Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(7): e2201946119, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745797

RESUMEN

Plants will experience considerable changes in climate within their geographic ranges over the next several decades. They may respond by exhibiting niche flexibility and adapting to changing climates. Alternatively, plant taxa may exhibit climate fidelity, shifting their geographic distributions to track their preferred climates. Here, we examine the responses of plant taxa to changing climates over the past 18,000 y to evaluate the extent to which the 16 dominant plant taxa of North America have exhibited climate fidelity. We find that 75% of plant taxa consistently exhibit climate fidelity over the past 18,000 y, even during the times of most extreme climate change. Of the four taxa that do not consistently exhibit climate fidelity, three-elm (Ulmus), beech (Fagus), and ash (Fraxinus)-experience a long-term shift in their realized climatic niche between the early Holocene and present day. Plant taxa that migrate longer distances better maintain consistent climatic niches across transition periods during times of the most extreme climate change. Today, plant communities with the highest climate fidelity are found in regions with high topographic and microclimate heterogeneity that are expected to exhibit high climate resilience, allowing plants to shift distributions locally and adjust to some amount of climate change. However, once the climate change buffering of the region is exceeded, these plant communities will need to track climates across broader landscapes but be challenged to do so because of the low habitat connectivity of the regions.


Asunto(s)
Cambio Climático , Plantas , Ecosistema , América del Norte , Microclima
2.
New Phytol ; 242(2): 774-785, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38389217

RESUMEN

C4 photosynthesis is a key innovation in land plant evolution, but its immediate effects on population demography are unclear. We explore the early impact of the C4 trait on the trajectories of C4 and non-C4 populations of the grass Alloteropsis semialata. We combine niche models projected into paleoclimate layers for the last 5 million years with demographic models based on genomic data. The initial split between C4 and non-C4 populations was followed by a larger expansion of the ancestral C4 population, and further diversification led to the unparalleled expansion of descendant C4 populations. Overall, C4 populations spread over three continents and achieved the highest population growth, in agreement with a broader climatic niche that rendered a large potential range over time. The C4 populations that remained in the region of origin, however, experienced lower population growth, rather consistent with local geographic constraints. Moreover, the posterior transfer of some C4-related characters to non-C4 counterparts might have facilitated the recent expansion of non-C4 populations in the region of origin. Altogether, our findings support that C4 photosynthesis provided an immediate demographic advantage to A. semialata populations, but its effect might be masked by geographic contingencies.


Asunto(s)
Fotosíntesis , Poaceae , Poaceae/genética , Fenotipo , Demografía
3.
New Phytol ; 244(4): 1616-1628, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39253771

RESUMEN

Early studies of the textbook mixed-ploidy system Biscutella laevigata highlighted diploids restricted to never-glaciated lowlands and tetraploids at high elevations across the European Alps, promoting the hypothesis that whole-genome duplication (WGD) is advantageous under environmental changes. Here we addressed long-held hypotheses on the role of hybridisation at the origin of the tetraploids, their single vs multiple origins, and whether a shift in climatic niche accompanied WGD. Climatic niche modelling together with spatial genetics and coalescent modelling based on ddRAD-seq genotyping of 17 diploid and 19 tetraploid populations was used to revisit the evolution of this species complex in space and time. Diploids differentiated into four genetic lineages corresponding to allopatric glacial refugia at the onset of the last ice age, whereas tetraploids displaying tetrasomic inheritance formed a uniform group that originated from southern diploids before the last glacial maximum. Derived from diploids occurring at high elevation, autotetraploids likely inherited their adaptation to high elevation rather than having evolved it through or after WGD. They further presented considerable postglacial expansion across the Alps and underwent admixture with diploids. Although the underpinnings of the successful expansion of autotetraploids remain elusive, differentiation in B. laevigata was chiefly driven by the glacial history of the Alps.


Asunto(s)
Diploidia , Ecosistema , Cubierta de Hielo , Tetraploidía , Brassicaceae/genética , Filogenia
4.
New Phytol ; 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39439296

RESUMEN

Numerous plant species are expanding their native ranges due to anthropogenic environmental change. Because cytotypes of polyploid complexes often show similar morphologies, there may be unnoticed range expansions (i.e. cryptic invasions) of one cytotype into regions where only the other cytotype is native. We critically revised herbarium specimens of diploid and tetraploid Centaurea stoebe, collected across Europe between 1790 and 2023. Based on their distribution in natural and relict habitats and phylogeographic data, we estimated the native ranges of both cytotypes. Diploids are native across their entire European range, whereas tetraploids are native only to South-Eastern Europe and have recently expanded their range toward Central Europe. The proportion of tetraploids has exponentially increased over time in their expanded but not in their native range. This cryptic invasion predominantly occurred in ruderal habitats and enlarged the climatic niche of tetraploids toward a more oceanic climate. We conclude that spatio-temporally explicit assessments of range shifts, habitat preferences and niche evolution can improve our understanding of cryptic invasions. We also emphasize the value of herbarium specimens for accurate estimation of species´ native ranges, with fundamental implications for the design of research studies and the assessment of biodiversity trends.

5.
J Exp Bot ; 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39412844

RESUMEN

The succulent plant syndrome is defined by the coordination of traits that enhance internal water storage within plant tissues. Although distributed globally in different habitats, succulent plants are thought to have evolved to avoid drought in arid regions, due to trait modifications that decrease tissue water deficits. We evaluated the evolution and the ecological significance of the succulent strategy at a global scale by comparing the climatic niche of species displaying succulence within the Core Caryophyllales with their non-succulent relatives. We assembled and curated a worldwide dataset of 201K georeferenced records belonging to 5447 species within 28 families, and analyzed the climatic niche of species along with their origin and evolutionary trajectories using ecological niche modeling, phylogenetic regression, divergence dates and ancestral state estimation. Results indicate the Core Caryophyllales have inhabited drylands since their origin in the Early Cretaceous. However, the succulent syndrome appeared and diversified during later geologic periods. The climatic niche space of succulents is narrower than non-succulent relatives, but no climate niche separation was detected between groups. Our results support alternative interpretations on the environmental and ecological forces that spurred the origin and diversification of the succulent plant syndrome and the radiation of rich succulent lineages.

6.
Am J Bot ; : e16426, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39449637

RESUMEN

PREMISE: The ecological conditions that constrain plants to an environmental niche are assumed to be constant through time. While the fossil record has been used previously to test for niche conservatism of woody flowering plants, additional studies are needed in other plant groups especially since they can provide insight with paleoclimatic reconstructions, high biodiversity in modern terrestrial ecosystems, and significant contributions to agriculture. METHODS: We tested climatic niche conservatism across time by characterizing the climatic niches of living herbaceous ginger plants (Zingiberaceae) and woody dawn redwood (Metasequoia) against paleoniches reconstructed based on fossil distribution data and paleoclimatic models. RESULTS: Despite few fossil Zingiberaceae occurrences in the latitudinal tropics, unlike living Zingiberaceae, extinct Zingiberaceae likely experienced paratropical conditions in the higher latitudes, especially in the Cretaceous and Paleogene. The living and fossil distributions of Metasequoia largely remain in the upper latitudes of the northern hemisphere. The Zingiberaceae shifted from an initial subtropical climatic paleoniche in the Cretaceous, toward a temperate regime in the late Cenozoic; Metasequoia occupied a more consistent climatic niche over the same time intervals. CONCLUSIONS: Because of the inconsistent climatic niches of Zingiberaceae over geologic time, we are less confident of using them for taxonomic-based paleoclimatic reconstruction methods like nearest living relative, which assume a consistent climatic niche between extant and extinct relatives; we argue that the consistent climatic niche of Metasequoia is more appropriate for these reconstructions. Niche conservatism cannot be assumed between extant and extinct plants and should be tested further in groups used for paleoclimatic reconstructions.

7.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33397717

RESUMEN

Cities and agricultural fields encroach on the most fertile, habitable terrestrial landscapes, fundamentally altering global ecosystems. Today, 75% of terrestrial ecosystems are considerably altered by human activities, and landscape transformation continues to accelerate. Human impacts are one of the major drivers of the current biodiversity crisis, and they have had unprecedented consequences on ecosystem function and rates of species extinctions for thousands of years. Here we use the fossil record to investigate whether changes in geographic range that could result from human impacts have altered the climatic niches of 46 species covering six mammal orders within the contiguous United States. Sixty-seven percent of the studied mammals have significantly different climatic niches today than they did before the onset of the Industrial Revolution. Niches changed the most in the portions of the range that overlap with human-impacted landscapes. Whether by forcible elimination/introduction or more indirect means, large-bodied dietary specialists have been extirpated from climatic envelopes that characterize human-impacted areas, whereas smaller, generalist mammals have been facilitated, colonizing these same areas of the climatic space. Importantly, the climates where we find mammals today do not necessarily represent their past habitats. Without mitigation, as we move further into the Anthropocene, we can anticipate a low standing biodiversity dominated by small, generalist mammals.


Asunto(s)
Agricultura , Distribución Animal , Clima , Fósiles , Mamíferos , Urbanización , Animales , Tamaño Corporal , Conservación de los Recursos Naturales , Dieta , Ecosistema , Humanos , Factores de Tiempo , Estados Unidos
8.
Ecol Lett ; 26(6): 843-857, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929564

RESUMEN

Understanding the mechanisms underlying species distributions and coexistence is both a priority and a challenge for biodiversity hotspots such as the Neotropics. Here, we highlight that Müllerian mimicry, where defended prey species display similar warning signals, is key to the maintenance of biodiversity in the c. 400 species of the Neotropical butterfly tribe Ithomiini (Nymphalidae: Danainae). We show that mimicry drives large-scale spatial association among phenotypically similar species, providing new empirical evidence for the validity of Müller's model at a macroecological scale. Additionally, we show that mimetic interactions drive the evolutionary convergence of species climatic niche, thereby strengthening the co-occurrence of co-mimetic species. This study provides new insights into the importance of mutualistic interactions in shaping both niche evolution and species assemblages at large spatial scales. Critically, in the context of climate change, our results highlight the vulnerability to extinction cascades of such adaptively assembled communities tied by positive interactions.


Asunto(s)
Mimetismo Biológico , Mariposas Diurnas , Animales , Biodiversidad , Simbiosis
9.
New Phytol ; 240(4): 1587-1600, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37194450

RESUMEN

The evolution of annual or perennial strategies in flowering plants likely depends on a broad array of temperature and precipitation variables. Previous documented climate life-history correlations in explicit phylogenetic frameworks have been limited to certain clades and geographic regions. To gain insights which generalize to multiple lineages we employ a multi-clade approach analyzing 32 groups of angiosperms across eight climatic variables. We utilize a recently developed method that accounts for the joint evolution of continuous and discrete traits to evaluate two hypotheses: annuals tend to evolve in highly seasonal regions prone to extreme heat and drought; and annuals tend to have faster rates of climatic niche evolution than perennials. We find that temperature, particularly highest temperature of the warmest month, is the most consistent climatic factor influencing the evolution of annual strategy in flowering plants. Unexpectedly, we do not find significant differences in rates of climatic niche evolution between perennial and annual lineages. We propose that annuals are consistently favored in areas prone to extreme heat due to their ability to escape heat stress as seeds, but they tend to be outcompeted by perennials in regions where extreme heat is uncommon or nonexistent.


Asunto(s)
Magnoliopsida , Filogenia , Magnoliopsida/genética , Temperatura , Evolución Biológica
10.
Glob Chang Biol ; 29(3): 618-630, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36260367

RESUMEN

Climate change may be a major threat to global biodiversity, especially to tropical species. Yet, why tropical species are more vulnerable to climate change remains unclear. Tropical species are thought to have narrower physiological tolerances to temperature, and they have already experienced a higher estimated frequency of climate-related local extinctions. These two patterns suggest that tropical species are more vulnerable to climate change because they have narrower thermal niche widths. However, no studies have tested whether species with narrower climatic niche widths for temperature have experienced more local extinctions, and if these narrower niche widths can explain the higher frequency of tropical local extinctions. Here, we test these ideas using resurvey data from 538 plant and animal species from 10 studies. We found that mean niche widths among species and the extent of climate change (increase in maximum annual temperatures) together explained most variation (>75%) in the frequency of local extinction among studies. Surprisingly, neither latitude nor occurrence in the tropics alone significantly predicted local extinction among studies, but latitude and niche widths were strongly inversely related. Niche width also significantly predicted local extinction among species, as well as among and (sometimes) within studies. Overall, niche width may offer a relatively simple and accessible predictor of the vulnerability of populations to climate change. Intriguingly, niche width has the best predictive power to explain extinction from global warming when it incorporates coldest yearly temperatures.


Asunto(s)
Biodiversidad , Cambio Climático , Animales , Calentamiento Global , Temperatura , Frío , Ecosistema , Clima Tropical , Extinción Biológica
11.
Oecologia ; 201(2): 421-434, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36738314

RESUMEN

Species distribution models are the most widely used tool to predict species distributions for species conservation and assessment of climate change impact. However, they usually do not consider intraspecific ecological variation exhibited by many species. Overlooking the potential differentiation among groups of populations may lead to misplacing any conservation actions. This issue may be particularly relevant in species in which few populations with potential local adaptation occur, as in species with disjunct populations. Here, we used ecological niche modeling to analyze how the projections of current and future climatically suitable areas of 12 plant species can be affected using the whole taxa occurrences compared to occurrences from geographically disjunct populations. Niche analyses suggest that usually the disjunct group of populations selects the climatic conditions as similar as possible to the other according to climate availability. Integrating intraspecific variability only slightly increases models' ability to predict species occurrences. However, it results in different predictions of the magnitude of range change. In some species, integrating or not integrating intraspecific variability may lead to opposite trend in projected range change. Our results suggest that integrating intraspecific variability does not strongly improve overall models' accuracy, but it can result in considerably different conclusions about future range change. Consequently, accounting for intraspecific differentiation may enable the detection of potential local adaptations to new climate and so to design targeted conservation strategies.


Asunto(s)
Cambio Climático , Ecosistema , Adaptación Fisiológica , Aclimatación , Plantas
12.
Am Nat ; 199(2): E57-E75, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35077279

RESUMEN

AbstractSpecies vary extensively in geographic range size and climatic niche breadth. If range limits are primarily determined by climatic factors, species with broad climatic tolerances and those that track geographically widespread climates should have large ranges. However, large ranges might increase the probability of population fragmentation and adaptive divergence, potentially decoupling climatic niche breadth and range size. Conversely, ecological generalism in large-ranged species might lead to higher gene flow across climatic transitions, increasing species' cohesion and thus decreasing genetic isolation by distance (IBD). Focusing on Australia's iconic Ctenotus lizard radiation, we ask whether species range size scales with climatic niche breadth and the degree of population isolation. To this end, we infer independently evolving operational taxonomic units (OTUs), their geographic and climatic ranges, and the strength of IBD within OTUs based on genome-wide loci from 722 individuals spanning 75 taxa. Large-ranged OTUs were common and had broader climatic niches than small-ranged OTUs; thus, large ranges do not appear to simply result from passive tracking of widespread climatic zones. OTUs with larger ranges and broader climatic niches showed relatively weaker IBD, suggesting that large-ranged species might possess intrinsic attributes that facilitate genetic cohesion across large distances and varied climates. By influencing population divergence and persistence, traits that affect species cohesion may play a central role in large-scale patterns of diversification and species richness.


Asunto(s)
Lagartos , Animales , Australia , Ecosistema , Flujo Génico , Humanos , Lagartos/genética , Filogenia
13.
Proc Biol Sci ; 289(1983): 20221542, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36168758

RESUMEN

Over the course of history, humans have moved crops from their regions of origin to new locations across the world. The social, cultural and economic drivers of these movements have generated differences not only between current distributions of crops and their climatic origins, but also between crop distributions and climate suitability for their production. Although these mismatches are particularly important to inform agricultural strategies on climate change adaptation, they have, to date, not been quantified consistently at the global level. Here, we show that the relationships between the distributions of 12 major food crops and climate suitability for their yields display strong variation globally. After investigating the role of biophysical, socio-economic and historical factors, we report that high-income world regions display a better match between crop distribution and climate suitability. In addition, although crops are farmed predominantly in the same climatic range as their wild progenitors, climate suitability is not necessarily higher there, a pattern that reflects the legacy of domestication history on current crop distribution. Our results reveal how far the global distribution of major crops diverges from their climatic optima and call for greater consideration of the multiple dimensions of the crop socio-ecological niche in climate change adaptive strategies.


Asunto(s)
Cambio Climático , Productos Agrícolas , Agricultura/métodos , Ecosistema , Granjas , Humanos
14.
Glob Chang Biol ; 28(8): 2830-2841, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35090075

RESUMEN

Bark beetle infestation is a major driver of tree mortality that may be critical for forest persistence under climate change and the forecasted increase of extreme heat and drought episodes. Under this context, the environmental position of host tree populations within the species' climatic niche (central vs. marginal populations) is expected to be a determinant in the dynamics of insect-host systems. Here, we analyzed the recent patterns of bark beetle disturbance and forest resistance across European coniferous forests during the 2010-2018 period. We obtained bark beetle attack and tree mortality data from successive continental-scale forest condition surveys on 130 plots including five host trees and five bark beetle species, and characterized the climatic niche of each species. Then, we analyzed the overall forest resistance and species-specific responses, in terms of bark beetle attack and induced tree mortality, in relation to the distance to the niche optimum of both host tree and beetle species, previous drought events, and plot characteristics. Regional patterns of recent disturbance revealed that forests in central, north, and east of Europe could be at risk under the attack of multivoltine bark beetle species. We found that overall forest resistance to beetle attack was determined by several driving factors, which varied among species responses. Particularly, the environmental position of the affected forest within the host and beetle species' climatic niche and plot characteristics mediated the influence of drought on the resistance to beetle attack. In turn, forest resistance to induced tree mortality was determined exclusively by the maximum intensity and duration of drought events. Our findings highlight the importance of disturbance interactions and suggest that the joint influence of drought events and bark beetle disturbance will threaten the persistence of European coniferous forests, even in those tree populations close to their species' climatic optimum.


Asunto(s)
Escarabajos , Tracheophyta , Animales , Escarabajos/fisiología , Cycadopsida , Bosques , Corteza de la Planta , Árboles
15.
Am J Bot ; 109(7): 1120-1138, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35709340

RESUMEN

PREMISE: Although vanilla is one of the best-known spices, there is only a limited understanding of its biology and genetics within Mexico, where its cultivation originated and where phenotypic variability is high. This study aims to augment our understanding of vanilla's genetic resources by assessing species delimitation and genetic, geographic, and climatic variability within Mexican cultivated vanilla. METHODS: Using nuclear and plastid DNA sequence data from 58 Mexican samples collected from three regions and 133 ex situ accessions, we assessed species monophyly using phylogenetic analyses and genetic distances. Intraspecific genetic variation was summarized through the identification of haplotypes. Within the primarily cultivated species, Vanilla planifolia, haplotype relationships were further verified using plastome and rRNA gene sequences. Climatic niche and haplotype composition were assessed across the landscape. RESULTS: Three species (Vanilla planifolia, V. pompona, and V. insignis) and 13 haplotypes were identified among Mexican vanilla. Within V. planifolia haplotypes, hard phylogenetic incongruences between plastid and nuclear sequences suggest past hybridization events. Eight haplotypes consisted exclusively of Mexican samples. The dominant V. planifolia haplotype occurred throughout all three regions as well as outside of its country of origin. Haplotype richness was found to be highest in regions around Papantla and Chinantla. CONCLUSIONS: Long histories of regional cultivation support the consideration of endemic haplotypes as landraces shaped by adaptation to local conditions and/or hybridization. Results may aid further genomic investigations of vanilla's genetic resources and ultimately support the preservation of genetic diversity within the economically important crop.


Asunto(s)
Vanilla , Variación Genética , Genómica , Haplotipos/genética , México , Filogenia , Vanilla/genética
16.
Ecol Lett ; 24(9): 1814-1823, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34145940

RESUMEN

Understanding the seasonal movements of migratory species underpins ecological studies. Several hundred butterfly species show migratory behaviour, yet the spatial pattern of these migrations is poorly understood. We developed climatic niche models for 405 migratory butterfly species globally to estimate patterns of seasonal movement and the distribution of seasonal habitat suitability. We found strong seasonal variation in habitat suitability for most migratory butterflies with >75% of pixels within their distributions showing seasonal switching in predicted occupancy for 85% of species. The greatest rate of seasonal switching occurred in the tropics. Several species showed extreme range fluctuations between seasons, exceeding 10-fold for 53 species (13%) and more than 100-fold for nine species (2%), suggesting that such species may be at elevated extinction risk. Our results can be used to search for the ecological processes that underpin migration in insects, as well as to design conservation interventions for declining migratory insects.


Asunto(s)
Mariposas Diurnas , Migración Animal , Animales , Clima , Ecosistema , Insectos , Estaciones del Año
17.
J Anim Ecol ; 90(2): 483-491, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33131068

RESUMEN

Globalization is removing dispersal barriers for the establishment of invasive species and enabling their spread to novel climates. New thermal environments in the invaded range will be particularly challenging for ectotherms, as their metabolism directly depends on environmental temperature. However, we know little about the role climatic niche shifts play in the invasion process, and the underlining physiological mechanisms. We tested if a thermal niche shift accompanies an invasion, and if native and introduced populations differ in their ability to acclimate thermal limits. We used an alien ant species-Tapinoma magnum-which recently started to spread across Europe. Using occurrence data and accompanying climatic variables, we measured the amount of overlap between thermal niches in the native and invaded range. We then experimentally tested the acclimation ability in native and introduced populations by incubating T. magnum at 18, 25 and 30°C. We measured upper and lower critical thermal limits after 7 and 21 days. We found that T. magnum occupies a distinct thermal niche in its introduced range, which is on average 3.5°C colder than its native range. Critical thermal minimum did not differ between populations from the two ranges when colonies were maintained at 25 or 30°C, but did differ after colony acclimation at a lower temperature. We found twofold greater acclimation ability of introduced populations to lower temperatures, after prolonged incubation at 18°C. Increased acclimation ability of lower thermal limits could explain the expansion of the realized thermal niche in the invaded range, and likely contributed to the spread of this species to cooler climates. Such thermal plasticity could be an important, yet so far understudied, factor underlying the expansion of invasive insects into novel climates.


Asunto(s)
Aclimatación , Hormigas , Animales , Europa (Continente) , Especies Introducidas , Temperatura
18.
Oecologia ; 195(1): 93-103, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33269409

RESUMEN

Geographical limits of species' distributions are assumed to be coincident with ecological margins, although this assumption might not always be true. Indeed, harsh environments such as Alpine and Mediterranean ecosystems may favour high phenotypic variability among populations, especially those in peripheral sites. Floral traits are often found to be less variable and less affected by environmental heterogeneity than vegetative traits because variation in the former may have negative effects on fitness. For this reason, it is important to quantify variation in floral traits and plant fecundity in study range limits. The objective of the study is to examine phenotypic variation and differences in reproduction in endemic Lilium pomponium in the Maritime and Ligurian Alps in relation to environmental variation across its distribution range. In this species, marginal climatic populations occur both in the peripheral and central geographical locations of the distribution range; hence, geographical and ecological gradients are not concordant. Floral trait variation is related to local environmental conditions with an array of interactions among resource availability, potential pollen limitation and population size that are differentially related to floral traits. Contrary to the general expectation, all central and peripheral populations had similar, moderate seed production with each group limited by different factors acting on different stages of the life-history strategy. Our results are in line with the idea that general expectations are confirmed only when its assumptions are met and that the differences in pollination environment along an environmental gradient may not be the main determinant of the distribution limit.


Asunto(s)
Lilium , Variación Biológica Poblacional , Ecosistema , Plantas , Polinización
19.
Ecol Lett ; 23(1): 68-78, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31637845

RESUMEN

Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.


Asunto(s)
Diploidia , Poliploidía , Ecosistema , Familia , Humanos , Plantas
20.
New Phytol ; 226(3): 727-740, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31981422

RESUMEN

Hydraulic failure explains much of the increased rates of drought-induced tree mortality around the world, underlining the importance of understanding how species distributions are shaped by their vulnerability to embolism. Here we determined which physiological traits explain species climatic limits among temperate rainforest trees in a region where chronic water limitation is uncommon. We quantified the variation in stem embolism vulnerability and leaf turgor loss point among 55 temperate rainforest tree species in New Zealand and tested which traits were most strongly related to species climatic limits. Leaf turgor loss point and stem P50 (tension at which hydraulic conductance is at 50% of maximum) were uncorrelated. Stem P50 and hydraulic safety margin were the most strongly related physiological traits to climatic limits among angiosperms, but not among conifers. Morphological traits such as wood density and leaf dry matter content did not explain species climatic limits. Stem embolism resistance and leaf turgor loss point appear to have evolved independently. Embolism resistance is the most useful predictor of the climatic limits of angiosperm trees. High embolism resistance in the curiously overbuilt New Zealand conifers suggests that their xylem properties may be more closely related to growing slowly under nutrient limitation and to resistance to microbial decomposition.


Asunto(s)
Embolia , Magnoliopsida , Tracheophyta , Sequías , Nueva Zelanda , Hojas de la Planta , Bosque Lluvioso , Árboles , Agua , Xilema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA