Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
FASEB J ; 37(8): e23115, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490006

RESUMEN

Patients with type 2 diabetes often develop the microvascular complications of diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN), which decrease quality of life and increase mortality. Unfortunately, treatment options for DKD and DPN are limited. Lifestyle interventions, such as changes to diet, have been proposed as non-pharmacological treatment options for preventing or improving DKD and DPN. However, there are no reported studies simultaneously evaluating the therapeutic efficacy of varying dietary interventions in a type 2 diabetes mouse model of both DKD and DPN. Therefore, we compared the efficacy of a 12-week regimen of three dietary interventions, low carbohydrate, caloric restriction, and alternate day fasting, for preventing complications in a db/db type 2 diabetes mouse model by performing metabolic, DKD, and DPN phenotyping. All three dietary interventions promoted weight loss, ameliorated glycemic status, and improved DKD, but did not impact percent fat mass and DPN. Multiple regression analysis identified a negative correlation between fat mass and motor nerve conduction velocity. Collectively, our data indicate that these three dietary interventions improved weight and glycemic status and alleviated DKD but not DPN. Moreover, diets that decrease fat mass may be a promising non-pharmacological approach to improve DPN in type 2 diabetes given the negative correlation between fat mass and motor nerve conduction velocity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Animales , Ratones , Calidad de Vida , Restricción Calórica , Ayuno , Ratones Endogámicos
2.
Cardiovasc Diabetol ; 22(1): 214, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592236

RESUMEN

BACKGROUND: Cardiac steatosis is an early yet overlooked feature of diabetic cardiomyopathy. There is no available therapy to treat this condition. Tyrosine kinase inhibitors (TKIs) are used as first or second-line therapy in different types of cancer. In cancer patients with diabetes mellitus, TKIs reportedly improved glycemic control, allowing insulin discontinuation. They also reduced liver steatosis in a murine model of non-alcoholic fatty liver disease. The present study aimed to determine the therapeutic effect of the second-generation TKI Dasatinib on lipid accumulation and cardiac function in obese, type 2 diabetic mice. We also assessed if the drug impacts extra-cardiac fat tissue depots. METHODS: Two studies on 21-week-old male obese leptin receptor mutant BKS.Cg-+Leprdb/+Leprdb/OlaHsd (db/db) mice compared the effect of Dasatinib (5 mg/kg) and vehicle (10% DMSO + 90% PEG-300) given via gavage once every three days for a week or once every week for four weeks. Functional and volumetric indices were studied using echocardiography. Post-mortem analyses included the assessment of fat deposits and fibrosis using histology, and senescence using immunohistochemistry and flow cytometry. The anti-adipogenic action of Dasatinib was investigated on human bone marrow (BM)-derived mesenchymal stem cells (MSCs). Unpaired parametric or non-parametric tests were used to compare two and multiple groups as appropriate. RESULTS: Dasatinib reduced steatosis and fibrosis in the heart of diabetic mice. The drug also reduced BM adiposity but did not affect other fat depots. These structural changes were associated with improved diastolic indexes, specifically the E/A ratio and non-flow time. Moreover, Dasatinib-treated mice had lower levels of p16 in the heart compared with vehicle-treated controls, suggesting an inhibitory impact of the drug on the senescence signalling pathway. In vitro, Dasatinib inhibited human BM-MSC viability and adipogenesis commitment. CONCLUSIONS: Our findings suggest that Dasatinib opposes heart and BM adiposity and cardiac fibrosis. In the heart, this was associated with favourable functional consequences, namely improvement in an index of diastolic function. Repurposing TKI for cardiac benefit could address the unmet need of diabetic cardiac steatosis.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Animales , Ratones , Dasatinib/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Fibrosis , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico
3.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G685-G698, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118352

RESUMEN

Negative energy balance is a prevalent feature of cystic fibrosis (CF). Pancreatic insufficiency, elevated energy expenditure, lung disease, and malnutrition, all characteristic of CF, contribute to the negative energy balance causing low body-growth phenotype. As low body weight and body mass index strongly correlate with poor lung health and survival of patients with CF, improving energy balance is an important clinical goal (e.g., high-fat diet). CF mouse models also exhibit negative energy balance (growth retardation and high energy expenditure), independent from exocrine pancreatic insufficiency, lung disease, and malnutrition. To improve energy balance through increased caloric intake and reduced energy expenditure, we disrupted leptin signaling by crossing the db/db leptin receptor allele with mice carrying the R117H Cftr mutation. Compared with db/db mice, absence of leptin signaling in CF mice (CF db/db) resulted in delayed and moderate hyperphagia with lower de novo lipogenesis and lipid deposition, producing only moderately obese CF mice. Greater body length was found in db/db mice but not in CF db/db, suggesting CF-dependent effect on bone growth. The db/db genotype resulted in lower energy expenditure regardless of Cftr genotype leading to obesity. Despite the db/db genotype, the CF genotype exhibited high respiratory quotient indicating elevated carbohydrate oxidation, thus limiting carbohydrates for lipogenesis. In summary, db/db-linked hyperphagia, elevated lipogenesis, and morbid obesity were partially suppressed by reduced CFTR activity. CF mice still accrued large amounts of adipose tissue in contrast to mice fed a high-fat diet, thus highlighting the importance of dietary carbohydrates and not simply fat for energy balance in CF. NEW & NOTEWORTHY We show that cystic fibrosis (CF) mice are able to accrue fat under conditions of carbohydrate overfeeding, increased lipogenesis, and decreased energy expenditure, although length was unaffected. High-fat diet feeding failed to improve growth in CF mice. Morbid db/db-like obesity was reduced in CF double-mutant mice by reduced CFTR activity.


Asunto(s)
Tejido Adiposo/patología , Fibrosis Quística/complicaciones , Leptina/metabolismo , Lipogénesis , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Animales , Dieta de Carga de Carbohidratos/efectos adversos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/genética , Transducción de Señal
4.
Biomedicines ; 9(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34944588

RESUMEN

Diabetic retinopathy (DR) involves progressive neurovascular degeneration of the retina. Reduction in synaptic protein expression has been observed in retinas from several diabetic animal models and human retinas. We previously reported that the topical administration (eye drops) of sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, prevented retinal neurodegeneration induced by diabetes in db/db mice. The aim of the present study is to examine whether the modulation of presynaptic proteins is a mechanism involved in the neuroprotective effect of sitagliptin. For this purpose, 12 db/db mice, aged 12 weeks, received a topical administration of sitagliptin (5 µL; concentration: 10 mg/mL) twice per day for 2 weeks, while other 12 db/db mice were treated with vehicle (5 µL). Twelve non-diabetic mice (db/+) were used as a control group. Protein levels were assessed by western blot and immunohistochemistry (IHC), and mRNA levels were evaluated by reverse transcription polymerase chain reaction (RT-PCR). Our results revealed a downregulation (protein and mRNA levels) of several presynaptic proteins such as synapsin I (Syn1), synaptophysin (Syp), synaptotagmin (Syt1), syntaxin 1A (Stx1a), vesicle-associated membrane protein 2 (Vamp2), and synaptosomal-associated protein of 25 kDa (Snap25) in diabetic mice treated with vehicle in comparison with non-diabetic mice. These proteins are involved in vesicle biogenesis, mobilization and docking, membrane fusion and recycling, and synaptic neurotransmission. Sitagliptin was able to significantly prevent the downregulation of all these proteins. We conclude that sitagliptin exerts beneficial effects in the retinas of db/db mice by preventing the downregulation of crucial presynaptic proteins. These neuroprotective effects open a new avenue for treating DR as well other retinal diseases in which neurodegeneration/synaptic abnormalities play a relevant role.

5.
Microorganisms ; 8(9)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899353

RESUMEN

The leptin receptor-deficient db/db mouse model is an accepted in vivo model to study obesity, type 2 diabetes, and diabetic kidney disease. Healthy gastrointestinal (GI) microbiota has been linked to weight loss, improved glycemic control, and physiological benefits. We investigated the effect of various drugs on the GI microbiota of db/db mice as compared to control db/m mice. Treatment with long-acting pirfenidone (PFD) increased gut microbial diversity in diabetic db/db mice. Firmicutes, the most abundant phylum in db/m mice, decreased significantly in abundance in db/db mice but showed increased abundance with long-acting PFD treatment. Several bacterial taxa, including Lactobacillus and some Bacteroides, were less abundant in db/db mice and more abundant in long-acting-PFD-treated db/db mice. Long-acting PFD treatment reduced the abundance of Akkermansia muciniphila (5%) as compared to db/db mice (~15%). We conclude that gut microbial dysbiosis observed in db/db mice was partially reversed by long-acting PFD treatment and hypothesize that PFD has beneficial effects, in part, via its influence on the gut microbial metabolite profile. In quantitatively assessing urine metabolites, we observed a high abundance of diabetic ketoacidosis biomarkers, including 3-hydroxybutyric acid and acetoacetic acid in db/db mice, which were less abundant in the long-acting-PFD-treated db/db mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA