Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 54, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302873

RESUMEN

BACKGROUND: Transcriptome assembly from RNA-sequencing data in species without a reliable reference genome has to be performed de novo, but studies have shown that de novo methods often have inadequate ability to reconstruct transcript isoforms. We address this issue by constructing an assembly pipeline whose main purpose is to produce a comprehensive set of transcript isoforms. RESULTS: We present the de novo transcript isoform assembler ClusTrast, which takes short read RNA-seq data as input, assembles a primary assembly, clusters a set of guiding contigs, aligns the short reads to the guiding contigs, assembles each clustered set of short reads individually, and merges the primary and clusterwise assemblies into the final assembly. We tested ClusTrast on real datasets from six eukaryotic species, and showed that ClusTrast reconstructed more expressed known isoforms than any of the other tested de novo assemblers, at a moderate reduction in precision. For recall, ClusTrast was on top in the lower end of expression levels (<15% percentile) for all tested datasets, and over the entire range for almost all datasets. Reference transcripts were often (35-69% for the six datasets) reconstructed to at least 95% of their length by ClusTrast, and more than half of reference transcripts (58-81%) were reconstructed with contigs that exhibited polymorphism, measuring on a subset of reliably predicted contigs. ClusTrast recall increased when using a union of assembled transcripts from more than one assembly tool as primary assembly. CONCLUSION: We suggest that ClusTrast can be a useful tool for studying isoforms in species without a reliable reference genome, in particular when the goal is to produce a comprehensive transcriptome set with polymorphic variants.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma , Análisis de Secuencia , RNA-Seq , Análisis de Secuencia de ARN , Isoformas de Proteínas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
2.
Funct Integr Genomics ; 24(2): 43, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38418630

RESUMEN

Rapeseed-mustard, the oleiferous Brassica species are important oilseed crops cultivated all over the globe. Mustard aphid Lipaphis erysimi (L.) Kaltenbach is a major threat to the cultivation of rapeseed-mustard. Wild mustard Rorippa indica (L.) Hiern shows tolerance to mustard aphids as a nonhost and hence is an important source for the bioprospecting of potential resistance genes and defense measures to manage mustard aphids sustainably. We performed mRNA sequencing of the R. indica plant uninfested and infested by the mustard aphids, harvested at 24 hours post-infestation. Following quality control, the high-quality reads were subjected to de novo assembly of the transcriptome. As there is no genomic information available for this potential wild plant, the raw reads will be useful for further bioinformatics analysis and the sequence information of the assembled transcripts will be helpful to design primers for the characterization of specific gene sequences. In this study, we also used the generated resource to comprehensively analyse the global profile of differential gene expression in R. indica in response to infestation by mustard aphids. The functional enrichment analysis of the differentially expressed genes reveals a significant immune response and suggests the possibility of chitin-induced defense signaling.


Asunto(s)
Áfidos , Rorippa , Animales , Planta de la Mostaza/genética , Transcriptoma , Áfidos/genética , Rorippa/genética
3.
BMC Bioinformatics ; 24(1): 133, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016291

RESUMEN

BACKGROUND: RNA-seq followed by de novo transcriptome assembly has been a transformative technique in biological research of non-model organisms, but the computational processing of RNA-seq data entails many different software tools. The complexity of these de novo transcriptomics workflows therefore presents a major barrier for researchers to adopt best-practice methods and up-to-date versions of software. RESULTS: Here we present a streamlined and universal de novo transcriptome assembly and annotation pipeline, transXpress, implemented in Snakemake. transXpress supports two popular assembly programs, Trinity and rnaSPAdes, and allows parallel execution on heterogeneous cluster computing hardware. CONCLUSIONS: transXpress simplifies the use of best-practice methods and up-to-date software for de novo transcriptome assembly, and produces standardized output files that can be mined using SequenceServer to facilitate rapid discovery of new genes and proteins in non-model organisms.


Asunto(s)
Programas Informáticos , Transcriptoma , Análisis de Secuencia de ARN/métodos , RNA-Seq , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular
4.
Fungal Genet Biol ; 169: 103828, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37657751

RESUMEN

Despite the economic losses due to the walnut anthracnose, Ophiognomonia leptostyla is an orphan fungus with respect to genomic resources. In the present study, the transcriptome of O. leptostyla was assembled for the first time. RNA sequencing was conducted for the fungal mycelia grown in a liquid media, and the inoculated leaf samples of walnut with the fungal conidia sampled at 48, 96 and 144 h post inoculation (hpi). The completeness, correctness, and contiguity of the de novo transcriptome assemblies generated with Trinity, Oases, SOAPdenovo-Trans and Bridger were compared to identify a single superior reference assembly. In most of the assessment criteria including N50, Transrate score, number of ORFs with known description in gene bank, the percentage of reads mapped back to the transcript (RMBT), BUSCO score, Swiss-Prot coverage bin and RESM-EVAL score, the Bridger assembly was the superior and thus used as a reference for profiling the O. leptostyla transcriptome in liquid media vs. during walnut infection. The k-means clustering of transcripts resulted in four distinct transcription patterns across the three sampling time points. Most of the detected CAZy transcripts had elevated transcription at 96 hpi that is hypothetically concurrent with the start of intracellular growth. The in-silico analysis revealed 103 candidate effectors of which six were members of Necrosis and Ethylene Inducing Like Protein (NLP) gene family belonging to three distinct k-means clusters. This study provided a complex and temporal pattern of the CAZys and candidate effectors transcription during six days post O. leptostyla inoculation on walnut leaves, introducing a list of candidate virulence genes for validation in future studies.


Asunto(s)
Ascomicetos , Juglans , Transcriptoma/genética , Juglans/genética , Virulencia/genética , Ascomicetos/genética
5.
Funct Integr Genomics ; 22(3): 407-421, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35286570

RESUMEN

In this study, we characterized the fatty acid production in Neochloris aquatica at transcriptomics and biochemical levels under limiting, normal, and excess nitrate concentrations in different growth phases. At the stationary phase, N. aquatica mainly produced saturated fatty acids such as stearic acid under the limiting nitrate concentration, which is suitable for biodiesel production. However, it produced polyunsaturated fatty acids such as α-linolenic acid under the excess nitrate concentration, which has nutritional values as food supplements. In addition, RNA-seq was employed to identify genes and pathways that were being affected in N. aquatica for three growth phases in the presence of the different nitrate amounts. Genes that are responsible for the production of saturated fatty acids were upregulated in the cells grown under a limiting nitrogen amount while genes that are responsible for the production of polyunsaturated fatty acid were upregulated in the cells grown under excess nitrogen amount. Further analysis showed more genes differentially expressed (DEGs) at the logarithmic phase in all conditions while a relatively steady trend was observed during the transition from the logarithmic phase to the stationary phase under limiting and excess nitrogen. Our results provide a foundation for identifying developmentally important genes and understanding the biological processes in the different growth phases of the N. aquatica in terms of biomass and lipid production.


Asunto(s)
Ácidos Grasos , Transcriptoma , Biomasa , Ácidos Grasos/metabolismo , Nitratos , Nitrógeno/metabolismo
6.
BMC Plant Biol ; 22(1): 361, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869421

RESUMEN

BACKGROUND: In ipecac (Carapichea ipecacuanha (Brot.) L. Andersson), adventitious shoots can be induced simply by placing internodal segments on phytohormone-free culture medium. The shoots form locally on the epidermis of the apical region of the segments, but not the basal region. Levels of endogenous auxin and cytokinin transiently increase in the segments after 1 week of culture. RESULTS: Here, we conducted RNA-seq analysis to compare gene expression patterns in apical and basal regions of segments before culture and after 1 week of culture for adventitious shoot formation. The results revealed 8987 differentially expressed genes in a de novo assembly of 76,684 genes. Among them, 276 genes were upregulated in the apical region after 1 week of culture relative to before culture and the basal region after 1 week of culture. These genes include 18 phytohormone-response genes and shoot-formation-related genes. Validation of the gene expression by quantitative real-time PCR assay confirmed that the expression patterns were similar to those of the RNA-seq data. CONCLUSIONS: The transcriptome data show that expression of cytokinin biosynthesis genes is induced along with the acquisition of cellular pluripotency and the initiation of cell division by wounding in the apical region of internodal segments, that trigger adventitious shoot formation without callusing.


Asunto(s)
Ácidos Indolacéticos , Ipeca , Citocininas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Ipeca/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo
7.
Genetica ; 150(1): 13-26, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35031940

