RESUMEN
Defect engineering is widely used to impart the desired functionalities on materials. Despite the widespread application of atomic-resolution scanning transmission electron microscopy (STEM), traditional methods for defect analysis are highly sensitive to random noise and human bias. While deep learning (DL) presents a viable alternative, it requires extensive amounts of training data with labeled ground truth. Herein, employing cycle generative adversarial networks (CycleGAN) and U-Nets, we propose a method based on a single experimental STEM image to tackle high annotation costs and image noise for defect detection. Not only atomic defects but also oxygen dopants in monolayer MoS2 are visualized. The method can be readily extended to other two-dimensional systems, as the training is based on unit-cell-level images. Therefore, our results outline novel ways to train the model with minimal data sets, offering great opportunities to fully exploit the power of DL in the materials science community.
RESUMEN
Defect detection is an indispensable part of the industrial intelligence process. The introduction of the DETR model marked the successful application of a transformer for defect detection, achieving true end-to-end detection. However, due to the complexity of defective backgrounds, low resolutions can lead to a lack of image detail control and slow convergence of the DETR model. To address these issues, we proposed a defect detection method based on an improved DETR model, called the GM-DETR. We optimized the DETR model by integrating GAM global attention with CNN feature extraction and matching features. This optimization process reduces the defect information diffusion and enhances the global feature interaction, improving the neural network's performance and ability to recognize target defects in complex backgrounds. Next, to filter out unnecessary model parameters, we proposed a layer pruning strategy to optimize the decoding layer, thereby reducing the model's parameter count. In addition, to address the issue of poor sensitivity of the original loss function to small differences in defect targets, we replaced the L1 loss in the original loss function with MSE loss to accelerate the network's convergence speed and improve the model's recognition accuracy. We conducted experiments on a dataset of road pothole defects to further validate the effectiveness of the GM-DETR model. The results demonstrate that the improved model exhibits better performance, with an increase in average precision of 4.9% (mAP@0.5), while reducing the parameter count by 12.9%.
RESUMEN
In the field of industrial inspection, accurate detection of thread quality is crucial for ensuring mechanical performance. Existing machine-vision-based methods for internal thread defect detection often face challenges in efficient detection and sufficient model training samples due to the influence of mechanical geometric features. This paper introduces a novel image acquisition structure, proposes a data augmentation algorithm based on Generative Adversarial Networks (GANs) to effectively construct high-quality training sets, and employs a YOLO algorithm to achieve internal thread defect detection. Through multi-metric evaluation and comparison with external threads, high-similarity internal thread image generation is achieved. The detection accuracy for internal and external threads reached 94.27% and 93.92%, respectively, effectively detecting internal thread defects.
RESUMEN
Solid wood is renowned as a superior material for construction and furniture applications. However, characteristics such as dead knots, live knots, piths, and cracks are easily formed during timber's growth and processing stages. These features and defects significantly undermine the mechanical characteristics of sawn timber, rendering it unsuitable for specific applications. This study introduces BDCS-YOLO (Bilateral Defect Cutting Strategy based on You Only Look Once), an artificial intelligence bilateral sawing strategy to advance the automation of timber processing. Grounded on a dual-sided image acquisition platform, BDCS-YOLO achieves a commendable mean average feature detection precision of 0.94 when evaluated on a meticulously curated dataset comprising 450 images. Furthermore, a dual-side processing optimization module is deployed to enhance the accuracy of defect detection bounding boxes and establish refined processing coordinates. This innovative approach yields a notable 12.3% increase in the volume yield of sawn timber compared to present production, signifying a substantial leap toward efficiently utilizing solid wood resources in the lumber processing industry.
RESUMEN
Defect detection in transparent materials typically relies on specific lighting conditions. However, through our work on defect detection for aircraft glass canopies, we found that using a single lighting condition often led to missed or false detections. This limitation arises from the optical properties of transparent materials, where certain defects only become sufficiently visible under specific lighting angles. To address this issue, we developed a dual-modal illumination system that integrates both forward and backward lighting to capture defect images. Additionally, we introduced the first dual-modal dataset for defect detection in aircraft glass canopies. Furthermore, we proposed an attention-based dual-branch modal fusion network (ADMF-Net) to enhance the detection process. Experimental results show that our system and model significantly improve the detection performance, with the dual-modal approach increasing the mAP by 5.6% over the single-modal baseline, achieving a mAP of 98.4%. Our research also provides valuable insights for defect detection in other transparent materials.
RESUMEN
Interactive devices such as touch screens have gained widespread usage in daily life; this has directed the attention of researchers to the quality of screen glass. Consequently, defect detection in screen glass is essential for improving the quality of smartphone screens. In recent years, defect detection methods based on deep learning have played a crucial role in improving detection accuracy and robustness. However, challenges have arisen in achieving high-performance detection due to the small size, irregular shapes and low contrast of defects. To address these challenges, this paper proposes CE-SGNet, a Context-Enhanced Network with a Spatial-aware Graph, for smartphone screen defect detection. It consists of two novel components: the Adaptive Receptive Field Attention Module (ARFAM) and the Spatial-aware Graph Reasoning Module (SGRM). The ARFAM enhances defect features by adaptively extracting contextual information to capture the most relevant contextual region of defect features. The SGRM constructs a region-to-region graph and encodes region features with spatial relationships. The connections among defect regions are enhanced during the propagation process through a graph attention network. By enriching the feature representations of defect regions, the CE-SGNet can accurately identify and locate defects of various shapes and scales. Experimental results demonstrate that the CE-SGNet achieves outstanding performance on two public datasets.
RESUMEN
In order to improve the efficiency and accuracy of multitarget detection of soldering defects on surface-mounted components in Printed Circuit Board (PCB) fabrication, we propose a sample generation method using Stable Diffusion Model and ControlNet, as well as a defect detection method based on the Swin Transformer. The method consists of two stages: First, high-definition original images collected in industrial production and the corresponding prompts are input to Stable Diffusion Model and ControlNet for automatic generation of nonindependent samples. Subsequently, we integrate Swin Transformer as the backbone into the Cascade Mask R-CNN to improve the quality of defect features extracted from the samples for accurate detection box localization and segmentation. Instead of segmenting individual components on the PCB, the method inspects all components in the field of view simultaneously over a larger area. The experimental results demonstrate the effectiveness of our method in scaling up nonindependent sample datasets, thereby enabling the generation of high-quality datasets. The method accurately recognizes targets and detects defect types when performing multitarget inspection on printed circuit boards. The analysis against other models shows that our improved defect detection and segmentation method improves the Average Recall (AR) by 2.8% and the mean Average Precision (mAP) by 1.9%.
RESUMEN
Train wheels are crucial components for ensuring the safety of trains. The accurate and fast identification of wheel tread defects is necessary for the timely maintenance of wheels, which is essential for achieving the premise of conditional repair. Image-based detection methods are commonly used for detecting tread defects, but they still have issues with the misdetection of water stains and the leaking of small defects. In this paper, we address the challenges posed by the detection of wheel tread defects by proposing improvements to the YOLOv8 model. Firstly, the impact of water stains on tread defect detection is avoided by optimising the structure of the detection layer. Secondly, an improved SPPCSPC module is introduced to enhance the detection of small targets. Finally, the SIoU loss function is used to accelerate the convergence speed of the network, which ensures defect recognition accuracy with high operational efficiency. Validation was performed on the constructed tread defect dataset. The results demonstrate that the enhanced YOLOv8 model in this paper outperforms the original network and significantly improves the tread defect detection indexes. The average precision, accuracy, and recall reached 96.95%, 96.30%, and 95.31%.
RESUMEN
The rapid and accurate identification of rail surface defects is critical to the maintenance and operational safety of the rail. For the problems of large-scale differences in rail surface defects and many small-scale defects, this paper proposes a rail surface defect detection algorithm, RSDNet (Rail Surface Defect Detection Net), with YOLOv8n as the baseline model. Firstly, the CDConv (Cascade Dilated Convolution) module is designed to realize multi-scale convolution by cascading the cavity convolution with different cavity rates. The CDConv is embedded into the backbone network to gather earlier defect local characteristics and contextual data. Secondly, the feature fusion method of Head is optimized based on BiFPN (Bi-directional Feature Pyramids Network) to fuse more layers of feature information and improve the utilization of original information. Finally, the EMA (Efficient Multi-Scale Attention) attention module is introduced to enhance the network's attention to defect information. The experiments are conducted on the RSDDs dataset, and the experimental results show that the RSDNet algorithm achieves a mAP of 95.4% for rail surface defect detection, which is 4.6% higher than the original YOLOv8n. This study provides an effective technical means for rail surface defect detection that has certain engineering applications.
RESUMEN
Printed circuit board (PCB) surface defect detection is an essential part of the PCB manufacturing process. Currently, advanced CCD or CMOS sensors can capture high-resolution PCB images. However, the existing computer vision approaches for PCB surface defect detection require high computing effort, leading to insufficient efficiency. To this end, this article proposes a local and global context-enhanced lightweight CenterNet (LGCL-CenterNet) to detect PCB surface defects in real time. Specifically, we propose a two-branch lightweight vision transformer module with local and global attention, named LGT, as a complement to extract high-dimension features and leverage context-aware local enhancement after the backbone network. In the local branch, we utilize coordinate attention to aggregate more powerful features of PCB defects with different shapes. In the global branch, Bi-Level Routing Attention with pooling is used to capture long-distance pixel interactions with limited computational cost. Furthermore, a Path Aggregation Network (PANet) feature fusion structure is incorporated to mitigate the loss of shallow features caused by the increase in model depth. Then, we design a lightweight prediction head by using depthwise separable convolutions, which further compresses the computational complexity and parameters while maintaining the detection capability of the model. In the experiment, the LGCL-CenterNet increased the mAP@0.5 by 2% and 1.4%, respectively, in comparison to CenterNet-ResNet18 and YOLOv8s. Meanwhile, our approach requires fewer model parameters (0.542M) than existing techniques. The results show that the proposed method improves both detection accuracy and inference speed and indicate that the LGCL-CenterNet has better real-time performance and robustness.
RESUMEN
Castings' surface-defect detection is a crucial machine vision-based automation technology. This paper proposes a fusion-enhanced attention mechanism and efficient self-architecture lightweight YOLO (SLGA-YOLO) to overcome the existing target detection algorithms' poor computational efficiency and low defect-detection accuracy. We used the SlimNeck module to improve the neck module and reduce redundant information interference. The integration of simplified attention module (SimAM) and Large Separable Kernel Attention (LSKA) fusion strengthens the attention mechanism, improving the detection performance, while significantly reducing computational complexity and memory usage. To enhance the generalization ability of the model's feature extraction, we replaced part of the basic convolutional blocks with the self-designed GhostConvML (GCML) module, based on the addition of p2 detection. We also constructed the Alpha-EIoU loss function to accelerate model convergence. The experimental results demonstrate that the enhanced algorithm increases the average detection accuracy (mAP@0.5) by 3% and the average detection accuracy (mAP@0.5:0.95) by 1.6% in the castings' surface defects dataset.
RESUMEN
Defect inspection of existing buildings is receiving increasing attention for digitalization transfer in the construction industry. The development of drone technology and artificial intelligence has provided powerful tools for defect inspection of buildings. However, integrating defect inspection information detected from UAV images into semantically rich building information modeling (BIM) is still challenging work due to the low defect detection accuracy and the coordinate difference between UAV images and BIM models. In this paper, a deep learning-based method coupled with transfer learning is used to detect defects accurately; and a texture mapping-based defect parameter extraction method is proposed to achieve the mapping from the image U-V coordinate system to the BIM project coordinate system. The defects are projected onto the surface of the BIM model to enrich a surface defect-extended BIM (SDE-BIM). The proposed method was validated in a defect information modeling experiment involving the No. 36 teaching building of Nantong University. The results demonstrate that the methods are widely applicable to various building inspection tasks.
RESUMEN
Aircraft ducts play an indispensable role in various systems of an aircraft. The regular inspection and maintenance of aircraft ducts are of great significance for preventing potential failures and ensuring the normal operation of the aircraft. Traditional manual inspection methods are costly and inefficient, especially under low-light conditions. To address these issues, we propose a new defect detection model called LESM-YOLO. In this study, we integrate a lighting enhancement module to improve the accuracy and recognition of the model under low-light conditions. Additionally, to reduce the model's parameter count, we employ space-to-depth convolution, making the model more lightweight and suitable for deployment on edge detection devices. Furthermore, we introduce Mixed Local Channel Attention (MLCA), which balances complexity and accuracy by combining local channel and spatial attention mechanisms, enhancing the overall performance of the model and improving the accuracy and robustness of defect detection. Finally, we compare the proposed model with other existing models to validate the effectiveness of LESM-YOLO. The test results show that our proposed model achieves an mAP of 96.3%, a 5.4% improvement over the original model, while maintaining a detection speed of 138.7, meeting real-time monitoring requirements. The model proposed in this paper provides valuable technical support for the detection of dark defects in aircraft ducts.
RESUMEN
Aiming at the problems of the poor robustness and universality of traditional contour matching algorithms in engineering applications, a method for improving the surface defect detection of industrial products based on contour matching algorithms is detailed in this paper. Based on the image pyramid optimization method, a three-level matching method is designed, which can quickly obtain the candidate pose of the target contour at the top of the image pyramid, combining the integral graph and the integration graph acceleration strategy based on weak classification. It can quickly obtain the rough positioning and rough angle of the target contour, which greatly improves the performance of the algorithm. In addition, to solve the problem that a large number of duplicate candidate points will be generated when the target candidate points are expanded, a method to obtain the optimal candidate points in the neighborhood of the target candidate points is designed, which can guarantee the matching accuracy and greatly reduce the calculation amount. In order to verify the effectiveness of the algorithm, functional test experiments were designed for template building function and contour matching function, including uniform illumination condition, nonlinear condition and contour matching detection under different conditions. The results show that: (1) Under uniform illumination conditions, the detection accuracy can be maintained at about 93%. (2) Under nonlinear illumination conditions, the detection accuracy can be maintained at about 91.84%. (3) When there is an external interference source, there will be a false detection or no detection, and the overall defect detection rate remains above 94%. It is verified that the proposed method can meet the application requirements of common defect detection, and has good robustness and meets the expected functional requirements of the algorithm, providing a strong technical guarantee and data support for the design of embedded image sensors in the later stage.
RESUMEN
Defect detection on steel surfaces with complex textures is a critical and challenging task in the industry. The limited number of defect samples and the complexity of the annotation process pose significant challenges. Moreover, performing defect segmentation based on accurate identification further increases the task's difficulty. To address this issue, we propose VQGNet, an unsupervised algorithm that can precisely recognize and segment defects simultaneously. A feature fusion method based on aggregated attention and a classification-aided module is proposed to segment defects by integrating different features in the original images and the anomaly maps, which direct the attention to the anomalous information instead of the irregular complex texture. The anomaly maps are generated more confidently using strategies for multi-scale feature fusion and neighbor feature aggregation. Moreover, an anomaly generation method suitable for grayscale images is introduced to facilitate the model's learning on the anomalous samples. The refined anomaly maps and fused features are both input into the classification-aided module for the final classification and segmentation. VQGNet achieves state-of-the-art (SOTA) performance on the industrial steel dataset, with an I-AUROC of 99.6%, I-F1 of 98.8%, P-AUROC of 97.0%, and P-F1 of 80.3%. Additionally, ViT-Query demonstrates robust generalization capabilities in generating anomaly maps based on the Kolektor Surface-Defect Dataset 2.
RESUMEN
In industrial manufacturing, metal surface defect detection often suffers from low detection accuracy, high leakage rates, and false detection rates. To address these issues, this paper proposes a novel model named DSL-YOLO for metal surface defect detection. First, we introduce the C2f_DWRB structure by integrating the DWRB module with C2f, enhancing the model's ability to detect small and occluded targets and effectively extract sparse spatial features. Second, we design the SADown module to improve feature extraction in challenging tasks involving blurred images or very small objects. Finally, to further enhance the model's capacity to extract multi-scale features and capture critical image information (such as edges, textures, and shapes) without significantly increasing memory usage and computational cost, we propose the LASPPF structure. Experimental results demonstrate that the improved model achieves significant performance gains on both the GC10-DET and NEU-DET datasets, with a mAP@0.5 increase of 4.2% and 2.6%, respectively. The improvements in detection accuracy highlight the model's ability to address common challenges while maintaining efficiency and feasibility in metal surface defect detection, providing a valuable solution for industrial applications.
RESUMEN
Strip steel surface defect detection has become a crucial step in ensuring the quality of strip steel production. To address the issues of low detection accuracy and long detection times in strip steel surface defect detection algorithms caused by varying defect sizes and blurred images during acquisition, this paper proposes a lightweight strip steel surface defect detection network, YOLO-SDS, based on an improved YOLOv8. Firstly, StarNet is utilized to replace the backbone network of YOLOv8, achieving lightweight optimization while maintaining accuracy. Secondly, a lightweight module DWR is introduced into the neck and combined with the C2f feature extraction module to enhance the model's multi-scale feature extraction capability. Finally, an occlusion-aware attention mechanism SEAM is incorporated into the detection head, enabling the model to better capture and process features of occluded objects, thus improving performance in complex scenarios. Experimental results on the open-source NEU-DET dataset show that the improved model reduces parameters by 34.4% compared with the original YOLOv8 algorithm while increasing average detection accuracy by 1.5%. And it shows good generalization performance on the deepPCB dataset. Compared with other defect detection models, YOLO-SDS offers significant advantages in terms of parameter count and detection speed. Additionally, ablation experiments validate the effectiveness of each module.
RESUMEN
The occurrence of anomalies on the surface of industrial products can lead to issues such as decreased product quality, reduced production efficiency, and safety hazards. Early detection and resolution of these problems are crucial for ensuring the quality and efficiency of production. The key challenge in applying deep learning to surface defect detection of industrial products is the scarcity of defect samples, which will make supervised learning methods unsuitable for surface defect detection problems. Therefore, it is a reasonable solution to use anomaly detection methods to deal with surface defect detection. Among image-based anomaly detection, reconstruction-based methods are the most commonly used. However, reconstruction-based approaches lack the involvement of defect samples in the training process, posing the risk of a perfect reconstruction of defects by the reconstruction network. In this paper, we propose a reconstruction-based defect detection algorithm that addresses these challenges by utilizing more realistic synthetic anomalies for training. Our model focuses on creating authentic synthetic defects and introduces an auto-encoder image reconstruction network with deep feature consistency constraints, as well as a defect separation network with a large receptive field. We conducted experiments on the challenging MVTec anomaly detection dataset and our trained model achieved an AUROC score of 99.70% and an average precision (AP) score of 99.87%. Our method surpasses recently proposed defect detection algorithms, thereby enhancing the accuracy of surface defect detection in industrial products.
RESUMEN
In the context of defect detection in high-speed railway train wheels, particularly in ultrasonic-testing B-scan images characterized by their small size and complexity, the need for a robust solution is paramount. The proposed algorithm, UT-YOLO, was meticulously designed to address the specific challenges presented by these images. UT-YOLO enhances its learning capacity, accuracy in detecting small targets, and overall processing speed by adopting optimized convolutional layers, a special layer design, and an attention mechanism. This algorithm exhibits superior performance on high-speed railway wheel UT datasets, indicating its potential. Crucially, UT-YOLO meets real-time processing requirements, positioning it as a practical solution for the dynamic and high-speed environment of railway inspections. In experimental evaluations, UT-YOLO exhibited good performance in best recall, mAP@0.5 and mAP@0.5:0.95 increased by 37%, 36%, and 43%, respectively; and its speed also met the needs of real-time performance. Moreover, an ultrasonic defect detection data set based on real wheels was created, and this research has been applied in actual scenarios and has helped to greatly improve manual detection efficiency.
RESUMEN
Steel surfaces often display intricate texture patterns that can resemble defects, posing a challenge in accurately identifying actual defects. Therefore, it is crucial to develop a highly robust defect detection model. This study proposes a defect detection method for steel infrared images based on a Regularized YOLO framework. Firstly, the Coordinate Attention (CA) is embedded within the C2F framework, utilizing a lightweight attention module to enhance the feature extraction capability of the backbone network. Secondly, the neck part design incorporates the Bi-directional Feature Pyramid Network (BiFPN) for weighted fusion of multi-scale feature maps. This creates a model called BiFPN-Concat, which enhances feature fusion capability. Finally, the loss function of the model is regularized to improve the generalization performance of the model. The experimental results indicate that the model has only 3.03 M parameters, yet achieves a mAP@0.5 of 80.77% on the NEU-DET dataset and 99.38% on the ECTI dataset. This represents an improvement of 2.3% and 1.6% over the baseline model, respectively. This method is well-suited for industrial detection applications involving non-destructive testing of steel using infrared imagery.