RESUMEN
Endogenous condensates with transient constituents are notoriously difficult to study with common biological assays like mass spectrometry and other proteomics profiling. Here, we report a method for light-induced targeting of endogenous condensates (LiTEC) in living cells. LiTEC combines the identification of molecular zip codes that target the endogenous condensates with optogenetics to enable controlled and reversible partitioning of an arbitrary cargo, such as enzymes commonly used in proteomics, into the condensate in a blue light-dependent manner. We demonstrate a proof of concept by combining LiTEC with proximity-based biotinylation (BioID) and uncover putative components of transcriptional condensates in mouse embryonic stem cells. Our approach opens the road to genome-wide functional studies of endogenous condensates.
RESUMEN
Diet is a major determinant of gut microbiome composition, and variation in diet-microbiome interactions may contribute to variation in their health consequences. To mechanistically understand these relationships, here we map interactions between â¼150 small-molecule dietary xenobiotics and the gut microbiome, including the impacts of these compounds on community composition, the metabolic activities of human gut microbes on dietary xenobiotics, and interindividual variation in these traits. Microbial metabolism can toxify and detoxify these compounds, producing emergent interactions that explain community-specific remodeling by dietary xenobiotics. We identify the gene and enzyme responsible for detoxification of one such dietary xenobiotic, resveratrol, and demonstrate that this enzyme contributes to interindividual variation in community remodeling by resveratrol. Together, these results systematically map interactions between dietary xenobiotics and the gut microbiome and connect toxification and detoxification to interpersonal differences in microbiome response to diet.
Asunto(s)
Dieta , Microbioma Gastrointestinal , Resveratrol , Xenobióticos , Xenobióticos/metabolismo , Humanos , Resveratrol/metabolismo , Estilbenos/metabolismo , Masculino , Femenino , Inactivación Metabólica , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genéticaRESUMEN
Autophagy is a conserved catabolic homeostasis process central for cellular and organismal health. During autophagy, small single-membrane phagophores rapidly expand into large double-membrane autophagosomes to encapsulate diverse cargoes for degradation. It is thought that autophagic membranes are mainly derived from preformed organelle membranes. Instead, here we delineate a pathway that expands the phagophore membrane by localized phospholipid synthesis. Specifically, we find that the conserved acyl-CoA synthetase Faa1 accumulates on nucleated phagophores and locally activates fatty acids (FAs) required for phagophore elongation and autophagy. Strikingly, using isotopic FA tracing, we directly show that Faa1 channels activated FAs into the synthesis of phospholipids and promotes their assembly into autophagic membranes. Indeed, the first committed steps of de novo phospholipid synthesis at the ER, which forms stable contacts with nascent autophagosomes, are essential for autophagy. Together, our work illuminates how cells spatially tune synthesis and flux of phospholipids for autophagosome biogenesis during autophagy.
Asunto(s)
Autofagia/fisiología , Ácidos Grasos/metabolismo , Fagosomas/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Membrana Celular/metabolismo , Coenzima A Ligasas/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Fagosomas/fisiología , Fosfolípidos/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Selective compartmentalization of cellular contents is fundamental to the regulation of biochemistry. Although membrane-bound organelles control composition by using a semi-permeable barrier, biomolecular condensates rely on interactions among constituents to determine composition. Condensates are formed by dynamic multivalent interactions, often involving intrinsically disordered regions (IDRs) of proteins, yet whether distinct compositions can arise from these dynamic interactions is not known. Here, by comparative analysis of proteins differentially partitioned by two different condensates, we find that distinct compositions arise through specific IDR-mediated interactions. The IDRs of differentially partitioned proteins are necessary and sufficient for selective partitioning. Distinct sequence features are required for IDRs to partition, and swapping these sequence features changes the specificity of partitioning. Swapping whole IDRs retargets proteins and their biochemical activity to different condensates. Our results demonstrate that IDR-mediated interactions can target proteins to specific condensates, enabling the spatial regulation of biochemistry within the cell.