RESUMEN

Understanding the molecular associations underlying pathogen resistance in invasive plant species is likely to provide useful insights into the effective control of alien plants, thereby facilitating the conservation of native biodiversity. In the current study, we investigated pathogen resistance in an invasive clonal plant, Sphagneticola trilobata, at the molecular level. Sphagneticola trilobata (i.e., Singapore daisy) is a noxious weed that affects both terrestrial and aquatic ecosystems, and is less affected by pathogens in the wild than co-occurring native species. We used Illumina sequencing to investigate the transcriptome of S. trilobata following infection by a globally distributed generalist pathogen (Rhizoctonia solani). RNA was extracted from leaves of inoculated and un-inoculated control plants, and a draft transcriptome of S. trilobata was generated to examine the molecular response of this species following infection. We obtained a total of 49,961,014 (94.3%) clean reads for control (un-inoculated plants) and 54,182,844 (94.5%) for the infected treatment (inoculated with R. solani). Our analyses facilitated the discovery of 117,768 de novo assembled contigs and 78,916 unigenes. Of these, we identified 3506 differentially expressed genes and 60 hormones associated with pathogen resistance. Numerous genes, including candidate genes, were associated with plant-pathogen interactions and stress response in S. trilobata. Many recognitions, signaling, and defense genes were differentially regulated between treatments, which were confirmed by qRT-PCR. Overall, our findings improve our understanding of the genes and molecular associations involved in plant defense of a rapidly spreading invasive clonal weed, and serve as a valuable resource for further work on mechanism of disease resistance and managing invasive plants.


Asunto(s)
Asteraceae , Ecosistema , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Especies Introducidas , Singapur , Transcriptoma
8.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408906

RESUMEN

Ramonda serbica Panc. is an ancient resurrection plant able to survive a long desiccation period and recover metabolic functions upon watering. The accumulation of protective late embryogenesis abundant proteins (LEAPs) is a desiccation tolerance hallmark. To propose their role in R. serbica desiccation tolerance, we structurally characterised LEAPs and evaluated LEA gene expression levels in hydrated and desiccated leaves. By integrating de novo transcriptomics and homologues LEAP domains, 318 R. serbica LEAPs were identified and classified according to their conserved motifs and phylogeny. The in silico analysis revealed that hydrophilic LEA4 proteins exhibited an exceptionally high tendency to form amphipathic α-helices. The most abundant, atypical LEA2 group contained more hydrophobic proteins predicted to fold into the defined globular domains. Within the desiccation-upregulated LEA genes, the majority encoded highly disordered DEH1, LEA1, LEA4.2, and LEA4.3 proteins, while the greatest portion of downregulated genes encoded LEA2.3 and LEA2.5 proteins. While dehydrins might chelate metals and bind DNA under water deficit, other intrinsically disordered LEAPs might participate in forming intracellular proteinaceous condensates or adopt amphipathic α-helical conformation, enabling them to stabilise desiccation-sensitive proteins and membranes. This comprehensive LEAPs structural characterisation is essential to understanding their function and regulation during desiccation aiming at crop drought tolerance improvement.


Asunto(s)
Craterostigma , Desecación , Desarrollo Embrionario , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Agua/metabolismo
9.
BMC Bioinformatics ; 22(1): 146, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33752598

RESUMEN

BACKGROUND: Polyploidy is very common in plants and can be seen as one of the key drivers in the domestication of crops and the establishment of important agronomic traits. It can be the main source of genomic repatterning and introduces gene duplications, affecting gene expression and alternative splicing. Since fully sequenced genomes are not yet available for many plant species including crops, de novo transcriptome assembly is the basis to understand molecular and functional mechanisms. However, in complex polyploid plants, de novo transcriptome assembly is challenging, leading to increased rates of fused or redundant transcripts. Since assemblers were developed mainly for diploid organisms, they may not well suited for polyploids. Also, comparative evaluations of these tools on higher polyploid plants are extremely rare. Thus, our aim was to fill this gap and to provide a basic guideline for choosing the optimal de novo assembly strategy focusing on autotetraploids, as the scientific interest in this type of polyploidy is steadily increasing. RESULTS: We present a comparison of two common (SOAPdenovo-Trans, Trinity) and one recently published transcriptome assembler (TransLiG) on diploid and autotetraploid species of the genera Acer and Vaccinium using Arabidopsis thaliana as a reference. The number of assembled transcripts was up to 11 and 14 times higher with an increased number of short transcripts for Acer and Vaccinium, respectively, compared to A. thaliana. In diploid samples, Trinity and TransLiG performed similarly good while in autotetraploids, TransLiG assembled most complete transcriptomes with an average of 1916 assembled BUSCOs vs. 1705 BUSCOs for Trinity. Of all three assemblers, SOAPdenovo-Trans performed worst (1133 complete BUSCOs). CONCLUSION: All three assembly tools produced complete assemblies when dealing with the model organism A. thaliana, independently of its ploidy level, but their performances differed extremely when it comes to non-model autotetraploids, where specifically TransLiG and Trinity produced a high number of redundant transcripts. The recently published assembler TransLiG has not been tested yet on any plant organism but showed highest completeness and full-length transcriptomes, especially in autotetraploids. Including such species during the development and testing of new assembly tools is highly appreciated and recommended as many important crops are polyploid.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma , Perfilación de la Expresión Génica , Humanos , Poliploidía , Análisis de Secuencia de ARN
10.
BMC Genomics ; 22(1): 760, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696740

RESUMEN

BACKGROUND: Plants grown under shade are exposed to low red/far-red ratio, thereby triggering an array of altered phenotypes called shade avoidance syndrome (SAS). Shade negatively influences plant growth, leading to a reduction in agricultural productivity. Understanding of SAS is crucial for sustainable agricultural practices, especially for high-density indoor farming. Brassicaceae vegetables are widely consumed around the world and are commonly cultivated in indoor farms. However, our understanding of SAS in Brassicaceae vegetables and their genome-wide transcriptional regulatory networks are still largely unexplored. RESULTS: Shade induced common signs of SAS, including hypocotyl elongation and reduced carotenoids/anthocyanins biosynthesis, in two different Brassicaceae species: Brassica rapa (Choy Sum and Pak Choy) and Brassica oleracea (Kai Lan). Phenotype-assisted transcriptome analysis identified a set of genes induced by shade in these species, many of which were related to auxin biosynthesis and signaling [e.g. YUCCA8 (YUC8), YUC9, and INDOLE-3-ACETIC ACID INDUCIBLE (IAAs)] and other phytohormones signaling pathways including brassinosteroids and ethylene. The genes functioning in plant defense (e.g. MYB29 and JASMONATE-ZIM-DOMAIN PROTEIN 9) as well as in biosynthesis of anthocyanins and glucosinolates were repressed upon shade. Besides, each species also exhibited distinct SAS phenotypes. Shade strongly reduced primary roots and elongated petioles of B. oleracea, Kai Lan. However, these SAS phenotypes were not clearly recognized in B. rapa, Choy Sum and Pak Choy. Some auxin signaling genes (e.g. AUXIN RESPONSE FACTOR 19, IAA10, and IAA20) were specifically induced in B. oleracea, while homologs in B. rapa were not up-regulated under shade. Contrastingly, shade-exposed B. rapa vegetables triggered the ethylene signaling pathway earlier than B. oleracea, Kai Lan. Interestingly, shade induced the transcript levels of LONG HYPOCOTYL IN FAR-RED 1 (HFR1) homolog in only Pak Choy as B. rapa. As HFR1 is a key negative regulator of SAS in Arabidopsis, our finding suggests that Pak Choy HFR1 homolog may also function in conferring higher shade tolerance in this variety. CONCLUSIONS: Our study shows that two Brassicaceae species not only share a conserved SAS mechanism but also exhibit distinct responses to shade, which will provide comprehensive information to develop new shade-tolerant cultivars that are suitable for high-density indoor farms.


Asunto(s)
Proteínas de Arabidopsis , Brassicaceae , Antocianinas , Proteínas de Arabidopsis/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fenotipo , Transcriptoma , Verduras
11.
J Proteome Res ; 19(8): 3044-3059, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32538095

RESUMEN

Orb-weaving spiders use a highly strong, sticky and elastic web to catch their prey. These web properties alone would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets in the web, which current research is revealing. Here, we provide strong proteotranscriptomic evidence for the presence of toxin/neurotoxin-like proteins, defensins, and proteolytic enzymes on the web silk from Nephila clavipes spider. The results from quantitative-based transcriptomic and proteomic approaches showed that silk-producing glands produce an extensive repertoire of toxin/neurotoxin-like proteins, similar to those already reported in spider venoms. Meanwhile, the insect toxicity results demonstrated that these toxic components can be lethal and/or paralytic chemical weapons used for prey capture on the web, and the presence of fatty acids in the web may be a responsible mechanism opening the way to the web toxins for accessing the interior of prey's body, as shown here. Comparative phylogenomic-level evolutionary analyses revealed orthologous genes among two spider groups, Araneomorphae and Mygalomorphae, and the findings showed protein sequences similar to toxins found in the taxa Scorpiones and Hymenoptera in addition to Araneae. Overall, these data represent a valuable resource to further investigate other spider web toxin systems and also suggest that N. clavipes web is not a passive mechanical trap for prey capture, but it exerts an active role in prey paralysis/killing using a series of neurotoxins.


Asunto(s)
Proteómica , Arañas , Secuencia de Aminoácidos , Animales , Evolución Biológica , Seda/genética , Arañas/genética , Ponzoñas
12.
BMC Genomics ; 21(1): 687, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008290

RESUMEN

BACKGROUND: Common Pekin and Muscovy ducks and their intergeneric hinny and mule hybrids have different abilities for fatty liver production. RNA-Seq analyses from the liver of these different genetic types fed ad libitum or overfed would help to identify genes with different response to overfeeding between them. However RNA-seq analyses from different species and comparison is challenging. The goal of this study was develop a relevant strategy for transcriptome analysis and comparison between different species. RESULTS: Transcriptomes were first assembled with a reference-based approach. Important mapping biases were observed when heterologous mapping were conducted on common duck reference genome, suggesting that this reference-based strategy was not suited to compare the four different genetic types. De novo transcriptome assemblies were then performed using Trinity and Oases. Assemblies of transcriptomes were not relevant when more than a single genetic type was considered. Finally, single genetic type transcriptomes were assembled with DRAP in a mega-transcriptome. No bias was observed when reads from the different genetic types were mapped on this mega-transcriptome and differences in gene expression between the four genetic types could be identified. CONCLUSIONS: Analyses using both reference-based and de novo transcriptome assemblies point out a good performance of the de novo approach for the analysis of gene expression in different species. It also allowed the identification of differences in responses to overfeeding between Pekin and Muscovy ducks and hinny and mule hybrids.


Asunto(s)
Patos/genética , Perfilación de la Expresión Génica/veterinaria , Hígado/metabolismo , Análisis de Secuencia de ARN/veterinaria , Transcriptoma , Animales , Patos/fisiología , Hígado Graso/genética , Hígado Graso/veterinaria , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Hibridación Genética , Enfermedades de las Aves de Corral/genética , Estándares de Referencia , Análisis de Secuencia de ARN/métodos , Análisis de Secuencia de ARN/normas
13.
BMC Genomics ; 21(1): 693, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33023465

RESUMEN

BACKGROUND: Copepods are fundamental components of pelagic food webs, but reports on how molecular responses link to reproductive success in natural populations are still scarce. We present a de novo transcriptome assembly and differential expression (DE) analysis in Temora stylifera females collected in the Gulf of Naples, Mediterranean Sea, where this copepod dominates the zooplankton community. High-Throughput RNA-Sequencing and DE analysis were performed from adult females collected on consecutive weeks (May 23rd and 30th 2017), because opposite naupliar survival rates were observed. We aimed at detecting key genes that may have influenced copepod reproductive potential in natural populations and whose expression was potentially affected by phytoplankton-derived oxylipins, lipoxygenase-derived products strongly impacting copepod naupliar survival. RESULTS: On the two sampling dates, temperature, salinity, pH and oxygen remained stable, while variations in phytoplankton cell concentration, oxylipin concentration and oxylipin-per-diatom-cell production were observed. T. stylifera naupliar survival was 25% on May 23rd and 93% on May 30th. De novo assembly generated 268,665 transcripts (isoforms) and 120,749 unique 'Trinity predicted genes' (unigenes), of which 50% were functionally annotated. Out of the 331 transcript isoforms differentially expressed between the two sampling dates, 119 sequences were functionally annotated (58 up- and 61 down-regulated). Among predicted genes (unigenes), 144 sequences were differentially expressed and 31 (6 up-regulated and 25 down-regulated) were functionally annotated. Most of the significantly down-regulated unigenes and isoforms were A5 Putative Odorant Binding Protein (Obp). Other differentially expressed sequences (isoforms and unigenes) related to developmental metabolic processes, protein ubiquitination, response to stress, oxidation-reduction reactions and hydrolase activities. DE analysis was validated through Real Time-quantitative PCR of 9 unigenes and 3 isoforms. CONCLUSIONS: Differential expression of sequences involved in signal detection and transduction, cell differentiation and development offered a functional interpretation to the maternally-mediated low naupliar survival rates observed in samples collected on May 23rd. Down-regulation of A5 Obp along with higher quantities of oxylipins-per-litre and oxylipins-per-diatom-cell observed on May 23rd could suggest oxylipin-mediated impairment of naupliar survival in natural populations of T. stylifera. Our results may help identify biomarker genes explaining variations in copepod reproductive responses at a molecular level.


Asunto(s)
Biomasa , Copépodos/genética , Transcriptoma , Animales , Copépodos/metabolismo , Copépodos/fisiología , Dieta , Femenino , Oxilipinas/metabolismo , Fitoplancton/crecimiento & desarrollo , Reproducción
14.
BMC Genomics ; 21(1): 28, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31914917

RESUMEN

BACKGROUND: Fusarium circinatum, the causal agent of pitch canker disease, poses a serious threat to several Pinus species affecting plantations and nurseries. Although Pinus pinaster has shown moderate resistance to F. circinatum, the molecular mechanisms of defense in this host are still unknown. Phytohormones produced by the plant and by the pathogen are known to play a crucial role in determining the outcome of plant-pathogen interactions. Therefore, the aim of this study was to determine the role of phytohormones in F. circinatum virulence, that compromise host resistance. RESULTS: A high quality P. pinaster de novo transcriptome assembly was generated, represented by 24,375 sequences from which 17,593 were full length genes, and utilized to determine the expression profiles of both organisms during the infection process at 3, 5 and 10 days post-inoculation using a dual RNA-sequencing approach. The moderate resistance shown by Pinus pinaster at the early time points may be explained by the expression profiles pertaining to early recognition of the pathogen, the induction of pathogenesis-related proteins and the activation of complex phytohormone signaling pathways that involves crosstalk between salicylic acid, jasmonic acid, ethylene and possibly auxins. Moreover, the expression of F. circinatum genes related to hormone biosynthesis suggests manipulation of the host phytohormone balance to its own benefit. CONCLUSIONS: We hypothesize three key steps of host manipulation: perturbing ethylene homeostasis by fungal expression of genes related to ethylene biosynthesis, blocking jasmonic acid signaling by coronatine insensitive 1 (COI1) suppression, and preventing salicylic acid biosynthesis from the chorismate pathway by the synthesis of isochorismatase family hydrolase (ICSH) genes. These results warrant further testing in F. circinatum mutants to confirm the mechanism behind perturbing host phytohormone homeostasis.


Asunto(s)
Fusarium/patogenicidad , Pinus/genética , Pinus/microbiología , Transcriptoma/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Ácido Salicílico/metabolismo
15.
BMC Genomics ; 21(1): 317, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32819282

RESUMEN

BACKGROUND: The investigation of transcriptome profiles using short reads in non-model organisms, which lack of well-annotated genomes, is limited by partial gene reconstruction and isoform detection. In contrast, long-reads sequencing techniques revealed their potential to generate complete transcript assemblies even when a reference genome is lacking. Cynara cardunculus var. altilis (DC) (cultivated cardoon) is a perennial hardy crop adapted to dry environments with many industrial and nutraceutical applications due to the richness of secondary metabolites mostly produced in flower heads. The investigation of this species benefited from the recent release of a draft genome, but the transcriptome profile during the capitula formation still remains unexplored. In the present study we show a transcriptome analysis of vegetative and inflorescence organs of cultivated cardoon through a novel hybrid RNA-seq assembly approach utilizing both long and short RNA-seq reads. RESULTS: The inclusion of a single Nanopore flow-cell output in a hybrid sequencing approach determined an increase of 15% complete assembled genes and 18% transcript isoforms respect to short reads alone. Among 25,463 assembled unigenes, we identified 578 new genes and updated 13,039 gene models, 11,169 of which were alternatively spliced isoforms. During capitulum development, 3424 genes were differentially expressed and approximately two-thirds were identified as transcription factors including bHLH, MYB, NAC, C2H2 and MADS-box which were highly expressed especially after capitulum opening. We also show the expression dynamics of key genes involved in the production of valuable secondary metabolites of which capitulum is rich such as phenylpropanoids, flavonoids and sesquiterpene lactones. Most of their biosynthetic genes were strongly transcribed in the flower heads with alternative isoforms exhibiting differentially expression levels across the tissues. CONCLUSIONS: This novel hybrid sequencing approach allowed to improve the transcriptome assembly, to update more than half of annotated genes and to identify many novel genes and different alternatively spliced isoforms. This study provides new insights on the flowering cycle in an Asteraceae plant, a valuable resource for plant biology and breeding in Cynara and an effective method for improving gene annotation.


Asunto(s)
Cynara , Transcriptoma , Cynara/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Fitomejoramiento
16.
Dev Biol ; 433(2): 433-447, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28774726

RESUMEN

Planarian flatworms are popular models for the study of regeneration and stem cell biology in vivo. Technical advances and increased availability of genetic information have fueled the discovery of molecules responsible for stem cell pluripotency and regeneration in flatworms. Unfortunately, most of the planarian research performed worldwide utilizes species that are not natural habitants of North America, which limits their availability to newcomer laboratories and impedes their distribution for educational activities. In order to circumvent these limitations and increase the genetic information available for comparative studies, we sequenced the transcriptome of Girardia dorotocephala, a planarian species pandemic and commercially available in North America. A total of 254,802,670 paired sequence reads were obtained from RNA extracted from intact individuals, regenerating fragments, as well as freshly excised auricles of a clonal line of G. dorotocephala (MA-C2), and used for de novo assembly of its transcriptome. The resulting transcriptome draft was validated through functional analysis of genetic markers of stem cells and their progeny in G. dorotocephala. Akin to orthologs in other planarian species, G. dorotocephala Piwi1 (GdPiwi1) was found to be a robust marker of the planarian stem cell population and GdPiwi2 an essential component for stem cell-driven regeneration. Identification of G. dorotocephala homologs of the early stem cell descendent marker PROG-1 revealed a family of lysine-rich proteins expressed during epithelial cell differentiation. Sequences from the MA-C2 transcriptome were found to be 98-99% identical to nucleotide sequences from G. dorotocephala populations with different chromosomal number, demonstrating strong conservation regardless of karyotype evolution. Altogether, this work establishes G. dorotocephala as a viable and accessible option for analysis of gene function in North America.


Asunto(s)
Proteínas Argonautas/genética , Genes de Helminto , Proteínas del Helminto/genética , Planarias/genética , Células Madre/citología , Transcriptoma , Animales , Proteínas Argonautas/fisiología , Biomarcadores , Clonación de Organismos , Proteínas del Helminto/biosíntesis , Homeostasis/genética , Familia de Multigenes , Interferencia de ARN , ARN Bicatenario/administración & dosificación , ARN Bicatenario/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Regeneración/genética , Reproducción Asexuada , Análisis de Secuencia de ARN
17.
BMC Genomics ; 20(1): 213, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30866823

RESUMEN

BACKGROUND: Cupressus gigantea, a rare and endangered tree species with remarkable medicinal value, is endemic to the Tibetan Plateau. Yet, little is known about the underlying genetics of the unique ecological adaptability of this extremely long-lived conifer with a large genome size. Here, we present its first de novo and multi-tissue transcriptome in-depth characterization. RESULTS: We performed Illumina paired-end sequencing and RNA libraries assembly derived from terminal buds, male and female strobili, biennial leaves, and cambium tissues taken from adult C. gigantea. In total, large-scale high-quality reads were assembled into 101,092 unigenes, with an average sequence length of 1029 bp, and 6848 unigenes (6.77%) were mapped against the KEGG databases to identify 292 pathways. A core set of 41,373 genes belonging to 2412 orthologous gene families shared between C. gigantea and nine other plants was revealed. In addition, we identified 2515 small to larger-size gene families containing in total 9223 genes specific to C. gigantea, and enriched for gene ontologies relating to biotic interactions. We identified an important terpene synthases gene family expansion with its 121 putative members. CONCLUSIONS: This study presents the first comprehensive transcriptome characterization of C. gigantea. Our results will facilitate functional genomic studies to support genetic improvement and conservation programs for this endangered conifer.


Asunto(s)
Adaptación Biológica , Transferasas Alquil y Aril/genética , Cupressus/fisiología , Perfilación de la Expresión Génica/métodos , Cupressus/genética , Especies en Peligro de Extinción , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Análisis de Secuencia de ARN
18.
BMC Genomics ; 20(1): 762, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640560

RESUMEN

BACKGROUND: Macrobrachium rosenbergii, is one of a major freshwater prawn species cultured in Southeast Asia. White tail disease (WTD), caused by Macrobrachium rosenbergii nodavirus (MrNV), is a serious problem in farm cultivation and is responsible for up to 100% mortality in the post larvae stage. Molecular data on how M. rosenbergii post-larvae launches an immune response to an infection with MrNV is not currently available. We therefore compared the whole transcriptomic sequence of M. rosenbergii post-larvae before and after MrNV infection. RESULTS: Transcriptome for M. rosenbergii post-larvae demonstrated high completeness (BUSCO Complete: 83.4%, fragmentation: 13%, missing:3.3%, duplication:16.2%; highest ExN50 value: 94%). The assembled transcriptome consists of 96,362 unigenes with N50 of 1308 bp. The assembled transcriptome was successfully annotated against the NCBI non-redundant arthropod database (33.75%), UniProt database (26.73%), Gene Ontology (GO) (18.98%), Evolutionary Genealogy of Genes: Non-supervised Orthologous Groups (EggNOG) (20.88%), and Kyoto Encyclopedia of Genes and Genome pathway (KEGG) (20.46%). GO annotations included immune system process, signaling, response to stimulus, and antioxidant activity. Differential abundance analysis using EdgeR showed 2413 significantly up-regulated genes and 3125 significantly down-regulated genes during the infection of MrNV. CONCLUSIONS: This study reported a highly complete transcriptome from the post-larvae stage of giant river prawn, M. rosenbergii. Differential abundant transcripts during MrNV infection were identified and validated by qPCR, many of these differentially abundant transcripts as key players in antiviral immunity. These include known members of the innate immune response with the largest expression change occurring in the M. rosenbergii post-larvae after MrNV infection such as antiviral protein, C-type lectin, prophenol oxidase, caspase, ADP ribosylation factors, and dicer.


Asunto(s)
Nodaviridae/fisiología , Palaemonidae/genética , Palaemonidae/virología , Infecciones por Virus ARN/veterinaria , Animales , Acuicultura , Agua Dulce/virología , Perfilación de la Expresión Génica , Ontología de Genes , Inmunidad/genética , Anotación de Secuencia Molecular , Palaemonidae/inmunología , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/inmunología , Transcriptoma
19.
BMC Plant Biol ; 19(1): 182, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31060501

RESUMEN

BACKGROUND: Waterhemp (Amaranthus tuberculatus (Moq.) J.D. Sauer) is a problem weed commonly found in the Midwestern United States that can cause crippling yield losses for both maize (Zea mays L.) and soybean (Glycine max L. Merr). In 2011, 4-hydroxyphenylpyruvate-dioxygenase (HPPD, EC 1.13.11.27) inhibitor herbicide resistance was first reported in two waterhemp populations. Since the discovery of HPPD-herbicide resistance, studies have identified the mechanism of resistance and described the inheritance of the herbicide resistance. However, no studies have examined genome-wide gene expression changes in response to herbicide treatment in herbicide resistant and susceptible waterhemp. RESULTS: We conducted RNA-sequencing (RNA-seq) analyses of two waterhemp populations (HPPD-herbicide resistant and susceptible), from herbicide-treated and mock-treated leaf samples at three, six, twelve, and twenty-four hours after treatment (HAT). We performed a de novo transcriptome assembly using all sample sequences. Following assessments of our assembly, individual samples were mapped to the de novo transcriptome allowing us to identify transcripts specific to a genotype, herbicide treatment, or time point. Our results indicate that the response of HPPD-herbicide resistant and susceptible waterhemp genotypes to HPPD-inhibiting herbicide is rapid, established as soon as 3 hours after herbicide treatment. Further, there was little overlap in gene expression between resistant and susceptible genotypes, highlighting dynamic differences in response to herbicide treatment. In addition, we used stringent analytical methods to identify candidate single nucleotide polymorphisms (SNPs) that distinguish the resistant and susceptible genotypes. CONCLUSIONS: The waterhemp transcriptome, herbicide-responsive genes, and SNPs generated in this study provide valuable tools for future studies by numerous plant science communities. This collection of resources is essential to study and understand herbicide effects on gene expression in resistant and susceptible weeds. Understanding how herbicides impact gene expression could allow us to develop novel approaches for future herbicide development. Additionally, an increased understanding of the prolific traits intrinsic in weed success could lead to crop improvement.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , Amaranthus/enzimología , Amaranthus/genética , Inhibidores Enzimáticos/farmacología , Resistencia a los Herbicidas , Análisis de Secuencia de ARN , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Amaranthus/efectos de los fármacos , Ciclohexanonas/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes , Genotipo , Resistencia a los Herbicidas/genética , Anotación de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética
20.
BMC Genomics ; 19(1): 653, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30180798

RESUMEN

BACKGROUND: The challenges when developing a good de novo transcriptome assembler include how to deal with read errors and sequence repeats. Almost all de novo assemblers utilize a de Bruijn graph, with which complexity grows linearly with data size while suffering from errors and repeats. Although one can correct the errors by inspecting the topological structure of the graph, this is not an easy task when there are too many branches. Two research directions are to improve either the graph reliability or the path search precision, and in this study, we focused on the former. RESULTS: We present TraRECo, a greedy approach to de novo assembly employing error-aware graph construction. In the proposed approach, we built contigs by direct read alignment within a distance margin and performed a junction search to construct splicing graphs. While doing so, a contig of length l was represented by a 4 × l matrix (called a consensus matrix), in which each element was the base count of the aligned reads so far. A representative sequence was obtained by taking the majority in each column of the consensus matrix to be used for further read alignment. Once the splicing graphs had been obtained, we used IsoLasso to find paths with a noticeable read depth. The experiments using real and simulated reads show that the method provided considerable improvement in sensitivity and moderately better performance when comparing sensitivity and precision. This was achieved by the error-aware graph construction using the consensus matrix, with which the reads having errors were made usable for the graph construction (otherwise, they might have been eventually discarded). This improved the quality of the coverage depth information used in the subsequent path search step and finally the reliability of the graph. CONCLUSIONS: De novo assembly is mainly used to explore undiscovered isoforms and must be able to represent as many reads as possible in an efficient way. In this sense, TraRECo provides us with a potential alternative for improving graph reliability even though the computational burden is much higher than the single k-mer in the de Bruijn graph approach.


Asunto(s)
Biología Computacional , Células Madre Embrionarias/metabolismo , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Transcriptoma , Animales , Células Madre Embrionarias/citología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA