-Hebbian long-term potentiation (LTP) at primary afferent synapses onto spinal projection neurons. However, the cellular localization of the D1/D5Rs driving non-Hebbian LTP in spinal nociceptive circuits remains unknown, and it is also unclear whether D1/D5R signaling must occur concurrently with sensory input in order to promote non-Hebbian LTP at these synapses. Here we investigate these issues using cell-type-selective knockdown of D1Rs or D5Rs from lamina I spinoparabrachial neurons, dorsal root ganglion (DRG) neurons, or astrocytes in adult mice of either sex using Cre recombinase-based genetic strategies. The LTP evoked by low-frequency stimulation of primary afferents in the presence of the selective D1/D5R agonist SKF82958 persisted following the knockdown of D1R or D5R in spinoparabrachial neurons, suggesting that postsynaptic D1/D5R signaling was dispensable for non-Hebbian plasticity at sensory synapses onto these key output neurons of the superficial dorsal horn (SDH). Similarly, the knockdown of D1Rs or D5Rs in DRG neurons failed to influence SKF82958-enabled LTP in lamina I projection neurons. In contrast, SKF82958-induced LTP was suppressed by the knockdown of D1R or D5R in spinal astrocytes. Furthermore, the data indicate that the activation of D1R/D5Rs in spinal astrocytes can either retroactively or proactively drive non-Hebbian LTP in spinoparabrachial neurons. Collectively, these results suggest that dopaminergic signaling in astrocytes can strongly promote activity-dependent LTP in the SDH, which is predicted to significantly enhance the amplification of ascending nociceptive transmission from the spinal cord to the brain.
Asunto(s)
Astrocitos , Potenciación a Largo Plazo , Receptores de Dopamina D1 , Receptores de Dopamina D5 , Sinapsis , Animales , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/genética , Potenciación a Largo Plazo/fisiología , Astrocitos/metabolismo , Astrocitos/fisiología , Ratones , Masculino , Receptores de Dopamina D5/metabolismo , Receptores de Dopamina D5/agonistas , Receptores de Dopamina D5/genética , Femenino , Sinapsis/fisiología , Sinapsis/metabolismo , Ganglios Espinales/citología , Asta Dorsal de la Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/citología , Ratones Transgénicos , Ratones Endogámicos C57BLRESUMEN
The superior colliculus (SC) is a prominent and conserved visual center in all vertebrates. In mice, the most superficial lamina of the SC is enriched with neurons that are selective for the moving direction of visual stimuli. Here, we study how these direction selective neurons respond to complex motion patterns known as plaids, using two-photon calcium imaging in awake male and female mice. The plaid pattern consists of two superimposed sinusoidal gratings moving in different directions, giving an apparent pattern direction that lies between the directions of the two component gratings. Most direction selective neurons in the mouse SC respond robustly to the plaids and show a high selectivity for the moving direction of the plaid pattern but not of its components. Pattern motion selectivity is seen in both excitatory and inhibitory SC neurons and is especially prevalent in response to plaids with large cross angles between the two component gratings. However, retinal inputs to the SC are ambiguous in their selectivity to pattern versus component motion. Modeling suggests that pattern motion selectivity in the SC can arise from a nonlinear transformation of converging retinal inputs. In contrast, the prevalence of pattern motion selective neurons is not seen in the primary visual cortex (V1). These results demonstrate an interesting difference between the SC and V1 in motion processing and reveal the SC as an important site for encoding pattern motion.
Asunto(s)
Ratones Endogámicos C57BL , Percepción de Movimiento , Estimulación Luminosa , Retina , Colículos Superiores , Vías Visuales , Animales , Colículos Superiores/fisiología , Percepción de Movimiento/fisiología , Ratones , Masculino , Femenino , Retina/fisiología , Estimulación Luminosa/métodos , Vías Visuales/fisiología , Neuronas/fisiología , Reconocimiento Visual de Modelos/fisiologíaRESUMEN
Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader replication factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the Escherichia coli clamp loader at high resolution using cryo-electron microscopy. We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how the clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.
Asunto(s)
Replicación del ADN , Escherichia coli , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Conformación Proteica , Proteína de Replicación C/metabolismo , Proteína de Replicación C/química , Proteína de Replicación C/genética , Modelos Moleculares , Estructura Cuaternaria de ProteínaRESUMEN
Proliferating cell nuclear antigen (PCNA) is a homo-trimeric clamp complex that serves as the molecular hub for various DNA transactions, including DNA synthesis and post-replicative mismatch repair. Its timely loading and unloading are critical for genome stability. PCNA loading is catalyzed by Replication factor C (RFC) and the Ctf18 RFC-like complex (Ctf18-RLC), and its unloading is catalyzed by Atad5/Elg1-RLC. However, RFC, Ctf18-RLC, and even some subcomplexes of their shared subunits are capable of unloading PCNA in vitro, leaving an ambiguity in the division of labor in eukaryotic clamp dynamics. By using a system that specifically detects PCNA unloading, we show here that Atad5-RLC, which accounts for only approximately 3% of RFC/RLCs, nevertheless provides the major PCNA unloading activity in Xenopus egg extracts. RFC and Ctf18-RLC each account for approximately 40% of RFC/RLCs, while immunodepletion of neither Rfc1 nor Ctf18 detectably affects the rate of PCNA unloading in our system. PCNA unloading is dependent on the ATP-binding motif of Atad5, independent of nicks on DNA and chromatin assembly, and inhibited effectively by PCNA-interacting peptides. These results support a model in which Atad5-RLC preferentially unloads DNA-bound PCNA molecules that are free from their interactors.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de Unión al ADN , Antígeno Nuclear de Célula en Proliferación , Animales , ADN , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Xenopus laevis/metabolismo , Oocitos , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismoRESUMEN
Mechanically activated Piezo1 channels undergo transitions from closed to open-state in response to pressure and other mechanical stimuli. However, the molecular details of these mechanosensitive gating transitions are unknown. Here, we used cell-attached pressure-clamp recordings to acquire single channel data at steady-state conditions (where inactivation has settled down), at various pressures and voltages. Importantly, we identify and analyze subconductance states of the channel which were not reported before. Pressure-dependent activation of Piezo1 increases the occupancy of open and subconductance state at the expense of decreased occupancy of shut-states. No significant change in the mean open time of subconductance states was observed with increasing negative pipette pressure or with varying voltages (ranging from -40 to -100 mV). Using Markov-chain modeling, we identified a minimal four-states kinetic scheme, which recapitulates essential characteristics of the single channel data, including that of the subconductance level. This study advances our understanding of Piezo1-gating mechanism in response to discrete stimuli (such as pressure and voltage) and paves the path to develop cellular and tissue level models to predict Piezo1 function in various cell types.