Asunto(s)
Condensados Biomoleculares , Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Unión Proteica , Orgánulos/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/químicaRESUMEN
Advances in energy balance and cancer research to date have largely occurred in siloed work in rodents or patients. However, substantial benefit can be derived from parallel studies in which animal models inform the design of clinical and population studies or in which clinical observations become the basis for animal studies. The conference Translating Energy Balance from Bench to Communities: Application of Parallel Animal-Human Studies in Cancer, held in July 2021, convened investigators from basic, translational/clinical, and population science research to share knowledge, examples of successful parallel studies, and strong research to move the field of energy balance and cancer toward practice changes. This review summarizes key topics discussed to advance research on the role of energy balance, including physical activity, body composition, and dietary intake, on cancer development, cancer outcomes, and healthy survivorship.
Asunto(s)
Neoplasias , Animales , Humanos , Ejercicio FísicoRESUMEN
Mammalian genomes contain long domains with distinct average compositions of A/T versus G/C base pairs. In a screen for proteins that might interpret base composition by binding to AT-rich motifs, we identified the stem cell factor SALL4, which contains multiple zinc fingers. Mutation of the domain responsible for AT binding drastically reduced SALL4 genome occupancy and prematurely upregulated genes in proportion to their AT content. Inactivation of this single AT-binding zinc-finger cluster mimicked defects seen in Sall4 null cells, including precocious differentiation of embryonic stem cells (ESCs) and embryonic lethality in mice. In contrast, deletion of two other zinc-finger clusters was phenotypically neutral. Our data indicate that loss of pluripotency is triggered by downregulation of SALL4, leading to de-repression of a set of AT-rich genes that promotes neuronal differentiation. We conclude that base composition is not merely a passive byproduct of genome evolution and constitutes a signal that aids control of cell fate.
Asunto(s)
Composición de Base , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Ratones , Ratones Mutantes , Células Madre Embrionarias de Ratones/citología , Mutación , Neuronas/citología , Factores de Transcripción/genética , Regulación hacia Arriba , Dedos de ZincRESUMEN
Intrinsically disordered regions (IDRs) are especially enriched among proteins that regulate chromatin and transcription. As a result, mechanisms that influence specificity of IDR-driven interactions have emerged as exciting unresolved issues for understanding gene regulation. We review the molecular elements frequently found within IDRs that confer regulatory specificity. In particular, we summarize the differing roles of disordered low-complexity regions (LCRs) and short linear motifs (SLiMs) towards selective nuclear regulation. Examination of IDR-driven interactions highlights SLiMs as organizers of selectivity, with widespread roles in gene regulation and integration of cellular signals. Analysis of recurrent interactions between SLiMs and folded domains suggests diverse avenues for SLiMs to influence phase-separated condensates and highlights opportunities to manipulate these interactions for control of biological activity.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas , Proteínas Intrínsecamente Desordenadas/metabolismoRESUMEN
Bulk-tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, and context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from the blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell-type proportions, we demonstrate that cell-type iQTLs could be considered as proxies for cell-type-specific QTL effects, particularly for the most abundant cell type in the tissue. The interpretation of age iQTLs, however, warrants caution because the moderation effect of age on the genotype and molecular phenotype association could be mediated by changes in cell-type composition. Finally, we show that cell-type iQTLs contribute to cell-type-specific enrichment of diseases that, in combination with additional functional data, could guide future functional studies. Overall, this study highlights the use of iQTLs to gain insights into the context specificity of regulatory effects.
Asunto(s)
Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo , Humanos , Sitios de Carácter Cuantitativo/genética , Genotipo , FenotipoRESUMEN
The year 2021 marked a decade of holopelagic sargassum (morphotypes Sargassum natans I and VIII, and Sargassum fluitans III) stranding on the Caribbean and West African coasts. Beaching of millions of tons of sargassum negatively impacts coastal ecosystems, economies, and human health. Additionally, the La Soufrière volcano erupted in St. Vincent in April 2021, at the start of the sargassum season. We investigated potential monthly variations in morphotype abundance and biomass composition of sargassum harvested in Jamaica and assessed the influence of processing methods (shade-drying vs. frozen samples) and of volcanic ash exposure on biochemical and elemental components. S. fluitans III was the most abundant morphotype across the year. Limited monthly variations were observed for key brown algal components (phlorotannins, fucoxanthin, and alginate). Shade-drying did not significantly alter the contents of proteins but affected levels of phlorotannins, fucoxanthin, mannitol, and alginate. Simulation of sargassum and volcanic ash drift combined with age statistics suggested that sargassum potentially shared the surface layer with ash for ~50 d, approximately 100 d before stranding in Jamaica. Integrated elemental analysis of volcanic ash, ambient seawater, and sargassum biomass showed that algae harvested from August had accumulated P, Al, Fe, Mn, Zn, and Ni, probably from the ash, and contained less As. This ash fingerprint confirmed the geographical origin and drift timescale of sargassum. Since environmental conditions and processing methods influence biomass composition, efforts should continue to improve understanding, forecasting, monitoring, and valorizing sargassum, particularly as strandings of sargassum show no sign of abating.
Asunto(s)
Biomasa , Sargassum , Sargassum/química , Ecosistema , Jamaica , Estaciones del Año , Erupciones VolcánicasRESUMEN
Interleukin 22 (IL-22) promotes intestinal barrier integrity, stimulating epithelial cells to enact defense mechanisms against enteric infections, including the production of antimicrobial peptides. IL-22 binding protein (IL-22BP) is a soluble decoy encoded by the Il22ra2 gene that decreases IL-22 bioavailability, attenuating IL-22 signaling. The impact of IL-22BP on gut microbiota composition and functioning is poorly understood. We found that Il22ra2-/- mice are better protected against Clostridioides difficile and Citrobacter rodentium infections. This protection relied on IL-22-induced antimicrobial mechanisms before the infection occurred, rather than during the infection itself. Indeed, the gut microbiota of Il22ra2-/- mice mitigated infection of wild-type (WT) mice when transferred via cohousing or by cecal microbiota transplantation. Indicator species analysis of WT and Il22ra2-/- mice with and without cohousing disclosed that IL22BP deficiency yields a gut bacterial composition distinct from that of WT mice. Manipulation of dietary fiber content, measurements of intestinal short-chain fatty acids and oral treatment with acetate disclosed that resistance to C. difficile infection is related to increased production of acetate by Il22ra2-/--associated microbiota. Together, these findings suggest that IL-22BP represents a potential therapeutic target for those at risk for or with already manifest infection with this and perhaps other enteropathogens.
Asunto(s)
Citrobacter rodentium , Clostridioides difficile , Infecciones por Enterobacteriaceae , Microbioma Gastrointestinal , Interleucina-22 , Ratones Noqueados , Animales , Ratones , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/prevención & control , Receptores de Interleucina/metabolismo , Receptores de Interleucina/genética , Interleucinas/metabolismo , Ratones Endogámicos C57BL , Infecciones por Clostridium/inmunología , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/prevención & controlRESUMEN
The compositional and thermal state of Earth's mantle provides critical constraints on the origin, evolution, and dynamics of Earth. However, the chemical composition and thermal structure of the lower mantle are still poorly understood. Particularly, the nature and origin of the two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle observed from seismological studies are still debated. In this study, we inverted for the 3D chemical composition and thermal state of the lower mantle based on seismic tomography and mineral elasticity data by employing a Markov chain Monte Carlo framework. The results show a silica-enriched lower mantle with a Mg/Si ratio less than ~1.16, lower than that of the pyrolitic upper mantle (Mg/Si = 1.3). The lateral temperature distributions can be described by a Gaussian distribution with a standard deviation (SD) of 120 to 140 K at 800 to 1,600 km and the SD increases to 250 K at 2,200 km depth. However, the lateral distribution in the lowermost mantle does not follow the Gaussian distribution. We found that the velocity heterogeneities in the upper lower mantle mainly result from thermal anomalies, while those in the lowermost mantle mainly result from compositional or phase variations. The LLSVPs have higher density at the base and lower density above the depth of ~2,700 km than the ambient mantle, respectively. The LLSVPs are found to have ~500 K higher temperature, higher Bridgmanite and iron content than the ambient mantle, supporting the hypothesis that the LLSVPs may originate from an ancient basal magma ocean formed in Earth's early history.
RESUMEN
Species' range shifts and local extinctions caused by climate change lead to community composition changes. At large spatial scales, ecological barriers, such as biome boundaries, coastlines, and elevation, can influence a community's ability to shift in response to climate change. Yet, ecological barriers are rarely considered in climate change studies, potentially hindering predictions of biodiversity shifts. We used data from two consecutive European breeding bird atlases to calculate the geographic distance and direction between communities in the 1980s and their compositional best match in the 2010s and modeled their response to barriers. The ecological barriers affected both the distance and direction of bird community composition shifts, with coastlines and elevation having the strongest influence. Our results underscore the relevance of combining ecological barriers and community shift projections for identifying the forces hindering community adjustments under global change. Notably, due to (macro)ecological barriers, communities are not able to track their climatic niches, which may lead to drastic changes, and potential losses, in community compositions in the future.
Asunto(s)
Aves , Ecosistema , Animales , Aves/fisiología , Biodiversidad , Cambio Climático , PredicciónRESUMEN
We apply a recently developed measurement technique for methane (CH4) isotopologues* (isotopic variants of CH4-13CH4, 12CH3D, 13CH3D, and 12CH2D2) to identify contributions to the atmospheric burden from fossil fuel and microbial sources. The aim of this study is to constrain factors that ultimately control the concentration of this potent greenhouse gas on global, regional, and local levels. While predictions of atmospheric methane isotopologues have been modeled, we present direct measurements that point to a different atmospheric methane composition and to a microbial flux with less clumping (greater deficits relative to stochastic) in both 13CH3D and 12CH2D2 than had been previously assigned. These differences make atmospheric isotopologue data sufficiently sensitive to variations in microbial to fossil fuel fluxes to distinguish between emissions scenarios such as those generated by different versions of EDGAR (the Emissions Database for Global Atmospheric Research), even when existing constraints on the atmospheric CH4 concentration profile as well as traditional isotopes are kept constant.
RESUMEN
The embryonic cerebrospinal fluid (eCSF) plays an essential role in the development of the central nervous system (CNS), influencing processes from neurogenesis to lifelong cognitive functions. An important process affecting eCSF composition is inflammation. Inflammation during development can be studied using the maternal immune activation (MIA) mouse model, which displays altered cytokine eCSF composition and mimics neurodevelopmental disorders including autism spectrum disorder (ASD). The limited nature of eCSF as a biosample restricts its research and has hindered our understanding of the eCSF's role in brain pathologies. Specifically, investigation of the small molecule composition of the eCSF is lacking, leaving this aspect of eCSF composition under-studied. We report here the eCSF metabolome as a resource for investigating developmental neuropathologies from a metabolic perspective. Our reference metabolome includes comprehensive MS1 and MS2 datasets and evaluates two mouse strains (CD-1 and C57Bl/6) and two developmental time points (E12.5 and E14.5). We illustrate the reference metabolome's utility by using untargeted metabolomics to identify eCSF-specific compositional changes following MIA. We uncover MIA-relevant metabolic pathways as differentially abundant in eCSF and validate changes in glucocorticoid and kynurenine pathways through targeted metabolomics. Our resource can guide future studies into the causes of MIA neuropathology and the impact of eCSF composition on brain development.
Asunto(s)
Líquido Cefalorraquídeo , Metaboloma , Animales , Ratones , Femenino , Embarazo , Líquido Cefalorraquídeo/metabolismo , Líquido Cefalorraquídeo/inmunología , Ratones Endogámicos C57BL , Metabolómica/métodos , Embrión de Mamíferos/metabolismo , Modelos Animales de Enfermedad , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/inmunología , Trastorno del Espectro Autista/líquido cefalorraquídeoRESUMEN
Enhancing maize kernel oil is vital for improving the bioavailability of fat-soluble vitamins. Here, we combined favourable alleles of dgat1-2 and fatb into parental lines of four multi-nutrient-rich maize hybrids (APTQH1, APTQH4, APTQH5 and APTQH7) using marker-assisted selection (MAS). Parental lines possessed favourable alleles of crtRB1, lcyE, vte4 and opaque2 genes. Gene-specific markers enabled successful foreground selection in BC1F1, BC2F1 and BC2F2, while background selection using genome-wide microsatellite markers (127-132) achieved 93% recurrent parent genome recovery. Resulting inbreds exhibited significantly higher oil (6.93%) and oleic acid (OA, 40.49%) and lower palmitic acid (PA, 14.23%) compared to original inbreds with elevated provitamin A (11.77 ppm), vitamin E (16.01 ppm), lysine (0.331%) and tryptophan (0.085%). Oil content significantly increased from 4.80% in original hybrids to 6.73% in reconstituted hybrids, making them high-oil maize hybrids. These hybrids displayed 35.70% increment in oil content and 51.56% increase in OA with 36.32% reduction in PA compared to original hybrids, while maintaining higher provitamin A (two-fold), vitamin E (nine-fold), lysine (two-fold) and tryptophan (two-fold) compared to normal hybrids. Lipid health indices showed improved atherogenicity, thrombogenicity, cholesterolaemic, oxidability, peroxidizability and nutritive values in MAS-derived genotypes over original versions. Besides, the MAS-derived inbreds and hybrids exhibited comparable grain yield and phenotypic characteristics to the original versions. The maize hybrids developed in the study possessed high-yielding ability with high kernel oil and OA, low PA, better fatty acid health and nutritional properties, higher multi-vitamins and balanced amino acids, which hold immense significance to address malnutrition and rising demand for oil sustainably in a fast-track manner.
Asunto(s)
Aceite de Maíz , Ácidos Grasos , Zea mays , Zea mays/genética , Zea mays/metabolismo , Aceite de Maíz/metabolismo , Aceite de Maíz/genética , Ácidos Grasos/metabolismo , Genómica/métodos , Vitamina E/metabolismo , Ácido Oléico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/química , Ácido Palmítico/metabolismo , Provitaminas/metabolismo , Alelos , Fitomejoramiento/métodos , Repeticiones de Microsatélite/genéticaRESUMEN
Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.
Asunto(s)
Brassica napus , Multiómica , Humanos , Brassica napus/genética , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Triglicéridos/metabolismo , Semillas/metabolismoRESUMEN
Recent studies have shown that pharmacologic weight loss with glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and combination therapies is approaching magnitudes achieved with surgery. However, as more weight loss is achieved, there is concern for potential adverse effects on muscle quantity, composition, and function. This primer aims to address whether muscle-related changes associated with weight loss treatments such as GLP-1 RAs may be maladaptive (ie, adversely affecting muscle health or function), adaptive (ie, a physiologic response to weight loss maintaining or minimally affecting muscle health or function), or perhaps an enhanced response to weight loss (ie, improved muscle health or function after treatment). Based on contemporary evidence with the addition of studies using magnetic resonance imaging, skeletal muscle changes with GLP-1 RA treatments appear to be adaptive: changes in muscle volume z-score indicate a change in muscle volume that is commensurate with what is expected given aging, disease status, and weight loss achieved, and the improvement in insulin sensitivity and muscle fat infiltration likely contributes to an adaptive process with improved muscle quality, lowering the probability for loss in strength and function. Nevertheless, factors such as older age and prefrailty may influence the selection of appropriate candidates for these therapies because of risk for sarcopenia. Several pharmacologic treatments to maintain or improve muscle mass designed in combination with GLP-1-based therapies are under development. For future development of GLP-1-based therapies (and other therapies) designed for weight loss, as well as for patient-centered treatment optimization, the introduction of more objective and comprehensive ways of assessing muscle health (including accurate and meaningful assessments of muscle quantity, composition, function, mobility, and strength) is important for the substantial numbers of patients who will likely be taking these medications well into the future.
Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Músculo Esquelético , Pérdida de Peso , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Pérdida de Peso/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Obesidad/tratamiento farmacológico , Adaptación Fisiológica/efectos de los fármacos , Animales , Sarcopenia/tratamiento farmacológico , Agonistas Receptor de Péptidos Similares al GlucagónRESUMEN
Cellular functions, such as differentiation and migration, are regulated by the extracellular microenvironment, including the extracellular matrix (ECM). Cells adhere to ECM through focal adhesions (FAs) and sense the surrounding microenvironments. Although FA proteins have been actively investigated, little is known about the lipids in the plasma membrane at FAs. In this study, we examine the lipid composition at FAs with imaging and biochemical approaches. Using the cholesterol-specific probe D4 with total internal reflection fluorescence microscopy and super-resolution microscopy, we show an enrichment of cholesterol at FAs simultaneously with FA assembly. Furthermore, we establish a method to isolate the lipid from FA-rich fractions, and biochemical quantification of the lipids reveals that there is a higher content of cholesterol and phosphatidylcholine with saturated fatty acid chains in the lipids of the FA-rich fraction than in either the plasma membrane fraction or the whole-cell membrane. These results demonstrate that plasma membrane at FAs has a locally distinct lipid composition compared to the bulk plasma membrane.
Asunto(s)
Adhesiones Focales , Fosfatidilcolinas , Adhesiones Focales/metabolismo , Fosfatidilcolinas/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Matriz Extracelular/metabolismoRESUMEN
The body's microbiome, composed of microbial cells that number in the trillions, is involved in human health and disease in ways that are just starting to emerge. The microbiome is assembled at birth, develops with its host, and is greatly influenced by environmental factors such as diet and other exposures. Recently, a role for human genetic variation has emerged as also influential in accounting for interpersonal differences in microbiomes. Thus, human genes may influence health directly or by promoting a beneficial microbiome. Studies of the heritability of gut microbiotas reveal a subset of microbes whose abundances are partly genetically determined by the host. However, the use of genome-wide association studies (GWASs) to identify human genetic variants associated with microbiome phenotypes has proven challenging. Studies to date are small by GWAS standards, and cross-study comparisons are hampered by differences in analytical approaches. Nevertheless, associations between microbes or microbial genes and human genes have emerged that are consistent between human populations. Most notably, higher levels of beneficial gut bacteria called Bifidobacteria are associated with the human lactase nonpersister genotype, which typically confers lactose intolerance, in several different human populations. It is time for the microbiome to be incorporated into studies that quantify interactions among genotype, environment, and the microbiome in order to predict human disease susceptibility.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Microbioma Gastrointestinal/fisiología , Genoma Humano , Intolerancia a la Lactosa/genética , Obesidad/genética , Esquizofrenia/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/microbiología , Esclerosis Amiotrófica Lateral/patología , Bifidobacterium/crecimiento & desarrollo , Bifidobacterium/metabolismo , Dieta/métodos , Tracto Gastrointestinal/microbiología , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Genética Humana , Humanos , Intolerancia a la Lactosa/metabolismo , Intolerancia a la Lactosa/microbiología , Intolerancia a la Lactosa/patología , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/patología , Fenotipo , Carácter Cuantitativo Heredable , Esquizofrenia/metabolismo , Esquizofrenia/microbiología , Esquizofrenia/patologíaRESUMEN
Cancer cachexia is a complex systemic wasting syndrome. Nutritional mechanisms that span energy intake, nutrient metabolism, body composition, and energy balance may be impacted by, and may contribute to, the development of cachexia. To date, clinical management of cachexia remains elusive. Leaning on discoveries and novel methodologies from other fields of research may bolster new breakthroughs that improve nutritional management and clinical outcomes. Characteristics that compare and contrast cachexia and obesity may reveal opportunities for cachexia research to adopt methodology from the well-established field of obesity research. This review outlines the known nutritional mechanisms and gaps in the knowledge surrounding cancer cachexia. In parallel, we present how obesity may be a different side of the same coin and how obesity research has tackled similar research questions. We present insights into how cachexia research may utilize nutritional methodology to expand our understanding of cachexia to improve definitions and clinical care in future directions for the field.