Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Microbiol ; 206(4): 194, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538852

RESUMEN

The simultaneous development of antibiotic resistance in bacteria due to metal exposure poses a significant threat to the environment and human health. This study explored how exposure to both arsenic and antibiotics affects the ability of an arsenite oxidizer, Achromobacter xylosoxidans CAW4, to transform arsenite and its antibiotic resistance patterns. The bacterium was isolated from arsenic-contaminated groundwater in the Chandpur district of Bangladesh. We determined the minimum inhibitory concentration (MIC) of arsenite, cefotaxime, and tetracycline for A. xylosoxidans CAW4, demonstrating a multidrug resistance (MDR) trait. Following this determination, we aimed to mimic an environment where A. xylosoxidans CAW4 was exposed to both arsenite and antibiotics. We enabled the strain to grow in sub-MIC concentrations of 1 mM arsenite, 40 µg/mL cefotaxime, and 20 µg/mL tetracycline. The expression dynamics of the arsenite oxidase (aioA) gene in the presence or absence of antibiotics were analyzed. The findings indicated that simultaneous exposure to arsenite and antibiotics adversely affected the bacteria's capacity to metabolize arsenic. However, when arsenite was present in antibiotics-containing media, it promoted bacterial growth. The study observed a global downregulation of the aioA gene in arsenic-antibiotic conditions, indicating the possibility of increased susceptibility through co-resistance across the entire bacterial population of the environment. This study interprets that bacterial arsenic-metabolizing ability can rescue the bacteria from antibiotic stress, further disseminating environmental cross-resistance. Therefore, the co-selection of metal-driven antibiotic resistance in bacteria highlights the need for effective measures to address this emerging threat to human health and the environment.


Asunto(s)
Arsénico , Arsenitos , Humanos , Arsénico/farmacología , Arsénico/metabolismo , Arsenitos/farmacología , Arsenitos/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias , Metales/farmacología , Metales/metabolismo , Farmacorresistencia Microbiana , Cefotaxima/metabolismo , Cefotaxima/farmacología , Tetraciclinas/metabolismo , Tetraciclinas/farmacología
2.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34662416

RESUMEN

The soil bacterium Burkholderia pseudomallei is the causative agent of melioidosis and a significant cause of human morbidity and mortality in many tropical and subtropical countries. The species notoriously survives harsh environmental conditions but the genetic architecture for these adaptations remains unclear. Here we employed a powerful combination of genome-wide epistasis and co-selection studies (2,011 genomes), condition-wide transcriptome analyses (82 diverse conditions), and a gene knockout assay to uncover signals of "co-selection"-that is a combination of genetic markers that have been repeatedly selected together through B. pseudomallei evolution. These enabled us to identify 13,061 mutation pairs under co-selection in distinct genes and noncoding RNA. Genes under co-selection displayed marked expression correlation when B. pseudomallei was subjected to physical stress conditions, highlighting the conditions as one of the major evolutionary driving forces for this bacterium. We identified a putative adhesin (BPSL1661) as a hub of co-selection signals, experimentally confirmed a BPSL1661 role under nutrient deprivation, and explored the functional basis of co-selection gene network surrounding BPSL1661 in facilitating the bacterial survival under nutrient depletion. Our findings suggest that nutrient-limited conditions have been the common selection pressure acting on this species, and allelic variation of BPSL1661 may have promoted B. pseudomallei survival during harsh environmental conditions by facilitating bacterial adherence to different surfaces, cells, or living hosts.


Asunto(s)
Evolución Biológica , Burkholderia pseudomallei , Adhesinas Bacterianas , Alelos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/fisiología , Selección Genética , Estrés Fisiológico
3.
Ecotoxicol Environ Saf ; 263: 115367, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586197

RESUMEN

Both heavy metals and antibiotics exert selection pressure on bacterial resistance, and as they are commonly co-contaminated in the environment, they may play a larger role in bacterial resistance. This study examined how breeding cycles affect antibiotic resistance genes (ARGs) in chicken manure and the surrounding topsoils at 20, 50, 100, 200, and 300 m from twelve typical laying hen farms in the Ningxia Hui Autonomous Region of northwest China. Six antibiotics, seven heavy metals, ten mobile genetic elements (MGEs), and microbial community affected the ARGs profile in chicken dung and soil samples. Tetracycline antibiotic residues were prevalent in chicken manure, as were relatively high content of aureomycin during each culture period. Zinc (Zn) content was highest among the seven heavy metals in chicken feces. Chicken dung also enriched aminoglycosides, MLSB, and tetracycline ARGs, notably during brooding and high production. The farm had a minimal influence on antibiotics in the surrounding soil, but its effect on ARGs and MGEs closer to the farm (50 m) was stronger, and several ARGs and MGEs increased with distance. Manure microbial composition differed dramatically throughout breeding cycles and sampling distances. ARGs were more strongly related with antibiotics and heavy metals in manure than soil, whereas MGEs were the reverse. Antibiotics, heavy metals, MGEs, and bacteria in manure accounted 12.28%, 22.25%, 0.74%, and 0.19% of ARGs composition variance, respectively, according to RDA and VPA. Bacteria (2.89%) and MGEs (2.82%) only affected soil ARGs composition. These findings showed that heavy metals and antibiotics are the main factors affecting faecal ARGs and bacteria and MGEs soil ARGs. This paper includes antibiotic resistance data for large-scale laying hen husbandry in northwest China and a theoretical framework for decreasing antibiotic resistance.


Asunto(s)
Clortetraciclina , Metales Pesados , Animales , Femenino , Antibacterianos/farmacología , Pollos/genética , Estiércol/microbiología , Suelo/química , Genes Bacterianos , Metales Pesados/análisis , Farmacorresistencia Microbiana/genética , Bacterias/genética , Microbiología del Suelo
4.
Foodborne Pathog Dis ; 20(10): 435-441, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37540099

RESUMEN

Co-selection is thought to occur when resistance genes are located on the same mobile genetic element. However, this mechanism is currently poorly understood. In this study, complete circular plasmids from swine-derived Escherichia coli were sequenced with short and long reads to confirm that resistance genes involved in co-resistance were co-transferred by the same plasmid. Conjugative transfer tests were performed, and multiple resistance genes were transmitted. The genes possessed by the donor, transconjugant, and plasmid of the donor were highly similar. In addition, the sequences of the plasmid of the donor and the plasmid of the transconjugant were almost identical. Resistance genes associated with statistically significant combinations of antimicrobial use and resistance were co-transmitted by the same plasmid. These results suggest that resistance genes may be involved in co-selection by their transfer between bacteria on the same plasmid.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Animales , Porcinos , Antibacterianos/farmacología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Farmacorresistencia Bacteriana/genética , Plásmidos/genética , Conjugación Genética , Pruebas de Sensibilidad Microbiana
5.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511196

RESUMEN

Antimicrobial resistance is presently one of the greatest threats to public health. The excessive and indiscriminate use of antibiotics imposes a continuous selective pressure that triggers the emergence of multi-drug resistance. We performed a large-scale analysis of closed bacterial genomes to identify multi-drug resistance considering the ResFinder antimicrobial classes. We found that more than 95% of the genomes harbor genes associated with resistance to disinfectants, glycopeptides, macrolides, and tetracyclines. On average, each genome encodes resistance to more than nine different classes of antimicrobial drugs. We found higher-than-expected co-occurrences of resistance genes in both plasmids and chromosomes for several classes of antibiotic resistance, including classes categorized as critical according to the World Health Organization (WHO). As a result of antibiotic-resistant priority pathogens, higher-than-expected co-occurrences appear in plasmids, increasing the potential for resistance dissemination. For the first time, co-occurrences of antibiotic resistance have been investigated for priority pathogens as defined by the WHO. For critically important pathogens, co-occurrences appear in plasmids, not in chromosomes, suggesting that the resistances may be epidemic and probably recent. These results hint at the need for new approaches to treating infections caused by critically important bacteria.


Asunto(s)
Antibacterianos , Genoma Bacteriano , Plásmidos/genética , Antibacterianos/farmacología , Biología Computacional , Resistencia a Múltiples Medicamentos , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana/genética
6.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834935

RESUMEN

Monoclonal antibody therapies targeting immuno-modulatory targets such as checkpoint proteins, chemokines, and cytokines have made significant impact in several areas, including cancer, inflammatory disease, and infection. However, antibodies are complex biologics with well-known limitations, including high cost for development and production, immunogenicity, a limited shelf-life because of aggregation, denaturation, and fragmentation of the large protein. Drug modalities such as peptides and nucleic acid aptamers showing high-affinity and highly selective interaction with the target protein have been proposed alternatives to therapeutic antibodies. The fundamental limitation of short in vivo half-life has prevented the wide acceptance of these alternatives. Covalent drugs, also known as targeted covalent inhibitors (TCIs), form permanent bonds to target proteins and, in theory, eternally exert the drug action, circumventing the pharmacokinetic limitation of other antibody alternatives. The TCI drug platform, too, has been slow in gaining acceptance because of its potential prolonged side-effect from off-target covalent binding. To avoid the potential risks of irreversible adverse drug effects from off-target conjugation, the TCI modality is broadening from the conventional small molecules to larger biomolecules possessing desirable properties (e.g., hydrolysis resistance, drug-action reversal, unique pharmacokinetics, stringent target specificity, and inhibition of protein-protein interactions). Here, we review the historical development of the TCI made of bio-oligomers/polymers (i.e., peptide-, protein-, or nucleic-acid-type) obtained by rational design and combinatorial screening. The structural optimization of the reactive warheads and incorporation into the targeted biomolecules enabling a highly selective covalent interaction between the TCI and the target protein is discussed. Through this review, we hope to highlight the middle to macro-molecular TCI platform as a realistic replacement for the antibody.


Asunto(s)
Anticuerpos , Diseño de Fármacos , Preparaciones Farmacéuticas , Anticuerpos/química , Anticuerpos/uso terapéutico , Preparaciones Farmacéuticas/química
7.
Environ Res ; 212(Pt C): 113356, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35489476

RESUMEN

Metagenomic approach was applied to simultaneously reveal the antibiotic resistance genes (ARGs) and antibacterial biocide & metal resistance genes (BMRGs), and the corresponding microbial hosts with high mobility during aerobic granular sludge (AGS) formation process. The results showed that the relative abundance of BMRGs was 88-123 times that of ARGs. AGS process was easier to enrich BMRGs, leading to a greater risk of drug resistance caused by BMRGs than that by ARGs. The enrichments of ARGs and BMRGs in AGS were closely related to several enhanced microbial metabolisms (i.e., cell motility, transposase and ATP-binding cassette transporters) and their corresponding regulatory genes. Several enhanced KEGG Orthologs (KO) functions, such as K01995, K01996, K01997 and K02002, might cause a positive impact on the spread of ARGs and BMRGs, and the main contributors were the largely enriched glycogens accumulating organisms. The first dominant ARGs (adeF) was carried by lots of microbial hosts, which might be enriched and propagated mainly through horizontal gene transfer. Candidatus Competibacter denitrificans simultaneously harbored ARG (cmx) and Cu related RGs (corR). Many enriched bacteria contained simultaneously multiple BMRGs (copR and corR) and mobile genetic elements (integrons and plasmids), granting them high mobility capabilities and contributing to the spread of BMRGs. This study might provide deeper understandings of the proliferation and mobility of ARGs and BMRGs, importantly, highlighted the status of BMRGs, which laid the foundation for the controlling widespread of resistance genes in AGS.


Asunto(s)
Desinfectantes , Metales Pesados , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Aguas del Alcantarillado
8.
Ecotoxicol Environ Saf ; 239: 113655, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35617901

RESUMEN

Farmed animals produce excrement containing excessive amounts of toxic heavy metals as a result of consuming compound feed as well as receiving medical treatments, and the presence of these heavy metals may aggravate the risk of spreading drug-resistance genes through co-selection during manure treatment and application processes. However, research on the association between heavy metals and antimicrobial resistance is still lacking. In this study, metagenomic sequencing was used to explore the effects of the co-selection of environmentally toxic heavy metals on the resistome in manure. A relevance network analysis showed that metal-resistance genes (MRGs), especially for copper (Cu) and zinc (Zn), were positively correlated with multiple types of antibiotic-resistance genes (ARGs) and formed a complex network. Most bacteria that co-occurred with both MRGs and ARGs simultaneously are members of Proteobacteria and accounted for 54.7% of the total microbial species in the relevance network. The remaining bacteria belonged to Firmicutes, Bacteroidetes and Actinobacteria. Among the four phyla, Cu- and Zn-resistance genes had more complex correlations with ARGs than other MRG types, reflecting the occurrence of ARG co-selection under the selective pressure of high Cu and Zn levels. In addition, approximately 64.8%, 59.1% and 68.4% of MRGs that correlated with the presence of plasmids, viruses and prophages, respectively, are Cu- or Zn-resistant, and they co-occurred with various ARGs, indicating that mobile genetic elements participate in mediating ARG co-selection in response to Cu and Zn pressure. The results indicated that the use of heavy-metal additives in feed induces the increases of drug resistance genes in manure through co-selection, aggravating the risk of antimicrobial resistance diffusion from animal farm to manure land applications.


Asunto(s)
Estiércol , Metales Pesados , Animales , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Estiércol/microbiología , Metales Pesados/toxicidad , Zinc
9.
Environ Sci Technol ; 55(20): 13913-13922, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34613706

RESUMEN

Agricultural soils are important reservoirs for antibiotic resistance genes (ARGs), which have close linkage to human health via crop production. Metal stress in environments may function as a selection pressure for antibiotic resistomes. However, there is still a lack of field studies focusing on the effect of historical mercury (Hg) contamination on antibiotic resistomes in agricultural soils. Here, we explored the ARG profile in soils with different cropping systems (paddy and upland) and linked them to legacy Hg exposure. We found that ARG profiles were significantly different between paddy and upland soils. However, both paddy and upland soils with long-term field Hg contamination harbored higher diversity and abundance of ARGs than non-polluted soils. The co-occurrence network reveals significant associations among Hg, Hg resistance genes, mobile genetic elements (MGEs), and ARGs. Together with path analysis showing legacy Hg possibly affecting soil resistomes through the shifts of soil microbiota, Hg resistance genes, and MGEs, we suggest that legacy Hg-induced potential co-selection might elevate the ARG level. Redundancy analysis further supports that legacy Hg pollution had a significant association with ARG variations in the paddy and upland soils (P < 0.01). Collectively, our results highlight the underappreciated role of legacy Hg as a potential persistent selecting agent in contributing to soil ARGs in agroecosystems.


Asunto(s)
Mercurio , Suelo , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Humanos , Microbiología del Suelo
10.
Ecotoxicol Environ Saf ; 210: 111822, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33418156

RESUMEN

Heavy metal pollution can serve as a selective pressure for antibiotic resistance genes in polluted environments. Anaerobic fermentation, as a recommended wastewater treatment method, is an effective mitigation measure of antibiotic resistance diffusion. To explore the influence of copper on anaerobic fermentation, we exposed the fermentation substrate to copper in a laboratory setup. We found that the relative abundance of 8 genes (pcoD, tetT, tetA, tetB, tetO, qnrS, ermA and ermB) increased at the late stage of fermentation and their abundance was linked to copper content. Corynebacterium and Streptococcus were significantly positively correlated with ermA, ermB, tetA and tetB (P < 0.05). The relative abundance of tetT was significantly positively correlated with Terrisporobacter, Clostridium_sensu_stricto_1 and Turicibacter (P < 0.05). We screened 90 strains of copper resistant bacteria from blank, medium and high copper test groups on days 25, 31 and 37. The number of fragments carried by a single strain increased with time while intl1, ermA and ermB existed in almost all combinations of the multiple fragments we identified. The relative abundance of these three genes were linearly correlated with Corynebacterium and Streptococcus. The antibiotic resistance genes carried by class 1 integrons gradually increased with time in the fermentation system and integrons carrying ermA and ermB most likely contributed to host survival through the late stages of fermentation. The genera Corynebacterium and Streptococcus may be the primary carriers of such integrated mobile gene element and this was most likely the reason for their rebound in relative abundance during the late fermentation stages.


Asunto(s)
Cobre/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Anaerobiosis , Bacterias/efectos de los fármacos , Bacterias/genética , Fermentación/efectos de los fármacos , Integrones/genética , Purificación del Agua
11.
Molecules ; 26(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34299552

RESUMEN

Due to the extensive application of antibiotics in medical and farming practices, the continued diversification and development of antimicrobial resistance (AMR) has attracted serious public concern. With the emergence of AMR and the failure to treat bacterial infections, it has led to an increased interest in searching for novel antibacterial substances such as natural antimicrobial substances, including microbial volatile compounds (MVCs), plant-derived compounds, and antimicrobial peptides. However, increasing observations have revealed that AMR is associated not only with the use of antibacterial substances but also with tolerance to heavy metals existing in nature and being used in agriculture practice. Additionally, bacteria respond to environmental stresses, e.g., nutrients, oxidative stress, envelope stress, by employing various adaptive strategies that contribute to the development of AMR and the survival of bacteria. Therefore, we need to elucidate thoroughly the factors and conditions affecting AMR to take comprehensive measures to control the development of AMR.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Productos Biológicos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Animales , Humanos
12.
J Basic Microbiol ; 59(10): 979-991, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31469183

RESUMEN

This study investigates the effect of metals (cadmium, lead, mercury, and tellurium) and organic pollutants (benzene, diesel, lindane, and xylene) on a dinoflagellate-Prorocentrum sigmoides Böhm-and its associated culturable bacteria. Two bacterial cultures (Bacillus subtilis strain PD005 and B. xiamensis strain PD006) were isolated from P. sigmoides and characterized by scanning electron microscopy, 16S ribosomal RNA sequencing, biochemical analyses, and growth curve studies. This study points to a mutualistic relationship between P. sigmoides and its associated Bacillus isolates. P. sigmoides enhanced the growth of its associated Bacillus spp., through the secretion of extracellular exudates. In return, both Bacillus isolates contributed to the resistance of P. sigmoides to metals and organic pollutants. P. sigmoides and both Bacillus isolates exhibited concentration-dependent responses to metals and organic pollutants. An intriguing feature was the similar response of P. sigmoides and its associated Bacillus isolates to mercury and cadmium, indicating a co-selection of mercury and cadmium resistance. This provides support to the "dinoflagellate host-phycosphere bacteria" behaving as a single functional unit. However, the sensitivity profiles of P. sigmoides and its associated Bacillus isolates are different with respect to metals versus organic pollutants. These aspects need to be addressed in future studies to unravel the effect of metal and organic pollutants on dinoflagellates, an important component of the phytoplankton community, and to discern the influence of associated "phycosphere" bacteria on the response of dinoflagellates to pollutants.


Asunto(s)
Bacillus/efectos de los fármacos , Dinoflagelados/efectos de los fármacos , Dinoflagelados/microbiología , Hidrocarburos/farmacología , Metales/farmacología , Contaminantes Químicos del Agua/farmacología , Bacillus/genética , Bacillus/crecimiento & desarrollo , Bacillus/ultraestructura , Coevolución Biológica , ADN Bacteriano/genética , Dinoflagelados/metabolismo , Resistencia a Medicamentos , Microscopía Electrónica de Rastreo , ARN Ribosómico 16S/genética , Simbiosis
13.
Ecol Lett ; 21(1): 128-137, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29148170

RESUMEN

Species extinctions from local communities negatively affect ecosystem functioning. Ecological mechanisms underlying these impacts are well studied, but the role of evolutionary processes is rarely assessed. Using a long-term field experiment, we tested whether natural selection in plant communities increased biodiversity effects on productivity. We re-assembled communities with 8-year co-selection history adjacent to communities with identical species composition but no history of co-selection ('naïve communities'). Monocultures, and in particular mixtures of two to four co-selected species, were more productive than their corresponding naïve communities over 4 years in soils with or without co-selected microbial communities. At the highest diversity level of eight plant species, no such differences were observed. Our findings suggest that plant community evolution can lead to rapid increases in ecosystem functioning at low diversity but may take longer at high diversity. This effect was not modified by treatments simulating co-evolutionary processes between plants and soil organisms.


Asunto(s)
Biodiversidad , Plantas , Ecología , Ecosistema , Desarrollo de la Planta , Suelo
14.
Plasmid ; 99: 68-71, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30193909

RESUMEN

Multi-antibiotic resistant (MAR) bacteria cost billions in medical care and tens of thousands of lives annually but perennial calls to limit agricultural and other misuse of antibiotics and to fund antibiotic discovery have not slowed this MAR deluge. Since mobile genetic elements (MGEs) stitch single antibiotic resistance genes into clinically significant MAR arrays, it is high time to focus on how MGEs generate MAR and how disabling them could ameliorate the MAR problem. However, to consider only antibiotics as the drivers of MAR is to miss the significant impact of exposure to non-antibiotic toxic chemicals, specifically metals, on the persistence and spread of MAR. Toxic metals were among the earliest discovered targets of plasmid-encoded resistance genes. Recent genomic epidemiology clearly demonstrated the co-prevalence of metal resistances and antibiotic multi-resistance, uniquely in humans and domestic animals. Metal resistances exploit the same, ancient "transportation infrastructure" of plasmids, transposons, and integrons that spread the antibiotic resistance genes and will continue to do so even if all antibiotic misuse were stopped today and new antibiotics were flowing from the pipeline monthly. In a key experiment with primates, continuous oral exposure to mercury (Hg) released from widely used dental amalgam fillings co-selected for MAR bacteria in the oral and fecal commensal microbiomes and, most importantly, when amalgams were replaced with non-metal fillings, MAR bacteria declined dramatically. Could that also be happening on the larger public health scale as use of amalgam restorations is curtailed or banned in many countries? This commentary covers salient past and recent findings of key metal-antibiotic resistance associations and proposes that the shift from phenotyping to genotyping in surveillance of resistance loci will allow a test of whether declining exposure to this leading source of Hg is accompanied by a decline in MAR compared to countries where amalgam is still used. If this hypothesis is correct, the limited success of antibiotic stewardship practices may be because MAR is also being driven by continuous, daily exposure to Hg, a non-antibiotic toxicant widely used in humans.


Asunto(s)
Bacterias/genética , Farmacorresistencia Bacteriana Múltiple/genética , Secuencias Repetitivas Esparcidas/genética , Plásmidos/genética , Programas de Optimización del Uso de los Antimicrobianos , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , Amalgama Dental/toxicidad , Humanos , Secuencias Repetitivas Esparcidas/efectos de los fármacos , Mercurio/toxicidad , Metales/toxicidad
15.
Biometals ; 31(1): 1-5, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29302860

RESUMEN

Metal ions are known selective agents for antibiotic resistance and frequently accumulate in natural environments due to the anthropogenic activities. However, the action of metals that cause the antibiotic resistance is not known for all bacteria. The present work is aimed to investigate the co-selection of metals and antibiotic resistance in Comamonas acidovorans. Tolerance profile of 16 metals revealed that the strain could tolerate high concentrations of toxic metals i.e., Cr (710 ppm), As (380 ppm), Cd (320 ppm), Pb (305 ppm) and Hg (205 ppm). Additionally, metal tolerant phenotypes were subjected to antibiotic resistance profiling; wherein several metal tolerant phenotypes (Cr 1.35-fold; Co-1.33 fold; Mn-1.29 fold) were resistant, while other metal tolerant phenotypes (Mg 1.32-fold; Hg 1.29-fold; Cu 1.28-fold) were susceptible than control phenotype. Metal accumulation may alter the metabolism of C. acidovorans that activates or inactivates the genes responsible for antibiotic resistance, resulting in the resistance and/or susceptibility pattern observed in metal resistant phenotypes.


Asunto(s)
Arsénico/toxicidad , Cadmio/toxicidad , Cromo/toxicidad , Delftia acidovorans/efectos de los fármacos , Plomo/toxicidad , Mercurio/toxicidad , Antibacterianos/farmacología , Delftia acidovorans/crecimiento & desarrollo , Delftia acidovorans/metabolismo , Interacciones Farmacológicas , Farmacorresistencia Bacteriana , Tolerancia a Medicamentos , Pruebas de Sensibilidad Microbiana , Estreptomicina/farmacología , Tetraciclina/farmacología , beta-Lactamas/farmacología
16.
Food Microbiol ; 64: 23-32, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28213031

RESUMEN

Antimicrobial resistance is a recognized public health challenge that since its emergence limits the therapeutic options available to veterinarians and clinicians alike, when treatment is warranted. This development is further compounded by the paucity of new antibiotics. The agri-food industry benefits from the availability of antimicrobial compounds for food-animal production and crop protection. Nonetheless, their improper use can result in the selection for bacteria that are phenotypically resistant to these compounds. Another class of agents used in agriculture includes various cationic metals that can be included in animal diets as nutritional supplements or spread on pastures to support crop growth and protection. Heavy metals, in particular, are giving rise to concerns among public health professionals, as they can persist in the environment remaining stable for prolonged periods. Moreover, bacteria can also exhibit resistance to these chemical elements and the genes encoding this phenotype can be physically localized to plasmids that may also contain one or more antimicrobial resistance-encoding gene(s). This paper reviews our current understanding of the role that bacteria play in expressing resistance to heavy metals. It will describe how heavy metals are used in agri-food production, and explore evidence available to link resistance to heavy metals and antimicrobial compounds. In addition, possible solutions to reduce the impact of heavy metal resistance are also discussed, including using organic minerals and reducing the level of trace minerals in animal feed rations.


Asunto(s)
Agricultura , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Farmacorresistencia Bacteriana Múltiple , Metales Pesados/metabolismo , Metales Pesados/farmacología , Alimentación Animal/análisis , Animales , Bacterias/metabolismo , Disponibilidad Biológica , Cadmio , Sulfato de Cobre , Plomo , Plásmidos/genética , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Óxido de Zinc
17.
J Environ Sci (China) ; 62: 138-144, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29289285

RESUMEN

In real environment, it is unlikely that contaminants exist singly; environmental contamination with chemical mixtures is a norm. However, the impacts of chemical mixtures on environmental quality and ecosystem health have been overlooked in the past. Among the complex interactions between different contaminants, their relationship with the rise of antibiotic resistance (AR) is an emerging environmental concern. In this paper, we review recent progresses on how chemicals or chemical mixtures promote AR. We propose that, through co-selection, agents causing stress to bacteria may induce AR. The mechanisms for chemical mixtures to promote AR are also discussed. We also propose that, mechanistic understanding of co-selection of chemical mixtures for AR should be a future research priority in environmental health research.


Asunto(s)
Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Contaminantes Ambientales/toxicidad , Salud Ambiental , Investigación , Medición de Riesgo
18.
Water Res ; 252: 121208, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309064

RESUMEN

Secondary municipal-treated wastewater irrigation may introduce residual antibiotics into the agricultural systems contaminated with certain heavy metals, ultimately leading to the coexistence of antibiotics and heavy metals. The coexistence may induce synergistic resistance to both in the microbial community. Here, we investigated the effects of long-term municipal-treated irrigation for rice on the microbiome and resistome. The results showed that the target antibiotics were undetectable in edible grains, and the heavy metal concentrations did not exceed the standard in edible rice grains. Heavy metal resistance genes (MRGs) ruvB and acn antibiotic resistance genes (ARGs) sul1 and sul2 were the dominating resistant genes. The coexistence of antibiotics and heavy metals affected the microbial community and promoted metal and antibiotic resistance. Network analysis revealed that Proteobacteria were the most influential hosts for MRGs, ARGs, and integrons, and co-selection may serve as a potential mechanism for resistance maintenance. MRG czcA and ARG sul1 can be recommended as model genes to study the co-selection of ARGs and MRGs in environments. The obtained results highlight the importance of considering the co-occurrence of heavy metals and antibiotics while developing effective methods to prevent the transmission of ARGs. These findings are critical for assessing the possible human health concerns associated with secondary municipal-treated wastewater irrigation for agriculture and improving the understanding of the coexistence of heavy metals and antibiotics.


Asunto(s)
Metales Pesados , Aguas Residuales , Humanos , Genes Bacterianos , Antibacterianos/farmacología , Metales Pesados/análisis , Farmacorresistencia Microbiana/genética
19.
Water Res ; 260: 121957, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941868

RESUMEN

Metals/metalloids, being ubiquitous in the environment, can function as a co-selective pressure on antibiotic resistance genes (ARGs) threatening human health. However, the effect of geogenic arsenic (As) on groundwater antibiotic resistomes and their health risks remain largely unknown. Here, we systematically analyzed bacterial communities, pathogenic bacteria, antibiotic resistomes, and in-situ multidrug-resistant isolates with the assessment of the health risk of ARGs and the pathogenicity of their hosts in high As groundwater from the Hetao basin, Northwestern China. We found that long-term geogenic As exposure shifted the assembly of resistomes and resulted in a high abundance and diversity of ARGs in groundwater. Significantly positive associations among As, As cycling genes, ARGs, and mobile genetic elements (MGEs) revealed by network and pathway analyses, together with genetic evidence of As-tolerant multidrug-resistant isolates by whole genomic sequencing, robustly indicate the geogenic As-induced co-selection for antibiotic resistance in groundwater. Variance partitioning analysis further confirmed the determinative role of geogenic As in groundwater resistomes, with As species and As cycling genes as the core abiotic and biotic drivers, respectively. More seriously, geogenic As accelerated the prevalence of high-risk ARGs and multidrug-resistant bacteria. Our findings highlight the significance of geogenic As-induced co-selection for antibiotic resistance in groundwater and the hidden role of geogenic metals/metalloids in increasing antibiotic resistance. This study provides a basis for groundwater management of both high As and ARGs for human health.


Asunto(s)
Arsénico , Agua Subterránea , Agua Subterránea/microbiología , Agua Subterránea/química , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , China , Contaminantes Químicos del Agua , Bacterias/efectos de los fármacos , Bacterias/genética
20.
Antibiotics (Basel) ; 13(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534682

RESUMEN

The global spread of antimicrobial resistance has become a prominent issue in both veterinary and public health in the 21st century. The extensive use of amoxicillin, a beta-lactam antibiotic, and consequent resistance development are particularly alarming in food-producing animals, with a focus on the swine and poultry sectors. Another beta-lactam, cefotaxime, is widely utilized in human medicine, where the escalating resistance to third- and fourth-generation cephalosporins is a major concern. The aim of this study was to simulate the development of phenotypic and genotypic resistance to beta-lactam antibiotics, focusing on amoxicillin and cefotaxime. The investigation of the minimal inhibitory concentrations (MIC) of antibiotics was performed at 1×, 10×, 100×, and 1000× concentrations using the modified microbial evolution and growth arena (MEGA-plate) method. Our results indicate that amoxicillin significantly increased the MIC values of several tested antibiotics, except for oxytetracycline and florfenicol. In the case of cefotaxime, this increase was observed in all classes. A total of 44 antimicrobial resistance genes were identified in all samples. Chromosomal point mutations, particularly concerning cefotaxime, revealed numerous complex mutations, deletions, insertions, and single nucleotide polymorphisms (SNPs) that were not experienced in the case of amoxicillin. The findings suggest that, regarding amoxicillin, the point mutation of the acrB gene could explain the observed MIC value increases due to the heightened activity of the acrAB-tolC efflux pump system. However, under the influence of cefotaxime, more intricate processes occurred, including complex amino acid substitutions in the ampC gene promoter region, increased enzyme production induced by amino acid substitutions and SNPs, as well as mutations in the acrR and robA repressor genes that heightened the activity of the acrAB-tolC efflux pump system. These changes may contribute to the significant MIC increases observed for all tested antibiotics. The results underscore the importance of understanding cross-resistance development between individual drugs when choosing clinical alternative drugs. The point mutations in the mdtB and emrR genes may also contribute to the increased activity of the mdtABC-tolC and emrAB-tolC pump systems against all tested antibiotics. The exceptionally high mutation rate induced by cephalosporins justifies further investigations to clarify the exact mechanism behind.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA