Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.551
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(5): 923-939.e14, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36868214

RESUMEN

We conduct high coverage (>30×) whole-genome sequencing of 180 individuals from 12 indigenous African populations. We identify millions of unreported variants, many predicted to be functionally important. We observe that the ancestors of southern African San and central African rainforest hunter-gatherers (RHG) diverged from other populations >200 kya and maintained a large effective population size. We observe evidence for ancient population structure in Africa and for multiple introgression events from "ghost" populations with highly diverged genetic lineages. Although currently geographically isolated, we observe evidence for gene flow between eastern and southern Khoesan-speaking hunter-gatherer populations lasting until ∼12 kya. We identify signatures of local adaptation for traits related to skin color, immune response, height, and metabolic processes. We identify a positively selected variant in the lightly pigmented San that influences pigmentation in vitro by regulating the enhancer activity and gene expression of PDPK1.


Asunto(s)
Aclimatación , Pigmentación de la Piel , Humanos , Secuenciación Completa del Genoma , Densidad de Población , África , Proteínas Quinasas Dependientes de 3-Fosfoinosítido
2.
Annu Rev Cell Dev Biol ; 39: 145-174, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843926

RESUMEN

In 1952, Alan Turing published the reaction-diffusion (RD) mathematical framework, laying the foundations of morphogenesis as a self-organized process emerging from physicochemical first principles. Regrettably, this approach has been widely doubted in the field of developmental biology. First, we summarize Turing's line of thoughts to alleviate the misconception that RD is an artificial mathematical construct. Second, we discuss why phenomenological RD models are particularly effective for understanding skin color patterning at the meso/macroscopic scales, without the need to parameterize the profusion of variables at lower scales. More specifically, we discuss how RD models (a) recapitulate the diversity of actual skin patterns, (b) capture the underlying dynamics of cellular interactions, (c) interact with tissue size and shape, (d) can lead to ordered sequential patterning, (e) generate cellular automaton dynamics in lizards and snakes, (f) predict actual patterns beyond their statistical features, and (g) are robust to model variations. Third, we discuss the utility of linear stability analysis and perform numerical simulations to demonstrate how deterministic RD emerges from the underlying chaotic microscopic agents.


Asunto(s)
Modelos Biológicos , Pigmentación de la Piel , Animales , Morfogénesis , Comunicación Celular , Vertebrados , Difusión , Tipificación del Cuerpo
3.
Cell ; 172(1-2): 318-330.e18, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328919

RESUMEN

Color vision extracts spectral information by comparing signals from photoreceptors with different visual pigments. Such comparisons are encoded by color-opponent neurons that are excited at one wavelength and inhibited at another. Here, we examine the circuit implementation of color-opponent processing in the Drosophila visual system by combining two-photon calcium imaging with genetic dissection of visual circuits. We report that color-opponent processing of UVshort/blue and UVlong/green is already implemented in R7/R8 inner photoreceptor terminals of "pale" and "yellow" ommatidia, respectively. R7 and R8 photoreceptors of the same type of ommatidia mutually inhibit each other directly via HisCl1 histamine receptors and receive additional feedback inhibition that requires the second histamine receptor Ort. Color-opponent processing at the first visual synapse represents an unexpected commonality between Drosophila and vertebrates; however, the differences in the molecular and cellular implementation suggest that the same principles evolved independently.


Asunto(s)
Percepción de Color , Visión de Colores , Proteínas de Drosophila/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Receptores Histamínicos/metabolismo , Animales , Drosophila , Proteínas de Drosophila/genética , Retroalimentación Fisiológica , Células Fotorreceptoras de Invertebrados/fisiología , Receptores Histamínicos/genética
4.
Cell ; 174(6): 1507-1521.e16, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100183

RESUMEN

The hetero-oligomeric chaperonin of eukarya, TRiC, is required to fold the cytoskeletal protein actin. The simpler bacterial chaperonin system, GroEL/GroES, is unable to mediate actin folding. Here, we use spectroscopic and structural techniques to determine how TRiC promotes the conformational progression of actin to the native state. We find that actin fails to fold spontaneously even in the absence of aggregation but populates a kinetically trapped, conformationally dynamic state. Binding of this frustrated intermediate to TRiC specifies an extended topology of actin with native-like secondary structure. In contrast, GroEL stabilizes bound actin in an unfolded state. ATP binding to TRiC effects an asymmetric conformational change in the chaperonin ring. This step induces the partial release of actin, priming it for folding upon complete release into the chaperonin cavity, mediated by ATP hydrolysis. Our results reveal how the unique features of TRiC direct the folding pathway of an obligate eukaryotic substrate.


Asunto(s)
Actinas/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Actinas/química , Adenosina Trifosfato/metabolismo , Animales , Bovinos , Chaperonina 10/química , Chaperonina 60/química , Microscopía por Crioelectrón , Desoxirribonucleasa I/química , Desoxirribonucleasa I/metabolismo , Medición de Intercambio de Deuterio , Humanos , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
5.
Cell ; 172(3): 605-617.e11, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29336887

RESUMEN

The bacterial chaperonin GroEL and its cofactor, GroES, form a nano-cage for a single molecule of substrate protein (SP) to fold in isolation. GroEL and GroES undergo an ATP-regulated interaction cycle to close and open the folding cage. GroEL consists of two heptameric rings stacked back to back. Here, we show that GroEL undergoes transient ring separation, resulting in ring exchange between complexes. Ring separation occurs upon ATP-binding to the trans ring of the asymmetric GroEL:7ADP:GroES complex in the presence or absence of SP and is a consequence of inter-ring negative allostery. We find that a GroEL mutant unable to perform ring separation is folding active but populates symmetric GroEL:GroES2 complexes, where both GroEL rings function simultaneously rather than sequentially. As a consequence, SP binding and release from the folding chamber is inefficient, and E. coli growth is impaired. We suggest that transient ring separation is an integral part of the chaperonin mechanism.


Asunto(s)
Chaperonina 60/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Mutación , Unión Proteica
6.
Cell ; 171(2): 427-439.e21, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985565

RESUMEN

Parrot feathers contain red, orange, and yellow polyene pigments called psittacofulvins. Budgerigars are parrots that have been extensively bred for plumage traits during the last century, but the underlying genes are unknown. Here we use genome-wide association mapping and gene-expression analysis to map the Mendelian blue locus, which abolishes yellow pigmentation in the budgerigar. We find that the blue trait maps to a single amino acid substitution (R644W) in an uncharacterized polyketide synthase (MuPKS). When we expressed MuPKS heterologously in yeast, yellow pigments accumulated. Mass spectrometry confirmed that these yellow pigments match those found in feathers. The R644W substitution abolished MuPKS activity. Furthermore, gene-expression data from feathers of different bird species suggest that parrots acquired their colors through regulatory changes that drive high expression of MuPKS in feather epithelia. Our data also help formulate biochemical models that may explain natural color variation in parrots. VIDEO ABSTRACT.


Asunto(s)
Proteínas Aviares/genética , Plumas/fisiología , Melopsittacus/genética , Pigmentos Biológicos/biosíntesis , Polienos/metabolismo , Sintasas Poliquetidas/genética , Secuencia de Aminoácidos , Animales , Proteínas Aviares/metabolismo , Plumas/anatomía & histología , Plumas/química , Expresión Génica , Genoma , Estudio de Asociación del Genoma Completo , Melopsittacus/anatomía & histología , Melopsittacus/fisiología , Pigmentación , Sintasas Poliquetidas/metabolismo , Polimorfismo de Nucleótido Simple , Regeneración , Alineación de Secuencia
7.
Annu Rev Genet ; 57: 135-156, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37487589

RESUMEN

Vertebrates exhibit a wide range of color patterns, which play critical roles in mediating intra- and interspecific communication. Because of their diversity and visual accessibility, color patterns offer a unique and fascinating window into the processes underlying biological organization. In this review, we focus on describing many of the general principles governing the formation and evolution of color patterns in different vertebrate groups. We characterize the types of patterns, review the molecular and developmental mechanisms by which they originate, and discuss their role in constraining or facilitating evolutionary change. Lastly, we outline outstanding questions in the field and discuss different approaches that can be used to address them. Overall, we provide a unifying conceptual framework among vertebrate systems that may guide research into naturally evolved mechanisms underlying color pattern formation and evolution.


Asunto(s)
Evolución Biológica , Pigmentación , Animales , Pigmentación/genética , Vertebrados/genética
8.
Annu Rev Neurosci ; 42: 169-186, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857477

RESUMEN

Daylight vision begins when light activates cone photoreceptors in the retina, creating spatial patterns of neural activity. These cone signals are then combined and processed in downstream neural circuits, ultimately producing visual perception. Recent technical advances have made it possible to deliver visual stimuli to the retina that probe this processing by the visual system at its elementary resolution of individual cones. Physiological recordings from nonhuman primate retinas reveal the spatial organization of cone signals in retinal ganglion cells, including how signals from cones of different types are combined to support both spatial and color vision. Psychophysical experiments with human subjects characterize the visual sensations evoked by stimulating a single cone, including the perception of color. Future combined physiological and psychophysical experiments focusing on probing the elementary visual inputs are likely to clarify how neural processing generates our perception of the visual world.


Asunto(s)
Primates/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Visión Ocular/fisiología , Animales , Visión de Colores/fisiología , Percepción de Forma/fisiología , Técnicas de Placa-Clamp , Estimulación Luminosa , Células Ganglionares de la Retina/fisiología , Análisis de la Célula Individual , Percepción Visual/fisiología
9.
Proc Natl Acad Sci U S A ; 121(23): e2308531121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805288

RESUMEN

Many animals exhibit remarkable colors that are produced by the constructive interference of light reflected from arrays of intracellular guanine crystals. These animals can fine-tune their crystal-based structural colors to communicate with each other, regulate body temperature, and create camouflage. While it is known that these changes in color are caused by changes in the angle of the crystal arrays relative to incident light, the cellular machinery that drives color change is not understood. Here, using a combination of 3D focused ion beam scanning electron microscopy (FIB-SEM), micro-focused X-ray diffraction, superresolution fluorescence light microscopy, and pharmacological perturbations, we characterized the dynamics and 3D cellular reorganization of crystal arrays within zebrafish iridophores during norepinephrine (NE)-induced color change. We found that color change results from a coordinated 20° tilting of the intracellular crystals, which alters both crystal packing and the angle at which impinging light hits the crystals. Importantly, addition of the dynein inhibitor dynapyrazole-a completely blocked this NE-induced red shift by hindering crystal dynamics upon NE addition. FIB-SEM and microtubule organizing center (MTOC) mapping showed that microtubules arise from two MTOCs located near the poles of the iridophore and run parallel to, and in between, individual crystals. This suggests that dynein drives crystal angle change in response to NE by binding to the limiting membrane surrounding individual crystals and walking toward microtubule minus ends. Finally, we found that intracellular cAMP regulates the color change process. Together, our results provide mechanistic insight into the cellular machinery that drives structural color change.


Asunto(s)
Pez Cebra , Animales , Norepinefrina/metabolismo , Norepinefrina/farmacología , Color , Pigmentación/fisiología , Microscopía Electrónica de Rastreo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/química
10.
Proc Natl Acad Sci U S A ; 121(9): e2313617121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377215

RESUMEN

Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.e., photonic properties) due to the nanoscopic lamellar structures formed post extrusion. By dynamically modulating UV-light irradiance during printing, we can program the color of the printed material to access a broad spectrum of visible light with a single ink while also creating color gradients not previously possible. We unveil the mechanism of this approach using a combination of coarse-grained simulations, rheological measurements, and structural characterizations. Central to the assembly mechanism is the matching of the cross-linking timescale with the assembly timescale, which leads to kinetic trapping of the assembly process that evolves structural color from blue to red driven by solvent evaporation. This strategy of integrating cross-linking chemistry and out-of-equilibrium processing opens an avenue for spatiotemporal control of self-assembled nanostructures during additive manufacturing.

11.
Proc Natl Acad Sci U S A ; 121(11): e2317430121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437540

RESUMEN

Brown-and-white giant pandas (hereafter brown pandas) are distinct coat color mutants found exclusively in the Qinling Mountains, Shaanxi, China. However, its genetic mechanism has remained unclear since their discovery in 1985. Here, we identified the genetic basis for this coat color variation using a combination of field ecological data, population genomic data, and a CRISPR-Cas9 knockout mouse model. We de novo assembled a long-read-based giant panda genome and resequenced the genomes of 35 giant pandas, including two brown pandas and two family trios associated with a brown panda. We identified a homozygous 25-bp deletion in the first exon of Bace2, a gene encoding amyloid precursor protein cleaving enzyme, as the most likely genetic basis for brown-and-white coat color. This deletion was further validated using PCR and Sanger sequencing of another 192 black giant pandas and CRISPR-Cas9 edited knockout mice. Our investigation revealed that this mutation reduced the number and size of melanosomes of the hairs in knockout mice and possibly in the brown panda, further leading to the hypopigmentation. These findings provide unique insights into the genetic basis of coat color variation in wild animals.


Asunto(s)
Ursidae , Animales , Ratones , Ursidae/genética , Péptido Hidrolasas , Precursor de Proteína beta-Amiloide , Animales Salvajes , Ratones Noqueados
12.
Proc Natl Acad Sci U S A ; 121(10): e2313603121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38416682

RESUMEN

Color naming in natural languages is not arbitrary: It reflects efficient partitions of perceptual color space [T. Regier, P. Kay, N. Khetarpal, Proc. Natl. Acad. Sci. U.S.A. 104, 1436-1441 (2007)] modulated by the relative needs to communicate about different colors [C. Twomey, G. Roberts, D. Brainard, J. Plotkin, Proc. Natl. Acad. Sci. U.S.A. 118, e2109237118 (2021)]. These psychophysical and communicative constraints help explain why languages around the world have remarkably similar, but not identical, mappings of colors to color terms. Languages converge on a small set of efficient representations.But languages also evolve, and the number of terms in a color vocabulary may change over time. Here we show that history, i.e. the existence of an antecedent color vocabulary, acts as a nonadaptive constraint that biases the choice of efficient solution as a language transitions from a vocabulary of size [Formula: see text] to [Formula: see text] terms. Moreover, as efficient vocabularies evolve to include more terms they explore a smaller fraction of all possible efficient vocabularies compared to equally sized vocabularies constructed de novo. This path dependence of the cultural evolution of color naming presents an opportunity. Historical constraints can be used to reconstruct ancestral color vocabularies, allowing us to answer long-standing questions about the evolutionary sequences of color words, and enabling us to draw inferences from phylogenetic patterns of language change.


Asunto(s)
Lenguaje , Vocabulario , Filogenia , Color , Comunicación , Percepción de Color
13.
Proc Natl Acad Sci U S A ; 120(18): e2215193120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37104475

RESUMEN

Many animals undergo changes in functional colors during development, requiring the replacement of integument or pigment cells. A classic example of defensive color switching is found in hatchling lizards, which use conspicuous tail colors to deflect predator attacks away from vital organs. These tail colors usually fade to concealing colors during ontogeny. Here, we show that the ontogenetic blue-to-brown tail color change in Acanthodactylus beershebensis lizards results from the changing optical properties of single types of developing chromatophore cells. The blue tail colors of hatchlings are produced by incoherent scattering from premature guanine crystals in underdeveloped iridophore cells. Cryptic tail colors emerge during chromatophore maturation upon reorganization of the guanine crystals into a multilayer reflector concomitantly with pigment deposition in the xanthophores. Ontogenetic changes in adaptive colors can thus arise not via the exchange of different optical systems, but by harnessing the timing of natural chromatophore development. The incoherent scattering blue color here differs from the multilayer interference mechanism used in other blue-tailed lizards, indicating that a similar trait can be generated in at least two ways. This supports a phylogenetic analysis showing that conspicuous tail colors are prevalent in lizards and that they evolved convergently. Our results provide an explanation for why certain lizards lose their defensive colors during ontogeny and yield a hypothesis for the evolution of transiently functional adaptive colors.


Asunto(s)
Cromatóforos , Lagartos , Animales , Filogenia , Pigmentación , Piel
14.
Proc Natl Acad Sci U S A ; 120(37): e2303060120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669385

RESUMEN

Ecological interactions can promote phenotypic diversification in sympatric species. While competition can enhance trait divergence, other ecological interactions may promote convergence in sympatric species. Within butterflies, evolutionary convergences in wing color patterns have been reported between distantly related species, especially in females of palatable species, where mimetic color patterns are promoted by predator communities shared with defended species living in sympatry. Wing color patterns are also often involved in species recognition in butterflies, and divergence in this trait has been reported in closely related species living in sympatry as a result of reproductive character displacement. Here, we investigate the effect of sympatry between species on the convergence vs. divergence of their wing color patterns in relation to phylogenetic distance, focusing on the iconic swallowtail butterflies (family Papilionidae). We developed an unsupervised machine learning-based method to estimate phenotypic distances among wing color patterns of 337 species, enabling us to finely quantify morphological diversity at the global scale among species and allowing us to compute pairwise phenotypic distances between sympatric and allopatric species pairs. We found phenotypic convergence in sympatry, stronger among distantly related species, while divergence was weaker and restricted to closely related males. The convergence was stronger among females than males, suggesting that differential selective pressures acting on the two sexes drove sexual dimorphism. Our results highlight the significant effect of ecological interactions driven by predation pressures on trait diversification in Papilionidae and provide evidence for the interaction between phylogenetic proximity and ecological interactions in sympatry, acting on macroevolutionary patterns of phenotypic diversification.


Asunto(s)
Mariposas Diurnas , Animales , Femenino , Masculino , Evolución Biológica , Filogenia , Simpatría
15.
Proc Natl Acad Sci U S A ; 120(33): e2301411120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552755

RESUMEN

The acquisition of novel sexually dimorphic traits poses an evolutionary puzzle: How do new traits arise and become sex-limited? Recently acquired color vision, sexually dimorphic in animals like primates and butterflies, presents a compelling model for understanding how traits become sex-biased. For example, some Heliconius butterflies uniquely possess UV (ultraviolet) color vision, which correlates with the expression of two differentially tuned UV-sensitive rhodopsins, UVRh1 and UVRh2. To discover how such traits become sexually dimorphic, we studied Heliconius charithonia, which exhibits female-specific UVRh1 expression. We demonstrate that females, but not males, discriminate different UV wavelengths. Through whole-genome shotgun sequencing and assembly of the H. charithonia genome, we discovered that UVRh1 is present on the W chromosome, making it obligately female-specific. By knocking out UVRh1, we show that UVRh1 protein expression is absent in mutant female eye tissue, as in wild-type male eyes. A PCR survey of UVRh1 sex-linkage across the genus shows that species with female-specific UVRh1 expression lack UVRh1 gDNA in males. Thus, acquisition of sex linkage is sufficient to achieve female-specific expression of UVRh1, though this does not preclude other mechanisms, like cis-regulatory evolution from also contributing. Moreover, both this event, and mutations leading to differential UV opsin sensitivity, occurred early in the history of Heliconius. These results suggest a path for acquiring sexual dimorphism distinct from existing mechanistic models. We propose a model where gene traffic to heterosomes (the W or the Y) genetically partitions a trait by sex before a phenotype shifts (spectral tuning of UV sensitivity).


Asunto(s)
Mariposas Diurnas , Visión de Colores , Animales , Femenino , Visión de Colores/genética , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Ojo/metabolismo , Opsinas/genética , Opsinas/metabolismo , Rodopsina/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(18): e2300545120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098066

RESUMEN

The Old World macaque monkey and New World common marmoset provide fundamental models for human visual processing, yet the human ancestral lineage diverged from these monkey lineages over 25 Mya. We therefore asked whether fine-scale synaptic wiring in the nervous system is preserved across these three primate families, despite long periods of independent evolution. We applied connectomic electron microscopy to the specialized foveal retina where circuits for highest acuity and color vision reside. Synaptic motifs arising from the cone photoreceptor type sensitive to short (S) wavelengths and associated with "blue-yellow" (S-ON and S-OFF) color-coding circuitry were reconstructed. We found that distinctive circuitry arises from S cones for each of the three species. The S cones contacted neighboring L and M (long- and middle-wavelength sensitive) cones in humans, but such contacts were rare or absent in macaques and marmosets. We discovered a major S-OFF pathway in the human retina and established its absence in marmosets. Further, the S-ON and S-OFF chromatic pathways make excitatory-type synaptic contacts with L and M cone types in humans, but not in macaques or marmosets. Our results predict that early-stage chromatic signals are distinct in the human retina and imply that solving the human connectome at the nanoscale level of synaptic wiring will be critical for fully understanding the neural basis of human color vision.


Asunto(s)
Visión de Colores , Conectoma , Animales , Humanos , Callithrix , Percepción de Color/fisiología , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Macaca , Cercopithecidae
17.
Proc Natl Acad Sci U S A ; 120(45): e2312077120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37871159

RESUMEN

Vertebrate groups have evolved strikingly diverse color patterns. However, it remains unknown to what extent the diversification of such patterns has been shaped by the proximate, developmental mechanisms that regulate their formation. While these developmental mechanisms have long been inaccessible empirically, here we take advantage of recent insights into rodent pattern formation to investigate the role of development in shaping pattern diversification across rodents. Based on a broad survey of museum specimens, we first establish that various rodents have independently evolved diverse patterns consisting of longitudinal stripes, varying across species in number, color, and relative positioning. We then interrogate this diversity using a simple model that incorporates recent molecular and developmental insights into stripe formation in African striped mice. Our results suggest that, on the one hand, development has facilitated pattern diversification: The diversity of patterns seen across species can be generated by a single developmental process, and small changes in this process suffice to recapitulate observed evolutionary changes in pattern organization. On the other hand, development has constrained diversification: Constraints on stripe positioning limit the scope of evolvable patterns, and although pattern organization appears at first glance phylogenetically unconstrained, development turns out to impose a cryptic constraint. Altogether, this work reveals that pattern diversification in rodents can in part be explained by the underlying development and illustrates how pattern formation models can be leveraged to interpret pattern evolution.


Asunto(s)
Evolución Biológica , Roedores , Ratones , Animales , Filogenia
18.
Proc Natl Acad Sci U S A ; 120(12): e2220032120, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36917662

RESUMEN

Finely controlled flow forces in extrusion-based additive manufacturing can be exploited to program the self-assembly of malleable nanostructures in soft materials by integrating bottom-up design into a top-down processing approach. Here, we leverage the processing parameters offered by direct ink-writing (DIW) to reconfigure the photonic chiral nematic liquid crystalline phase in hydroxypropyl cellulose (HPC) solutions prior to deposition on the writing substrate to direct structural evolution from a particular initial condition. Moreover, we incorporate polyethylene glycol (PEG) into iridescent HPC inks to form a physically cross-linked network capable of inducing kinetic arrest of the cholesteric/chiral pitch at length scales that selectively reflect light throughout the visible spectrum. Based on thorough rheological measurements, we have found that printing the chiral inks at a shear rate where HPC molecules adopt pseudonematic state results in uniform chiral recovery following flow cessation and enhanced optical properties in the solid state. Printing chiral inks at high shear rates, on the other hand, shifts the monochromatic appearance of the extruded filaments to a highly angle-dependent state, suggesting a preferred orientation of the chiral domains. The optical response of these filaments when exposed to mechanical deformation can be used in the development of optical sensors.

19.
J Neurosci ; 44(18)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548340

RESUMEN

A long-standing question in vision science is how the three cone photoreceptor types-long (L), medium (M), and short (S) wavelength sensitive-combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L + S and L vs. M + S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds following adaptation are L vs. M and S vs. L + M. These cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in the cortex. While neurons with the appropriate M vs. L + S and L vs. M + S opponency have been reported in the retina and lateral geniculate nucleus, their existence continues to be debated. Resolving this long-standing debate is necessary because a complete account of the cone opponency in the retinal output is critical for understanding how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to noninvasively measure foveal RGC light responses in the living Macaca fascicularis eye. We confirm the presence of L vs. M + S and M vs. L + S neurons with noncardinal cone opponency and demonstrate that cone-opponent signals in the retinal output are more diverse than classically thought.


Asunto(s)
Percepción de Color , Fóvea Central , Células Fotorreceptoras Retinianas Conos , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Fóvea Central/fisiología , Percepción de Color/fisiología , Estimulación Luminosa/métodos , Masculino , Femenino , Macaca fascicularis
20.
Dev Biol ; 505: 1-10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37838025

RESUMEN

Flower color diversity is a key taxonomic trait in Meconopsis species, enhancing their appeal as ornamental flowers. However, knowledge of the molecular mechanisms of flower color formation in Meconopsis species is still limited. M. wilsonii subsp. australis (Australis) and M. wilsonii subsp. orientalis (Orientalis) have a developmental stage presenting red-purple flowers, while Orientalis also presents blue coloration at the full-bloom period, making them an important model for exploring the mechanism of blue flower formation in M. wilsonii. In this study, we collected petals from Australis and Orientalis at different developmental stages to compare the coloration differences between the two species and detect the molecular mechanisms of blue color in Orientalis. We identified that cyanidin was the main anthocyanin in the flowers of both species, and the blue color in Orientalis primarily arises from anthocyanins (Cyanidin-3-O-sambubioside). RNA sequencing analysis was performed to detect the gene expression in the anthocyanin biosynthesis pathway, and the results suggested that gene regulation for anthocyanin biosynthesis may not be the direct reason for blue color formation in Orientalis. In addition, the growth solid of Orientalis was rich in Fe and Mg ions, and a large amount of Fe and Mg ions accumulated in the petals of Orientalis. Combined with the gene functional enrichment results, we found that the purple and red-purple colors of these two species were presented by different glycosylation levels of cyanidin, while the violet color of Orientalis might be the results of metalloanthocyanins by Fe and Mg ions, which also relieved the toxicity caused by the high content of Fe and Mg ions in its cells. The environmental adaptation-related genes were highly expressed of in both species, such as adaptation to desiccation, water deprivation, freezing, etc. Our results revealed the coloration differences between Australis and Orientalis and described the molecular mechanisms of blue coloration in Orientalis. The data in our analysis could enrich the genetic resources for M. wilsonii for further studies.


Asunto(s)
Antocianinas , Papaveraceae , Antocianinas/metabolismo , Papaveraceae/metabolismo , Fenotipo , Iones/metabolismo , Flores , Pigmentación/genética , Color , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA