RESUMEN
Plant roots encounter numerous pathogenic microbes that often cause devastating diseases. One such pathogen, Plasmodiophora brassicae (Pb), causes clubroot disease and severe yield losses on cruciferous crops worldwide. Here, we report the isolation and characterization of WeiTsing (WTS), a broad-spectrum clubroot resistance gene from Arabidopsis. WTS is transcriptionally activated in the pericycle upon Pb infection to prevent pathogen colonization in the stele. Brassica napus carrying the WTS transgene displayed strong resistance to Pb. WTS encodes a small protein localized in the endoplasmic reticulum (ER), and its expression in plants induces immune responses. The cryoelectron microscopy (cryo-EM) structure of WTS revealed a previously unknown pentameric architecture with a central pore. Electrophysiology analyses demonstrated that WTS is a calcium-permeable cation-selective channel. Structure-guided mutagenesis indicated that channel activity is strictly required for triggering defenses. The findings uncover an ion channel analogous to resistosomes that triggers immune signaling in the pericycle.
Asunto(s)
Brassica napus , Plasmodiophorida , Microscopía por Crioelectrón , Plomo , Brassica napus/genética , Plasmodiophorida/fisiología , Canales Iónicos , Enfermedades de las PlantasRESUMEN
Plasmodiophora brassicae Wor., the clubroot pathogen, is the perfect example of an "atypical" plant pathogen. This soil-borne protist and obligate biotrophic parasite infects the roots of cruciferous crops, inducing galls or clubs that lead to wilting, loss of productivity, and plant death. Unlike many other agriculturally relevant pathosystems, research into the molecular mechanisms that underlie clubroot disease and Plasmodiophora-host interactions is limited. After release of the first P. brassicae genome sequence and subsequent availability of transcriptomic data, the clubroot research community have implicated the involvement of phytohormones during the clubroot pathogen's manipulation of host development. Herein we review the main events leading to the formation of root galls and describe how modulation of select phytohormones may be key to modulating development of the plant host to the benefit of the pathogen. Effector-host interactions are at the base of different strategies employed by pathogens to hijack plant cellular processes. This is how we suspect the clubroot pathogen hijacks host plant metabolism and development to induce nutrient-sink roots galls, emphasizing a need to deepen our understanding of this master manipulator.
Asunto(s)
Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Transcriptoma , Perfilación de la Expresión Génica , Productos AgrícolasRESUMEN
Despite the identification of clubroot resistance genes in various Brassica crops our understanding of the genetic basis of immunity to Plasmodiophora brassicae infection in the model plant Arabidopsis thaliana remains limited. To address this issue, we performed a screen of 142 natural accessions and identified 11 clubroot-resistant Arabidopsis lines. Genome-wide association analysis identified several genetic loci significantly linked with resistance. Three genes from two of these loci were targeted for deletion by CRISPR/Cas9 mutation in resistant accessions Est-1 and Uod-1. Deletion of Resistance to Plasmodiophora brassicae 1 (RPB1) rendered both lines susceptible to the P. brassicae pathotype P1+. Further analysis of rpb1 knock-out Est-1 and Uod-1 lines showed that the RPB1 protein is required for activation of downstream defence responses, such as the expression of phytoalexin biosynthesis gene CYP71A13. RPB1 has recently been shown to encode a cation channel localised in the endoplasmic reticulum. The clubroot susceptible Arabidopsis accession Col-0 lacks a functional RPB1 gene; when Col-0 is transformed with RPB1 expression driven by its native promoter it is capable of activating RPB1 transcription in response to infection, but this is not sufficient to confer resistance. Transient expression of RPB1 in Nicotiana tabacum induced programmed cell death in leaves. We conclude that RPB1 is a critical component of the defence response to P. brassicae infection in Arabidopsis, acting downstream of pathogen recognition but required for the elaboration of effective resistance.
Asunto(s)
Arabidopsis , Brassica , Plasmodiophorida , Arabidopsis/metabolismo , Enfermedades de las Plantas , Estudio de Asociación del Genoma Completo , Brassica/genéticaRESUMEN
The protist pathogen Plasmodiophora brassicae hijacks the metabolism and development of host cruciferous plants and induces clubroot formation, but little is known about its regulatory mechanisms. Previously, the Pnit2int2 sequence, a sequence around the second intron of the nitrilase gene (BrNIT2) involved in auxin biosynthesis in Brassica rapa ssp. pekinensis, was identified as a specific promoter activated during clubroot formation. In this study, we hypothesized that analysis of the transcriptional regulation of Pnit2int2 could reveal how P. brassicae affects the host gene regulatory system during clubroot development. By yeast one-hybrid screening, the pathogen zinc finger protein PbZFE1 was identified to specifically bind to Pnit2int2. Specific binding of PbZFE1 to Pnit2int2 was also confirmed by electrophoretic mobility shift assay. The binding site of PbZFE1 is essential for promoter activity of Pnit2int2 in clubbed roots of transgenic Arabidopsis thaliana (Pnit2int2-2::GUS), indicating that PbZFE1 is secreted from P. brassicae and functions within plant cells. Ectopic expression of PbZEF1 in A. thaliana delayed growth and flowering time, suggesting that PbZFE1 has significant impacts on host development and metabolic systems. Thus, P. brassicae appears to secrete PbZFE1 into host cells as a transcription factor-type effector during pathogenesis.
Asunto(s)
Arabidopsis , Plasmodiophorida , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Enfermedades de las Plantas/genética , Plasmodiophorida/fisiología , Regulación de la Expresión Génica , Arabidopsis/genética , Arabidopsis/metabolismo , Expresión GénicaRESUMEN
Breeding for disease resistance in major crops is of crucial importance for global food security and sustainability. However, common biotechnologies such as traditional transgenesis or genome editing do not provide an ideal solution, whereas transgenic crops free of selection markers such as cisgenic/intragenic crops might be suitable. In this study, after cloning and functional verification of the Rcr1 gene for resistance to clubroot (Plasmodiophora brassicae), we confirmed that the genes Rcr1, Rcr2, Rcr4, and CRa from Brassica rapa crops and the resistance gene from B. napus oilseed rape cv. 'Mendel' on chromosome A03 were identical in their coding regions. We also determined that Rcr1 has a wide distribution in Brassica breeding materials and renders potent resistance against multiple representative clubroot strains in Canada. We then modified a CRISPR/Cas9-based cisgenic vector system and found that it enabled the fast breeding of selection-marker-free transgenic crops with add-on traits, with selection-marker-free canola (B. napus) germplasms with Rcr1-rendered stable resistance to clubroot disease being successfully developed within 2 years. In the B. napus background, the intragenic vector system was able to remove unwanted residue sequences from the final product with high editing efficiency, and off-target mutations were not detected. Our study demonstrates the potential of applying this breeding strategy to other crops that can be transformed by Agrobacterium. Following the streamlined working procedure, intragenic germplasms can be developed within two generations, which could significantly reduce the breeding time and labor compared to traditional introgression whilst still achieving comparable or even better breeding results.
Asunto(s)
Brassica napus , Brassica rapa , Brassica , Sistemas CRISPR-Cas , Fitomejoramiento , Brassica napus/genética , Brassica/genética , Brassica rapa/genéticaRESUMEN
Clubroot disease caused by Plasmodiophora brassicae is becoming a serious threat to rapeseed (Brassica napus) production worldwide. Breeding resistant varieties using CR (clubroot resistance) loci is the most promising solution. Using marker-assisted selection and speed-breeding technologies, we generated Brassica napus materials in homozygous or heterozygous states using CRA3.7, CRA08.1, and CRA3.2 loci in the elite parental line of the Zhongshuang11 background. We developed three elite lines with two CR loci in different combinations and one line with three CR loci at the homozygous state. In our study, we used six different clubroot strains (Xinmin, Lincang, Yuxi, Chengdu, Chongqing, and Jixi) which are categorized into three groups based on our screening results. The newly pyramided lines with two or more CR loci displayed better disease resistance than the parental lines carrying single CR loci. There is an obvious gene dosage effect between CR loci and disease resistance levels. For example, pyramided lines with triple CR loci in the homozygous state showed superior resistance for all pathogens tested. Moreover, CR loci in the homozygous state are better on disease resistance than the heterozygous state. More importantly, no negative effect was observed on agronomic traits for the presence of multiple CR loci in the same background. Overall, these data suggest that the pyramiding of triple clubroot resistance loci conferred superior resistance with no negative effects on agronomic traits in Brassica napus.
Asunto(s)
Brassica napus , Resistencia a la Enfermedad , Enfermedades de las Plantas , Plasmodiophorida , Brassica napus/genética , Brassica napus/parasitología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Plasmodiophorida/fisiología , Plasmodiophorida/patogenicidad , Fitomejoramiento/métodos , FenotipoRESUMEN
Clubroot disease caused by the soil-borne Plasmodiophora brassicae is devastating to Brassicaceae crops and spreading rapidly in China in recent years, resulting in great yield losses annually. Virulence of P. brassicae populations specializes and is in dynamic change in the fields. Information on the pathotypes and their distributions is crucial to control the clubroot disease. Presently, the pathotypes of P. brassicae prevalent in China, however, are not well determined. In this study, we used 16 Brassica hosts, including the European Clubroot Differential (ECD) and Williams sets, to designate the pathotypes of 33 P. brassicae populations from 13 provinces. The 33 P. brassicae populations could be divided into 26 pathotypes by the ECD set or seven pathotypes by the Williams set, revealing ECD16/15/31 and ECD16/31/31 or P4 and P2 as the predominant pathotypes. We found that the Brassica rapa differentials ECD01 to ECD04 showed stable and high levels of resistance to most pathotypes of P. brassicae in China, thereby providing valuable resources for clubroot-resistance breeding of Brassicaceae crops. The ECD set exhibited much higher discernibility and further divided the isolates that belonged to the P4 pathotype into 10 ECD pathotypes. Isolates of ECD16/23/31 and ECD16/15/31 were strongly virulent on Huashuang 5R, the first and widely used clubroot-resistant cultivar of oilseed rape in China. As we learn, 26 pathotypes are the most diverse populations of P. brassicae characterized until now in China. Our study provides new insights into virulence specialization of P. brassicae and their geographical distributions, contributing to exploitation of clubroot-resistant resources and the field layout of the present resistant Brassica crops in China.
RESUMEN
Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is one of the most devastating diseases affecting the canola/oilseed rape (Brassica napus) industry worldwide. Currently, the planting of clubroot-resistant (CR) cultivars is the most effective strategy used to restrict the spread and the economic losses linked to the disease. However, virulent P. brassicae isolates have been able to infect many of the currently available CR cultivars, and the options to manage the disease are becoming limited. Another challenge has been achieving consistency in evaluating host reactions to P. brassicae infection, with most bioassays conducted in soil and/or potting medium, which requires significant space and can be labor intensive. Visual scoring of clubroot symptom development can also be influenced by user bias. Here, we have developed a hydroponic bioassay using well-characterized P. brassicae single-spore isolates representative of clubroot virulence in Canada, as well as field isolates from three Canadian provinces in combination with canola inbred homozygous lines carrying resistance genetics representative of CR cultivars available to growers in Canada. To improve the efficiency and consistency of disease assessment, symptom severity scores were compared with clubroot evaluations based on the scanned root area. According to the results, this bioassay offers a reliable, less expensive, and reproducible option to evaluate P. brassicae virulence, as well as to identify which canola resistance profile(s) may be effective against particular isolates. This bioassay will contribute to the breeding of new CR canola cultivars and the identification of virulence genes in P. brassicae that could trigger resistance and that have been very elusive to this day.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Asunto(s)
Brassica napus , Plasmodiophorida , Plasmodiophorida/genética , Hidroponía , Canadá , Fitomejoramiento , Brassica napus/parasitologíaRESUMEN
Clubroot, caused by Plasmodiophora brassicae, is a globally destructive soil-borne disease affecting cruciferous plants. Here, the predominant pathotypes of P. brassicae in six cities within Zhejiang Province were identified using the Williams and European Clubroot Differential (ECD) systems. A phylogenetic analysis of P. brassicae isolates infecting cruciferous crops worldwide was conducted using MEGA, and their ITS2 secondary structures were predicted through the ITS2 database. Accessions of B. rapa, B. oleracea, B. juncea, and Eruca sativa Mill. were employed to assess clubroot resistance. The results revealed that the prevalent pathotypes in Zhejiang Province were pathotype 1, ECD20/31/12 and ECD24/16/30; pathotype 3, ECD20/15/4; pathotype 8, ECD16/0/0 and ECD24/0/0; and pathotype 2, ECD16/15/15. Isolates from distinct genera of Brassicaceae formed separate branches in the evolutionary tree. Moreover, isolates of Brassica crops from Zhejiang Province exhibited homology with those from other global regions, a finding corroborated by their ITS2 secondary structure. Approximately 80% and 95% of B. rapa and B. juncea crops displayed susceptible phenotypes for pathotype 8, ECD16/0/0, whereas approximately 60% of B. oleracea crops exhibited resistance. Furthermore, three Brassica crop accessions showed significant variation in resistance to the pathogen, both among morphological and geographical origin groups. This study contributes to understanding the distribution of diverse P. brassicae pathotypes in different regions of Zhejiang Province and facilitates the identification of Brassica crops with potential disease resistance suitable for cultivation in the province.
RESUMEN
Clubroot, a significant soil-borne disease, severely impacts the productivity of cruciferous crops. The identification and development of clubroot resistance (CR) genes are crucial for mitigating this disease. This study investigated the genetic inheritance of clubroot resistance within an F2 progeny derived from the cross of a resistant parent, designated "377", and a susceptible parent, designated "12A". Notably, "377" exhibited robust resistance to the "KEL-23" strain of Plasmodiophora brassicae, the causative agent of clubroot. Genetic analyses suggested that the observed resistance is controlled by a single dominant gene. Through Bulked Segregant Analysis sequencing (BSA-seq) and preliminary gene mapping, we localized the CR gene locus, designated as BraPb8.3, to a 1.30 Mb genomic segment on chromosome A08, flanked by the markers "333" and "sau332-1". Further fine mapping precisely narrowed down the position of BraPb8.3 to a 173.8 kb region between the markers "srt8-65" and "srt8-25", where we identified 22 genes, including Bra020861 with a TIR-NBS-LRR domain and Bra020876 with an LRR domain. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses confirmed that both Bra020861 and Bra020876 exhibit increased expression levels in the resistant parent "377" following inoculation with P. brassicae, thereby underscoring their potential as key genes implicated in BraPb8.3-mediated clubroot resistance. This study not only identifies molecular markers associated with BraPb8.3 but also enriches the genetic resources available for breeding programs aimed at enhancing resistance to clubroot.
Asunto(s)
Brassica rapa , Mapeo Cromosómico , Resistencia a la Enfermedad , Enfermedades de las Plantas , Plasmodiophorida , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Brassica rapa/genética , Brassica rapa/parasitología , Genes de Plantas , Cromosomas de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Cytokinins (CKs) are a group of phytohormones that are involved in plant growth, development, and disease resistance. The isopentenyl transferase (IPT) and cytokinin oxidase/dehydrogenase (CKX) families comprise key enzymes controlling CK biosynthesis and degradation. However, an integrated analysis of these two gene families in radish has not yet been explored. In this study, 13 RsIPT and 12 RsCKX genes were identified and characterized, most of which had four copies in Brassica napus and two copies in radish and other diploid Brassica species. Promoter analysis indicated that the genes contained at least one phytohormone or defense and stress responsiveness cis-acting element. RsIPTs and RsCKXs were expanded through segmental duplication. Moreover, strong purifying selection drove the evolution of the two gene families. The expression of the RsIPT and RsCKX genes distinctly showed diversity in different tissues and developmental stages of the root. Expression profiling showed that RsCKX1-1/1-2/1-3 was significantly upregulated in club-resistant materials during primary infection, suggesting their vital function in clubroot resistance. The interaction network of CKX proteins with similar 3D structures also reflected the important role of RsCKX genes in disease resistance. This study provides a foundation for further functional study on the IPT and CKX genes for clubroot resistance improvement in Raphanus.
Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oxidorreductasas , Enfermedades de las Plantas , Proteínas de Plantas , Raphanus , Raphanus/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Perfilación de la Expresión GénicaRESUMEN
Clubroot, a soil-borne disease caused by Plasmodiophora brassicae, is one of the most destructive diseases of Brassica oleracea all over the world. However, the mechanism of clubroot resistance remains unclear. In this research, transcriptome sequencing was conducted on root samples from both resistant (R) and susceptible (S) B. oleracea plants infected by P. brassicae. Then the comparative analysis was carried out between the R and S samples at different time points during the infection stages to reveal clubroot resistance related pathways and candidate genes. Compared with 0 days after inoculation, a total of 4991 differential expressed genes were detected from the S pool, while only 2133 were found from the R pool. Gene function enrichment analysis found that the effector-triggered immunity played a major role in the R pool, while the pathogen-associated molecular pattern triggered immune response was stronger in the S pool. Simultaneously, candidate genes were identified through weighted gene co-expression network analysis, with Bol010786 (CNGC13) and Bol017921 (SD2-5) showing potential for conferring resistance to clubroot. The findings of this research provide valuable insights into the molecular mechanisms underlying clubroot resistance and present new avenues for further research aimed at enhancing the clubroot resistance of B. oleracea through breeding.
Asunto(s)
Brassica , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Plasmodiophorida , Transcriptoma , Brassica/genética , Brassica/parasitología , Brassica/inmunología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Plasmodiophorida/fisiología , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Raíces de Plantas/inmunología , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Genes de PlantasRESUMEN
In this study, a rutabaga (Brassica napus ssp. napobrassica) donor parent FGRA106, which exhibited broad-spectrum resistance to 17 isolates representing 16 pathotypes of Plasmodiophora brassicae, was used in genetic crosses with the susceptible spring-type canola (B. napus ssp. napus) accession FG769. The F2 plants derived from a clubroot-resistant F1 plant were screened against three P. brassicae isolates representing pathotypes 3A, 3D, and 3H. Chi-square (χ2) goodness-of-fit tests indicated that the F2 plants inherited two major clubroot resistance genes from the CR donor FGRA106. The total RNA from plants resistant (R) and susceptible (S) to each pathotype were pooled and subjected to bulked segregant RNA-sequencing (BSR-Seq). The analysis of gene expression profiles identified 431, 67, and 98 differentially expressed genes (DEGs) between the R and S bulks. The variant calling method indicated a total of 12 (7 major + 5 minor) QTLs across seven chromosomes. The seven major QTLs included: BnaA5P3A.CRX1.1, BnaC1P3H.CRX1.2, and BnaC7P3A.CRX1.1 on chromosomes A05, C01, and C07, respectively; and BnaA8P3D.CRX1.1, BnaA8P3D.RCr91.2/BnaA8P3H.RCr91.2, BnaA8P3H.Crr11.3/BnaA8P3D.Crr11.3, and BnaA8P3D.qBrCR381.4 on chromosome A08. A total of 16 of the DEGs were located in the major QTL regions, 13 of which were on chromosome C07. The molecular data suggested that clubroot resistance in FGRA106 may be controlled by major and minor genes on both the A and C genomes, which are deployed in different combinations to confer resistance to the different isolates. This study provides valuable germplasm for the breeding of clubroot-resistant B. napus cultivars in Western Canada.
Asunto(s)
Brassica napus , Resistencia a la Enfermedad , Fitomejoramiento , Enfermedades de las Plantas , Plasmodiophorida , Sitios de Carácter Cuantitativo , Brassica napus/genética , Brassica napus/parasitología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Plasmodiophorida/fisiología , Plasmodiophorida/patogenicidad , RNA-Seq , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Cromosomas de las Plantas/genéticaRESUMEN
Clubroot caused by Plasmodiophora brassicae is a serious soilborne disease on cruciferous crops worldwide. Agricultural practice is a preferable clubroot management strategy because of its low investment requirement and environmental safety. Among the agricultural practices, solarization has been widely applied in the integrated management of other soilborne diseases. However, only few reports exist on the effect of solarization on clubroot management. In this study, we measured the effect of plastic mulching on soil temperature at different depths and on clubroot incidence and severity under greenhouse and field conditions. The pathogen density in the soil after solarization was measured by quantitative PCR analysis. Results indicated that the mulching treatment increased soil temperature especially in the soil layer ranges of 0 to 20 cm. Solarization with mulching also effectively reduced the incidence and severity of clubroot in the greenhouse assay and the field trial by decreasing the P. brassicae population in the soil. This study suggested that solarization with mulching can impair clubroot development and thus contribute to the sustainable management of clubroot.
Asunto(s)
Plasmodiophorida , Suelo , Temperatura , Agricultura , Productos AgrícolasRESUMEN
Clubroot disease is a soil-borne disease caused by Plasmodiophora brassicae. It occurs in cruciferous crops exclusively, and causes serious damage to the economic value of cruciferous crops worldwide. Although different measures have been taken to prevent the spread of clubroot disease, the most fundamental and effective way is to explore and use disease-resistance genes to breed resistant varieties. However, the resistance level of plant hosts is influenced both by environment and pathogen race. In this work, we described clubroot disease in terms of discovery and current distribution, life cycle, and race identification systems; in particular, we summarized recent progress on clubroot control methods and breeding practices for resistant cultivars. With the knowledge of these identified resistance loci and R genes, we discussed feasible strategies for disease-resistance breeding in the future.
Asunto(s)
Brassicaceae , Plasmodiophorida , Brassicaceae/genética , Fitomejoramiento , Resistencia a la Enfermedad/genética , Genes de Plantas , China , Plasmodiophorida/genética , Enfermedades de las Plantas/genéticaRESUMEN
Trehalose is a nonreducing disaccharide that is widely distributed in various organisms. Trehalose-6-phosphate synthase (TPS) is a critical enzyme responsible for the biosynthesis of trehalose, which serves important functions in growth and development, defense, and stress resistance. Although previous studies have found that the clubroot pathogen Plasmodiophora brassicae can lead to the accumulation of trehalose in infected Arabidopsis organs, it has been proposed that much of the accumulated trehalose is derived from the pathogen. At present, there is very little evidence to verify this view. In this study, a comprehensive analysis of the TPS gene family was conducted in Brassica rapa and Plasmodiophora brassicae. A total of 14 Brassica rapa TPS genes (BrTPSs) and 3 P. brassicae TPS genes (PbTPSs) were identified, and the evolutionary characteristics, functional classification, and expression patterns were analyzed. Fourteen BrTPS genes were classified into two distinct classes according to phylogeny and gene structure. Three PbTPSs showed no significant differences in gene structure and protein conserved motifs. However, evolutionary analysis showed that the PbTPS2 gene failed to cluster with PbTPS1 and PbTPS3. Furthermore, cis-acting elements related to growth and development, defense and stress responsiveness, and hormone responsiveness were predicted in the promoter region of the BrTPS genes. Expression analysis of most BrTPS genes at five stages after P. brassicae interaction found no significant induction. Instead, the expression of the PbTPS genes of P. brassicae was upregulated, which was consistent with the period of trehalose accumulation. This study deepens our understanding of the function and evolution of BrTPSs and PbTPSs. Simultaneously, clarifying the biosynthesis of trehalose in the interaction between Brassica rapa and P. brassicae is also of great significance.
Asunto(s)
Arabidopsis , Brassica rapa , Brassica , Plasmodiophorida , Brassica rapa/genética , Trehalosa/genética , Plasmodiophorida/genética , Ligasas , Brassica/genética , Enfermedades de las Plantas/genéticaRESUMEN
Clubroot is a soil-borne disease caused by Plasmodiophora brassicae, which can seriously affect the growth and production of cruciferous crops, especially Chinese cabbage crops, worldwide. At present, few studies have been conducted on the molecular mechanism of this disease's resistance response. In this experiment, we analyzed the bioinformation of bra-miR167a, constructed a silencing vector (STTM167a) and an overexpression vector (OE-miR167a), and transformed them to Arabidopsis to confirm the role of miR167a in the clubroot resistance mechanism of Arabidopsis. Afterwards, phenotype analysis and expression level analysis of key genes were conducted on transgenic plants. From the result, we found that the length and number of lateral roots of silence transgenic Arabidopsis STTM167a was higher than that of WT and OE-miR167a. In addition, the STTM167a transgenic Arabidopsis induced up-regulation of disease resistance-related genes (PR1, PR5, MPK3, and MPK6) at 3 days after inoculation. On the other hand, the auxin pathway genes (TIR1, AFB2, and AFB3), which are involved in maintaining the balance of auxin/IAA and auxin response factor (ARF), were down-regulated. These results indicate that bra-miR167a is negative to the development of lateral roots and auxins, but positive to the expression of resistance-related genes. This also means that the STTM167a can improve the resistance of clubroot by promoting lateral root development and the level of auxin, and can induce resistance-related genes by regulating its target genes. We found a positive correlation between miR167a and clubroot disease, which is a new clue for the prevention and treatment of clubroot disease.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Plasmodiophorida , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Enfermedades de las Plantas/genética , Plasmodiophorida/fisiologíaRESUMEN
Clubroot is one of the most important diseases for many important cruciferous vegetables and oilseed crops worldwide. Different clubroot resistance (CR) loci have been identified from only limited species in Brassica, making it difficult to compare and utilize these loci. European fodder turnip ECD04 is considered one of the most valuable resources for CR breeding. To explore the genetic and evolutionary basis of CR in ECD04, we sequenced the genome of ECD04 using de novo assembly and identified 978 candidate R genes. Subsequently, the 28 published CR loci were physically mapped to 15 loci in the ECD04 genome, including 62 candidate CR genes. Among them, two CR genes, CRA3.7.1 and CRA8.2.4, were functionally validated. Phylogenetic analysis revealed that CRA3.7.1 and CRA8.2.4 originated from a common ancestor before the whole-genome triplication (WGT) event. In clubroot susceptible Brassica species, CR-gene homologues were affected by transposable element (TE) insertion, resulting in the loss of CR function. It can be concluded that the current functional CR genes in Brassica rapa and non-functional CR genes in other Brassica species were derived from a common ancestral gene before WGT. Finally, a hypothesis for CR gene evolution is proposed for further discussion.
Asunto(s)
Brassica napus , Brassica , Alimentación Animal , Brassica/genética , Brassica napus/genética , Mapeo Cromosómico , Genes prv , Filogenia , Fitomejoramiento , Enfermedades de las Plantas/genéticaRESUMEN
Clubroot disease poses a severe threat to rapeseed (Brassica napus) production worldwide and has recently been spreading across China at an unprecedented pace. Breeding and cultivation of resistant varieties constitute a promising and environment-friendly approach to mitigating this threat. In this study, the clubroot resistance locus PbBa8.1 was successfully transferred into SC4, a shared paternal line of three elite varieties in five generations by marker-assisted backcross breeding. Kompetitive allele specific PCR (KASP) markers of clubroot resistance gene PbBa8.1 and its linked high erucic acid gene (FAE1) were designed and applied for foreground selection, and 1,000 single-nucleotide polymorphisms (SNPs) were selected and used for the background selection. This breeding strategy produced recombinants with the highest recovery ratio of the recurrent parent genome (> 95%) at BC2F2 while breaking the linkage with FAE1 during the selection. An updated version of the paternal line (SC4R) was generated at BC2F3, showing significantly improved clubroot resistance at the seedling stage via artificial inoculation, and was comparable to that of the donor parent. Field trials of the three elite varieties and their updated versions in five environments indicated similar agronomic appearance and final yield. The introduced breeding strategy precisely pyramids the PbBa8.1 and FAE1 loci with the assistance of technical markers in a shorter period and could be applied to other desirable traits for directional improvement in the future. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01305-9.
RESUMEN
BACKGROUND: CRa is a key gene in Chinese cabbage (Brassica rapa ssp. pekinensis) that confers resistance to Plasmodiophora brassicae. In order to efficiently screen the clubroot resistance (CR) gene CRa in breeding, two functional codominant markers of the CRa gene were developed. METHODS AND RESULTS: In this study, through comparing the CRa allele sequences in resistant and susceptible cultivars of Chinese cabbage, we found two insertion and deletion of sequence variations in the fourth exon between resistant and susceptible cultivars. Two functional codominant markers for CRa gene were obtained based on the variations, namely, CRaEX04-1 and CRaEX04-3. The lengths of the extended fragment of CRaEX04-1 marker were 321 bp and 186 bp in resistant and susceptible cultivars, respectively. In contrast, those of CRaEX04-3 were 704 bp and 413 bp, respectively. We verified the genetic stability between the developed markers and CRa gene using 57 Chinese cabbage cultivars with known resistance and two genetic populations. The results showed that the marker identification was completely consistent with the known phenotypes in 57 cultivars. The marker identification results followed the 3:1 of Mendel's first law in the F2 population, and the 1:1 of Mendel's first law in the BC1. CONCLUSIONS: CRaEX04-1 and CRaEX04-3 can be used as a practical molecular marker for breeding and germplasm resource creation of clubroot disease-resistant Chinese cabbage.