Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Intervalo de año de publicación
1.
Trop Anim Health Prod ; 56(2): 104, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483713

RESUMEN

We investigated the effects of replacing ground corn with full-fat corn germ (FFCG) on milk production, milk composition, and nutrient use in cows fed sugarcane bagasse and cactus cladodes. Ten multiparous Girolando cows (average body weight 500 ± 66 kg, 90 ± 15 days in milk) were distributed in a replicated 5 × 5 Latin Square and assigned to five dietary treatments containing 0%, 25%, 50%, 75%, or 100% of full-fat corn germ in substitution to ground corn. Full-fat corn germ increased fat-corrected milk yield by 2.2 kg/day and the synthesis of fat, lactose, and total solids in milk by 94.4, 60.0, and 201.10 g/day, respectively (p < 0.05). Cows fed corn germ quadratically increased (p < 0.05) dry matter intake by 1.01 kg/day, with the intake of crude protein and total digestible nutrients following the same pattern. Conversely, the substitution of corn for full-fat corn germ linearly reduced (p < 0.05) the total non-fiber carbohydrate intake from 5.79 to 4.40 kg/d. Except for ether extract and non-fiber carbohydrates, full-fat corn germ did not alter (p > 0.05) nutrient digestibility. Cows fed corn germ excreted less (p < 0.05) urea-N in milk and urine N. These results demonstrate that full-fat corn germ can partially replace ground corn to enhance the milk production efficiency of crossbred cows fed cactus cladodes and sugarcane bagasse. Furthermore, including sugarcane bagasse in FFCG-supplemented diets prevents milk fat depression in cows fed cactus cladodes.


Asunto(s)
Cactaceae , Saccharum , Femenino , Bovinos , Animales , Leche/metabolismo , Celulosa/metabolismo , Zea mays , Lactancia , Dieta/veterinaria , Carbohidratos de la Dieta/metabolismo , Digestión , Rumen/metabolismo , Ensilaje/análisis
2.
Trop Anim Health Prod ; 56(3): 111, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520485

RESUMEN

This study evaluated levels of replacement of soybean meal by castor bean meal in the finishing crossbred steers on Brachiaria brizantha cv. Marandu pasture during the rainy-dry transition period. Forty Holstein-Zebu crossbred steers with an average initial weight of 395.93 ± 10 kg were randomly allocated to four treatment groups that were supplemented with concentrate levels of replacing (0, 290, 613, and 903 g/kg DM of the supplement; at 0.4% body weight [BW]). The experimental period was 120 days. A completely randomized experimental design was adopted; with regression analysis using the computational software package (SAS 9.2, USA). Intake and digestibility of dry matter (DM) and nutrients and animal performance were evaluated. The replacement levels did not influence (P > 0.05) the intakes of DM (kg/day), organic matter (OM, kg/day), neutral detergent fiber (NDF, kg/day and %BW), non-fibrous carbohydrates (NFC, kg/day), or total digestible nutrients (kg/day). However, the intake of crude protein (CP) and ether extract (EE, kg/day) decreased as the replacement levels were increased (P < 0.05). The digestibility of DM, OM, NDF, and EE did not change, whereas CP digestibility decreased linearly and NFC digestibility increased linearly (P < 0.05). The replacement levels did not affect (P > 0.05) final body weight, average daily gain, feed conversion, and carcass yield. Castor bean meal can replace up to 903 g/kg DM of soybean meal in the composition of the supplement without compromising the performance of steers on Marandu pasture during the rainy-dry transition period.


Asunto(s)
Ricinus communis , Animales , Digestión , Suplementos Dietéticos/análisis , Carbohidratos , Proteínas , Peso Corporal , Alimentación Animal/análisis , Dieta/veterinaria
3.
J Environ Manage ; 330: 117117, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36584460

RESUMEN

Anaerobic digestion for CH4 recovery in wastewater treatment has been carried out with different strategies to increase process efficiency, among which co-digestion and the two-stage process can be highlighted. In this context, this study aimed at evaluating the co-digestion of cheese whey and glycerol in a two-stage process using fluidized bed reactors, verifying the effect of increasing the organic loading rate (OLR) (2-20 g-COD.L-1.d-1) and temperature (thermophilic and mesophilic) in the second stage methanogenic reactor. The mesophilic methanogenic reactor (R-Meso) (mean temperature of 22 °C) was more tolerant to high OLR and its best performance was at 20 g-COD.L-1.d-1, resulting in methane yield (MY) and methane production (MPR) of 273 mL-CH4.g-COD-1 and 5.8 L-CH4.L-1.d-1 (with 67% of CH4), respectively. Through 16S rRNA gene massive sequencing analysis, a greater diversity of microorganisms was identified in R-Meso than in R-Thermo (second stage methanogenic reactor, 55 °C). Firmicutes was the phyla with higher relative abundance in R-Thermo, while in R-Meso the most abundant ones were Proteobacteria and Bacteroidetes. Regarding the Archaea domain, a predominance of hydrogenotrophic microorganisms could be observed, being the genera Methanothermobacter and Methanobacterium the most abundant in R-Thermo and R-Meso, respectively. The two-stage system composed with a thermophilic acidogenic reactor + R-Meso was more adequate for the co-digestion of cheese whey and glycerol than the single-stage process, promoting increases of up to 47% in the energetic yield (10.3 kJ.kg-COD-1) and 14% in organic matter removal (90.5%).


Asunto(s)
Queso , Euryarchaeota , Suero Lácteo/química , Anaerobiosis , Temperatura , Glicerol , ARN Ribosómico 16S , Metano/análisis , Digestión , Reactores Biológicos/microbiología
4.
Molecules ; 28(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36677948

RESUMEN

As an alternative to fossil volatile hydrocarbon solvents used nowadays in perfumery, investigation on essential oil of Commiphora wildii Merxm. oleo gum resin as a source of heptane is reported here. Heptane, representing up to 30 wt-% of this oleo gum resin, was successfully isolated from the C. wildii essential oil, using an innovative double distillation process. Isolated heptane was then used as a solvent in order to extract some noble plants of perfumery. It was found that extracts obtained with this solvent were more promising in terms of sensory analysis than those obtained from fossil-based heptane. In addition, in order to valorize the essential oil depleted from heptane, chemical composition of this oil was found to obtain, and potential biological activity properties were studied. A total of 172 different compounds were identified by GC-MS in the remaining oil. In vitro tests-including hyaluronidase, tyrosinase, antioxidant, elastase and lipoxygenase, as well as inhibitory tests against two yeasts and 21 bacterial strains commonly found on the skin-were carried out. Overall, bioassays results suggest this heptane-depleted essential oil is a promising active ingredient for cosmetic applications.


Asunto(s)
Aceites Volátiles , Aceites Volátiles/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Commiphora/química , Piel , Resinas de Plantas
5.
Molecules ; 28(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36677869

RESUMEN

The large amount of waste generated by the orange juice industry has sparked the interest of many researchers in incorporating recycling systems and following a much more sustainable circular economy model. This work proposes the valorization of the co-product generated in the orange juice extraction industry after freeze-drying for its subsequent reuse as a natural ingredient in the food industry. In addition, the possible protective effect of gum Arabic and corn starch esterified with octenyl succinic groups, in proportions optimised in previous studies 0.25 and 0.45 g/g orange co-product dry solutes, on the main bioactive compounds of orange peel during the freeze-drying process has been studied. The samples were characterised for their content of vitamin C (ascorbic and dehydroascorbic acids), flavonoids (hesperidin and narirutin), total phenols and total carotenoids, as well as their antioxidant capacity (DPPH and FRAP assays). In addition, samples were digested, mimicking the human enzymatic oral gastro-intestinal digestion process, and the bioaccessibility of the bioactive compounds was evaluated. It was observed that the addition of both biopolymers improved the stability of the hydrophilic compounds during freeze-drying. This conservative effect was more remarkable for higher biopolymer concentrations. However, no protective effect on carotenoid compounds was observed. This trend was reflected in the antioxidant activity of the different samples. In addition, the incorporation of biopolymers improved the bioaccessibility of the bioactive compounds studied. In conclusion, the results supported the feasibility of the freeze-dried orange juice co-product as a natural, sustainable source of health-promoting compounds.


Asunto(s)
Citrus sinensis , Humanos , Citrus sinensis/química , Goma Arábiga/metabolismo , Almidón/metabolismo , Antioxidantes/química , Ácido Ascórbico/metabolismo , Carotenoides/metabolismo
6.
J Sci Food Agric ; 103(13): 6473-6482, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37219392

RESUMEN

BACKGROUND: The partial or total substitution of animal fat by a gelled emulsion elaborated with cocoa bean shell and walnut oil in beef burgers was assessed in terms of the stability of the bioactive compounds (polyphenolic and methylxanthines compounds, and fatty acid profile), bioaccessibility, colon-available indices (CAIs), and lipid oxidation after in vitro gastrointestinal digestion (GID). RESULTS: No free polyphenolic compounds were detected in the soluble fraction after the GID of reformulated beef burgers. Reductions were obtained in the bound fraction with respect to the undigested sample from 47.57 to 53.12% for protocatechuic acid, from 60.26 to 78.01% for catechin, and from 38.37 to 60.95% for epicatechin. The methylxanthine content decreased significantly after GID. The theobromine content fell by between 48.41 and 68.61% and the caffeine content was reduced by between 96.47 and 97.95%. The fatty acid profile of undigested samples was very similar to that of digested samples. In the control burger the predominant fatty acids were oleic acid (453.27 mg g-1 ) and palmitic acid (242.20 mg g-1 ), whereas in reformulated burgers a high content of linoleic acid (304.58 and 413.35 mg g-1 ) and α-linolenic acid (52.44 and 82.35 mg g-1 ) was found. As expected, both undigested and digested reformulated samples presented a higher degree of oxidation than the control sample. CONCLUSIONS: The reformulated beef burgers with cocoa bean shells flour and walnut oil were a good source of bioactive compounds, which were stable after in vitro gastrointestinal digestion. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Sustitutos de Grasa , Juglans , Animales , Bovinos , Emulsiones/química , Ácidos Grasos , Digestión
7.
J Food Sci Technol ; 60(7): 1981-1991, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37206424

RESUMEN

The objective was to optimize the phenolic compounds extraction from cocoa shells using the simplex-centroid design with a mixture of solvents (water, methanol, and acetone) as its components, to prove the presence of these compounds and antioxidant activity. Also, the development of dairy products, such as milk beverages and dairy desserts, with bioactive compounds, through the replacement of cocoa powder by cocoa shell was studied and evaluated sensorially. The extraction optimization indicated that a solvent with 56.44% water, 23.77% methanol, and 19.80% acetone are ideal for maximizing the phenolic compounds. In addition, the cocoa shell showed a high antioxidant activity by the methods ß-carotene/linoleic acid, FRAP, and phosphomolybdenum complex. The Check-All-That-Apply, Cochran's Q test, contingency analysis, and hierarchical cluster analysis allowed description characteristics of the dairy products and showed sensory differences between formulations with 100% cocoa shell and others. Both dairy products had good sensory acceptance in all attributes evaluated (appearance, flavor, texture, and overall impression), and their scores did not differ statistically by Tukey's test (p > 0.05). Thus, the cocoa shell is shown as an alternative substitute ingredient to be used in the dairy industry.

8.
Molecules ; 27(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35566041

RESUMEN

The food industry generates a great amount of food waste and by-products, which in many cases are not fully valorized. Press cakes, deriving from oilseeds extraction, represent interesting co-products due to their nutritional value, high biopolymers content, and the presence of bioactive phytochemicals. Gluten-free breads (GFBs) are products that have disadvantages such as unsatisfactory texture, low nutritional value, and short shelf life, so natural additives containing proteins and hydrocolloids are in demand to increase GFBs value. In this study, extract from flaxseed by-product (FOCE-Flaxseed Oil Cake Extract) was used to replace water (25-100%) in GFBs formulations and their nutritional value, antioxidant properties, and sensory features were investigated. The results showed that GFBs with FOCE had an elevated nutritional and nutraceutical profile (up to 60% more proteins, significantly increased K, Mg, and P levels). Moreover, the addition of FOCE improved the technological parameters (increased specific volume, number of cells and height/width ratio, reduced density, average size, and perimeter of cells), antioxidant potential, and overall sensory quality of GFBs. This study showed an encouraging way of using a by-product that, due to its high content of proteins, polysaccharides, minerals, and antioxidants, can add value to GFBs.


Asunto(s)
Lino , Eliminación de Residuos , Antioxidantes/farmacología , Pan , Valor Nutritivo , Extractos Vegetales , Agua
9.
J Food Sci Technol ; 59(8): 3053-3062, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35872727

RESUMEN

This study aimed to develop flavored flours (salty and sweet) from Amazonic pirarucu waste (Arapaima gigas), include them in extruded snacks, and evaluate the nutritional, physicochemical, microbiological, and acceptance characteristics of these products. A standard flour was elaborated with pirarucu carcass, which presented 54.42% of protein and 7.24% of lipids, and from this, flavored flours were elaborated (salty and sweet). The standard flour had higher levels of protein, calcium, and phosphorus; and the salted one had higher levels of lipids. The fatty acids present in greater quantities were oleic (average of 32.21%), linolenic (average of 20.74%), and palmitic (average of 17.81%). The flavored flours were better accepted than the standard flour, for all sensory attributes and purchase intention. The snacks with sweet flour, despite better results in the sensory attributes of color, aroma, and flavor, were the ones that presented the lowest content of protein and ash, when compared to those with inclusion of standard flour. It is concluded that the pirarucu waste can be used for producing flavored flours and extruded snacks, with the purpose of improved food products.

10.
J Food Sci Technol ; 59(10): 3908-3917, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36193371

RESUMEN

Protein hydrolysates (P-HS) from edible bird's nest co-product prepared without and with ultrasound (US) pretreatment in combination with heating before hydrolysis using alcalase at different concentrations were characterized. US treatment of co-product in water at 60% amplitude for 20 min, followed by heating at 95 °C for 3 h was done before enzymatic hydrolysis. The degree of hydrolysis (DH), yield and sialic acid (SL) content of P-HS samples were not different (p > 0.05) when 1 or 2% alcalase was used for hydrolysis. The highest protein content and lightness (L * ) were observed in P-HS prepared from co-product subjected to US treatment (60% amplitude for 20 min) using 1% alcalase for hydrolysis. When antioxidant activities of dried P-HS were determined, P-HS from co-product subjected to US treatment had higher DPPH and ABTS radical scavenging activities, ferrous reducing antioxidant power and oxygen radical absorbance capacity, compared to those prepared from non-US treated co-product. P-HS with higher DH contained greater amount of small peptides having MW lower than 1,883 Da. The P-HS produced under optimum condition had major essential amino acids (EA-A) including leucine, threonine, lysine and valine of 4.28, 3.53, 3.30 and 3.08%, respectively. Therefore, P-HS from co-product could serve as both nutrients and functional ingredients. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05420-5.

11.
Metab Eng ; 66: 148-156, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33895365

RESUMEN

2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable intermediate that naturally occurs during microbial degradation of lignin by bacteria, represents a promising building block for diverse biomaterials and polyesters such as biodegradable plastics. The lack of a chemical synthesis method has hindered large-scale utilization of PDC and metabolic engineering approaches for its biosynthesis have recently emerged. In this study, we demonstrate a strategy for the production of PDC via manipulation of the shikimate pathway using plants as green factories. In tobacco leaves, we first showed that transient expression of bacterial feedback-resistant 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (AroG) and 3-dehydroshikimate dehydratase (QsuB) produced high titers of protocatechuate (PCA), which was in turn efficiently converted into PDC upon co-expression of PCA 4,5-dioxygenase (PmdAB) and 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (PmdC) derived from Comamonas testosteroni. We validated that stable expression of AroG in Arabidopsis in a genetic background containing the QsuB gene enhanced PCA content in plant biomass, presumably via an increase of the carbon flux through the shikimate pathway. Further, introducing AroG and the PDC biosynthetic genes (PmdA, PmdB, and PmdC) into the Arabidopsis QsuB background, or introducing the five genes (AroG, QsuB, PmdA, PmdB, and PmdC) stacked on a single construct into wild-type plants, resulted in PDC titers of ~1% and ~3% dry weight in plant biomass, respectively. Consistent with previous studies of plants expressing QsuB, all PDC producing lines showed strong reduction in lignin content in stems. This low lignin trait was accompanied with improvements of biomass saccharification efficiency due to reduced cell wall recalcitrance to enzymatic degradation. Importantly, most transgenic lines showed no reduction in biomass yields. Therefore, we conclude that engineering plants with the proposed de-novo PDC pathway provides an avenue to enrich biomass with a value-added co-product while simultaneously improving biomass quality for the supply of fermentable sugars. Implementing this strategy into bioenergy crops has the potential to support existing microbial fermentation approaches that exploit lignocellulosic biomass feedstocks for PDC production.


Asunto(s)
Arabidopsis , Poliésteres , Arabidopsis/genética , Biomasa , Lignina , Pironas
12.
Molecules ; 26(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34770809

RESUMEN

The residue from commercial propolis extraction may have significant antioxidant power in food technology. However, among the challenges for using the propolis co-product as an inhibitor of lipid oxidation (LO) in baked goods is maintaining its bioactive compounds. Therefore, this study aimed to determine the propolis co-product extracts' capability to reduce LO in starch biscuit formulated with canola oil and stored for 45 days at 25 °C. Two co-product extracts were prepared: microencapsulated propolis co-product (MECP) (with maltodextrin) and lyophilized propolis co-product (LFCP), which were subjected to analysis of their total phenolic content and antioxidant activity (AA). Relevant antioxidant activity was observed using the methods of analysis employed. The spray-drying microencapsulation process showed an efficiency of 63%. The LO in the biscuits was determined by the thiobarbituric acid reactive substances (TBARS) test and fatty acid composition by gas chromatography analysis. Palmitic, stearic, oleic, linoelaidic, linoleic, and α-linolenic acids were found in biscuits at constant concentrations throughout the storage period. In addition, there was a reduction in malondialdehyde values with the addition of both propolis co-product extracts. Therefore, the propolis co-product extracts could be utilized as a natural antioxidant to reduce lipid oxidation in fatty starch biscuit.


Asunto(s)
Antioxidantes/farmacología , Extractos Vegetales/farmacología , Própolis/farmacología , Almidón/química , Antioxidantes/química , Cromatografía de Gases , Composición de Medicamentos , Ácidos Grasos/química , Liofilización , Peroxidación de Lípido , Extractos Vegetales/química , Polisacáridos/química , Própolis/química
13.
Food Technol Biotechnol ; 59(4): 432-442, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35136368

RESUMEN

RESEARCH BACKGROUND: Despite the great properties of bacterial cellulose, its manufacture is still limited due to difficulties in large-scale production. These problems are mainly related to low production yields and high overall costs of the conventional culture media normally used. To surpass these problems, it is necessary to identify new cheap and sustainable carbon sources. Thus, this work aims to isolate and select a high cellulose-producing Komagataeibacter strain from vinegar industry, and study its potential for bacterial cellulose synthesis in an industrial soybean co-product, known as soybean molasses, used as fermentation medium. EXPERIMENTAL APPROACH: One isolated strain was able to produce high amount of cellulose in the standard Hestrin-Schramm medium, so we tested its ability to produce this biopolymer in a soybean molasses medium. The characteristics and properties of the produced bacterial cellulose membranes were analyzed by thermogravimetric analysis, X-ray diffraction, infrared spectroscopy, water-holding capacity and rehydration ratio. Genetic analysis of the selected strain served to determine its genus and species. RESULTS AND CONCLUSIONS: An isolated strain that produced the highest amount of cellulose in Hestrin-Schramm medium (3.7 g/L) was genetically identified as Komagataeibacter intermedius V-05. This strain produced 10.0 g/L of cellulose in soybean molasses medium. Membranes from both substrates had similar chemical structure, crystallinity and thermal degradation. Soybean molasses proved to be a suitable alternative medium for biosynthesis of cellulose in comparison with the standard medium. In addition to providing higher production yield, the membranes showed great structural characteristics, similar to those obtained from standard medium. NOVELTY AND SCIENTIFIC CONTRIBUTION: In this research, we have isolated and identified a Komagataeibacter strain which exhibits a high capacity for cellulose production in soybean molasses. The isolation and selection of strains with high capacity for microbial metabolite production is important for decreasing bioprocess costs. Furthermore, as there is a necessity today to find cheaper carbon sources to obtain microbial products at a lower cost, soybean molasses represents an interesting alternative medium to produce bacterial cellulose for its industrial application.

14.
Angew Chem Int Ed Engl ; 60(7): 3481-3486, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33140477

RESUMEN

We report a highly atom-efficient integrated cofactor/co-product recycling cascade employing cycloalkylamines as multifaceted starting materials for the synthesis of nylon building blocks. Reactions using E. coli whole cells as well as purified enzymes produced excellent conversions ranging from >80 and 95 % into desired ω-amino acids, respectively with varying substrate concentrations. The applicability of this tandem biocatalytic cascade was demonstrated to produce the corresponding lactams by employing engineered biocatalysts. For instance, ϵ-caprolactam, a valuable polymer building block was synthesized with 75 % conversion from 10 mM cyclohexylamine by employing whole-cell biocatalysts. This cascade could be an alternative for bio-based production of ω-amino acids and corresponding lactam compounds.


Asunto(s)
Aminas/metabolismo , Nylons/metabolismo , Aminas/química , Ingeniería Metabólica , Nylons/química
15.
J Dairy Sci ; 103(6): 5700-5708, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32147255

RESUMEN

Regional Research Project NC-2042 has a main objective to study calf and heifer nutrition. Within this objective, feeding the postweaned heifer is considered a major priority to improve the profitability and sustainability of US dairy farms. Through optimizing nutrient utilization by precision feeding, using alternative feeds, high-fiber diets, and feed additives, this research group has worked to enhance dairy heifer nutrition. Research has focused on precision feeding heifers and incorporating high- and low-fiber diets into this system of feeding. This is accomplished by meeting the nutrient needs of the heifer for a desired rate of growth while enhancing total-tract nutrient digestibility, reducing waste and improving profitability. High-fiber forages have been studied as a means of controlling ad libitum dry matter intakes and thus weight gain in heifers. These results provide producers with a means of feeding heifers while reducing costs. Similarly, utilizing alternative feedstuffs in heifer diets has also been a major research area for this group including comprehensive research on distillers co-products, and new protein sources such as camelina and carinata meals. Results indicated that these products can be satisfactorily incorporated into heifer diets. Studying feed additives has also been a function of the research group. Research with Ascophyllum nodosum and cinnamaldehyde indicated that calves find these additives unpalatable and that supplementing cinnamaldehyde to postweaned heifers showed no benefit. However, sodium butyrate and yeast supplementation proved to be beneficial in the growth and feed efficiency of heifers. Research from this group has an effect on heifer feeding, resulting in new information that can aid in the sustainability of dairy farms. This review will focus on the area of postweaned heifer nutrition.


Asunto(s)
Crianza de Animales Domésticos/economía , Crianza de Animales Domésticos/métodos , Bovinos/fisiología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Femenino
16.
J Environ Manage ; 269: 110748, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32425165

RESUMEN

Sugarcane bioethanol has favorable energy and greenhouse gas balance, although the production process generates several residues including vinasse, which deserves attention because of its significant methane (CH4) emission during storage and transportation stages. Considering that CH4 emissions are dependent on the structure and abundance of microbial communities, we hypothesized that different vinasse transportation systems would harbor different microbial community composition, resulting in distinct CH4 patterns. To test this hypothesis, we used high-throughput 16S rRNA sequencing with real-time PCR to evaluate the composition and abundance of microorganisms in the two main systems of vinasse storage and transportation (i.e. open channels and tanks systems) in Brazil. Our results showed higher microbial diversity and CH4 emissions in channel system, especially in the uncoated section. Significant differences in microbial community structure, diversity, and abundance between the uncoated/coated open channel and tanks indicated a clear selection at taxonomic and functional levels, especially in relation to CH4 production. These responses included higher methanogens diversity in the uncoated section of the channel and are in agreement with the methanogen abundance determined by mcrA and mba genes copy number (1.5 × 107 and 4.3 × 1010) and subsequent positive correlation with CH4 emissions (R2 = 0.8). The most representative methanogen genus across the samples was Methanobrevibacter. The results observed herein shows that the use of the coating in the bottom of channels and tanks prevent the growth and development of a methanogen-related community. We concluded that the improvements in vinasse storage and transportation systems would significantly change the microbial community and reduce CH4 emissions, thereby making bioethanol a greener biofuel.


Asunto(s)
Gases de Efecto Invernadero , Saccharum , Brasil , Metano , ARN Ribosómico 16S
17.
Molecules ; 25(6)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213837

RESUMEN

Polyamide 6,6 (PA66)-based biocomposites with low-cost carbonaceous natural fibers (i.e., soy hulls, co-product from soybean industry) were prepared through twin-screw extrusion and injection molding. The soy hull natural fiber was pyrolyzed at two different temperatures (500 °C and 900 °C denoted as BioC500 and BioC900 respectively) to obtain different types of biocarbons. The BioC500 preserved a higher number of functional groups as compared to BioC900. Higher graphitic carbon content was observed on the BioC900 than BioC500 as evident in Raman spectroscopy. Both biocarbons interact with the PA66 backbone through hydrogen bonding in different ways. BioC900 has a greater interaction with N-H stretching, while BioC500 interacts strongly with the amide I (C=O stretching) linkage. The BioC500 interrupts the crystallite growth of PA66 due to strong bond connection while the BioC900 promotes heterogeneous crystallization. Dynamic mechanical analysis shows that both biocarbons result in an increasing storage modulus and glass transition temperature with increasing content in the BioC/PA66 biocomposites over PA66. Rheological analysis shows that the incorporation of BioC900 results in decreasing melt viscosity of PA66, while the incorporation of BioC500 results in increasing the melt viscosity of PA66 due to greater filler-matrix adhesion. This study shows that pyrolyzed soy hull natural fiber can be processed effectively with a high temperature (>270 °C) engineering plastic for biocomposites fabrication with no degradation issues.


Asunto(s)
Materiales Biocompatibles/química , Caprolactama/análogos & derivados , Polímeros/química , Caprolactama/química , Pirólisis , Espectrometría Raman , Temperatura
18.
Trop Anim Health Prod ; 52(4): 1821-1832, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31927689

RESUMEN

This study aimed to evaluate the metabolic, productive, and carcass parameters of feedlot lambs fed high-concentrate diets with cottonseed associated with calcium lignosulfonate. Treatments consisted of diets including whole cottonseed, crushed cottonseed, whole cottonseed with lignosulfonate (100 g/kg), crushed cottonseed with lignosulfonate (100 g/kg), and a control diet without cottonseed. Thirty ½ Dorper ½ Santa Inês, non-castrated male lambs with an average live weight of 24.9 ± 3.6 kg and an average age of 3.5 months were evaluated in a completely randomized design. There was no effect (P > 0.05) on the intakes of dry matter, organic matter, crude protein, and non-fibrous carbohydrates. The crushing of cottonseed and association with lignosulfonate increased (P < 0.01) the intake and digestibility of ether extract. No effect was observed (P > 0.05) for the concentrations of urine and plasma urea N, which averaged 616.2 and 108.6 mg/dL, respectively. There was a change (P < 0.01) in nitrogen balance for digested N in g/day. There was no effect (P > 0.05) on the urinary concentration of purine derivatives, except for uric acid excretions (P < 0.05). Lignosulfonate associated with cottonseed provided an average daily gain of 0.293 kg/day, which was higher than the 0.226 kg/day obtained without lignosulfonate, but lower than control (0.302 kg/day), which also showed higher values of carcass yield. High-concentrate diets formulated without cottonseed improve lamb production performance. The use of high-concentrate diets with cottonseed associated with calcium lignosulfonate provides greater weight gains in lambs.


Asunto(s)
Dieta/veterinaria , Gossypium , Lignina/análogos & derivados , Semillas , Oveja Doméstica/crecimiento & desarrollo , Alimentación Animal/análisis , Animales , Nitrógeno de la Urea Sanguínea , Aceite de Semillas de Algodón , Masculino , Ovinos , Oveja Doméstica/metabolismo , Aumento de Peso
19.
Adv Synth Catal ; 361(11): 2607-2615, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31244575

RESUMEN

Alcohol dehydrogenases are of high interest for stereoselective syntheses of chiral building blocks such as 1,2-diols. As this class of enzymes requires nicotinamide cofactors, their application in biotechnological synthesis reactions is economically only feasible with appropriate cofactor regeneration. Therefore, a co-substrate is oxidized to the respective co-product that accumulates in equal concentration to the desired target product. Co-product removal during the course of the reaction shifts the reaction towards formation of the target product and minimizes undesired side effects. Here we describe an atom efficient enzymatic cofactor regeneration system where the co-product of the ADH is recycled as a substrate in another reaction set. A 2-step enzymatic cascade consisting of a thiamine diphosphate (ThDP)-dependent carboligase and an alcohol dehydrogenase is presented here as a model reaction. In the first step benzaldehyde and acetaldehyde react to a chiral 2-hydroxy ketone, which is subsequently reduced by to a 1,2-diol. By choice of an appropriate co-substrate (here: benzyl alcohol) for the cofactor regeneration in the alcohol dehydrogenases (ADH)-catalyzed step, the co-product (here: benzaldehyde) can be used as a substrate for the carboligation step. Even without any addition of benzaldehyde in the first reaction step, this cascade design yielded 1,2-diol concentrations of >100 mM with optical purities (ee, de) of up to 99%. Moreover, this approach overcomes the low benzaldehyde solubility in aqueous systems and optimizes the atom economy of the reaction by reduced waste production. The example presented here for the 2-step recycling cascade of (1R,2R)-1-phenylpropane-1,2-diol can be applied for any set of enzymes, where the co-products of one process step serve as substrates for a coupled reaction.

20.
Int Biodeterior Biodegradation ; 119: 413-418, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28413265

RESUMEN

The production of extracellular polymeric substances (EPS) is crucial for biofilm structure, microbial nutrition and proximal stability of habitat in a variety of environments. However, the production patterns of microbial EPS in soils as affected by heavy metal contamination remain uncertain. Here we investigate the extracellular response of the native microbial biomass in a grassland soil treated with refined glycerol or crude unrefined biodiesel co-product (BCP) with and without ZnCl2. We extracted microbial EPS and more readily soluble microbial products (SMP), and quantified total polysaccharide, uronic acid, and protein content in these respective extracts. Organic addition, especially BCP, significantly stimulated the production of EPS-polysaccharide and protein but had no impact on EPS-uronic acids, while in the SMP-fraction, polysaccharides and uronic acids were both significantly increased. In response to the inclusion of Zn2+, both EPS- and SMP-polysaccharides increased. This implies firstly that a tolerance mechanism of soil microorganisms against Zn2+ toxicity exists through the stimulation of SMP and EPS production, and secondly that co-products of biofuel industries may have value-added use in bioremediation efforts to support in-situ production of microbial biopolymers. Microbial films and mobile polymers are likely to impact a range of soil properties. The recent focus on EPS research in soils is anticipated to help contribute an improved understanding of biofilm dynamics in other complex systems - such as continuously operated bioreactors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA