Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.594
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(17): 3548-3557, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37595564

RESUMEN

A human embryo's legal definition and its entitlement to protection vary greatly worldwide. Recently, human pluripotent stem cells have been used to form in vitro models of early embryos that have challenged legal definitions and raised questions regarding their usage. In this light, we propose a refined legal definition of an embryo, suggest "tipping points" for when human embryo models could eventually be afforded similar protection to that of embryos, and then revisit basic ethical principles that might help to draft a roadmap for the gradual, justified usage of embryo models in a manner that aims to maximize benefits to society.


Asunto(s)
Investigaciones con Embriones , Embrión de Mamíferos , Humanos , Células Madre Pluripotentes , Investigaciones con Embriones/ética
2.
Mol Cell ; 83(15): 2653-2672.e15, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37506698

RESUMEN

Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.


Asunto(s)
Sitios de Empalme de ARN , Empalme del ARN , Humanos , Sitios de Empalme de ARN/genética , Intrones/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
3.
Mol Cell ; 82(24): 4681-4699.e8, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435176

RESUMEN

Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Humanos , Secuencia de Bases , Intrones/genética , Exones/genética
4.
Mol Cell ; 82(5): 1021-1034.e8, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182478

RESUMEN

How the splicing machinery defines exons or introns as the spliced unit has remained a puzzle for 30 years. Here, we demonstrate that peripheral and central regions of the nucleus harbor genes with two distinct exon-intron GC content architectures that differ in the splicing outcome. Genes with low GC content exons, flanked by long introns with lower GC content, are localized in the periphery, and the exons are defined as the spliced unit. Alternative splicing of these genes results in exon skipping. In contrast, the nuclear center contains genes with a high GC content in the exons and short flanking introns. Most splicing of these genes occurs via intron definition, and aberrant splicing leads to intron retention. We demonstrate that the nuclear periphery and center generate different environments for the regulation of alternative splicing and that two sets of splicing factors form discrete regulatory subnetworks for the two gene architectures. Our study connects 3D genome organization and splicing, thus demonstrating that exon and intron definition modes of splicing occur in different nuclear regions.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Composición de Base , Exones/genética , Intrones/genética
5.
Mol Cell ; 77(5): 985-998.e8, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31839405

RESUMEN

Understanding how splicing events are coordinated across numerous introns in metazoan RNA transcripts requires quantitative analyses of transient RNA processing events in living cells. We developed nanopore analysis of co-transcriptional processing (nano-COP), in which nascent RNAs are directly sequenced through nanopores, exposing the dynamics and patterns of RNA splicing without biases introduced by amplification. Long nano-COP reads reveal that, in human and Drosophila cells, splicing occurs after RNA polymerase II transcribes several kilobases of pre-mRNA, suggesting that metazoan splicing transpires distally from the transcription machinery. Inhibition of the branch-site recognition complex SF3B rapidly diminished global co-transcriptional splicing. We found that splicing order does not strictly follow the order of transcription and is associated with cis-acting elements, alternative splicing, and RNA-binding factors. Further, neighboring introns in human cells tend to be spliced concurrently, implying that splicing of these introns occurs cooperatively. Thus, nano-COP unveils the organizational complexity of RNA processing.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Intrones , Células K562 , Cinética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , Transcripción Genética
6.
Mol Cell ; 76(2): 329-345, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626751

RESUMEN

High-throughput sequencing-based methods and their applications in the study of transcriptomes have revolutionized our understanding of alternative splicing. Networks of functionally coordinated and biologically important alternative splicing events continue to be discovered in an ever-increasing diversity of cell types in the context of physiologically normal and disease states. These studies have been complemented by efforts directed at defining sequence codes governing splicing and their cognate trans-acting factors, which have illuminated important combinatorial principles of regulation. Additional studies have revealed critical roles of position-dependent, multivalent protein-RNA interactions that direct splicing outcomes. Investigations of evolutionary changes in RNA binding proteins, splice variants, and associated cis elements have further shed light on the emergence, mechanisms, and functions of splicing networks. Progress in these areas has emphasized the need for a coordinated, community-based effort to systematically address the functions of individual splice variants associated with normal and disease biology.


Asunto(s)
Empalme Alternativo/fisiología , Evolución Molecular , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Humanos
7.
Trends Genet ; 39(9): 672-685, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37236814

RESUMEN

Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.


Asunto(s)
Precursores del ARN , Transcripción Genética , Precursores del ARN/genética , Empalme del ARN/genética , Empalmosomas/genética , Empalmosomas/metabolismo , Intrones
8.
EMBO J ; 41(1): e107640, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34779515

RESUMEN

SRSF1 protein and U1 snRNPs are closely connected splicing factors. They both stimulate exon inclusion, SRSF1 by binding to exonic splicing enhancer sequences (ESEs) and U1 snRNPs by binding to the downstream 5' splice site (SS), and both factors affect 5' SS selection. The binding of U1 snRNPs initiates spliceosome assembly, but SR proteins such as SRSF1 can in some cases substitute for it. The mechanistic basis of this relationship is poorly understood. We show here by single-molecule methods that a single molecule of SRSF1 can be recruited by a U1 snRNP. This reaction is independent of exon sequences and separate from the U1-independent process of binding to an ESE. Structural analysis and cross-linking data show that SRSF1 contacts U1 snRNA stem-loop 3, which is required for splicing. We suggest that the recruitment of SRSF1 to a U1 snRNP at a 5'SS is the basis for exon definition by U1 snRNP and might be one of the principal functions of U1 snRNPs in the core reactions of splicing in mammals.


Asunto(s)
Exones/genética , Conformación de Ácido Nucleico , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Unión Proteica , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo
9.
Mol Cell ; 72(2): 369-379.e4, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30340024

RESUMEN

The highly intronic nature of protein coding genes in mammals necessitates a co-transcriptional splicing mechanism as revealed by mNET-seq analysis. Immunoprecipitation of MNase-digested chromatin with antibodies against RNA polymerase II (Pol II) shows that active spliceosomes (both snRNA and proteins) are complexed to Pol II S5P CTD during elongation and co-transcriptional splicing. Notably, elongating Pol II-spliceosome complexes form strong interactions with nascent transcripts, resulting in footprints of approximately 60 nucleotides. Also, splicing intermediates formed by cleavage at the 5' splice site are associated with nearly all spliced exons. These spliceosome-bound intermediates are frequently ligated to upstream exons, implying a sequential, constitutive, and U12-dependent splicing process. Finally, lack of detectable spliced products connected to the Pol II active site in human HeLa or murine lymphoid cells suggests that splicing does not occur immediately following 3' splice site synthesis. Our results imply that most mammalian splicing requires exon definition for completion.


Asunto(s)
Fosforilación/genética , ARN Polimerasa II/genética , Empalme del ARN/genética , Serina/genética , Empalmosomas/genética , Transcripción Genética/genética , Animales , Línea Celular Tumoral , Exones/genética , Células HeLa , Humanos , Intrones/genética , Ratones , ARN Nuclear Pequeño/genética
10.
Mol Cell ; 72(3): 510-524.e12, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388412

RESUMEN

Alternative splicing is crucial for diverse cellular, developmental, and pathological processes. However, the full networks of factors that control individual splicing events are not known. Here, we describe a CRISPR-based strategy for the genome-wide elucidation of pathways that control splicing and apply it to microexons with important functions in nervous system development and that are commonly misregulated in autism. Approximately 200 genes associated with functionally diverse regulatory layers and enriched in genetic links to autism control neuronal microexons. Remarkably, the widely expressed RNA binding proteins Srsf11 and Rnps1 directly, preferentially, and frequently co-activate these microexons. These factors form critical interactions with the neuronal splicing regulator Srrm4 and a bi-partite intronic splicing enhancer element to promote spliceosome formation. Our study thus presents a versatile system for the identification of entire splicing regulatory pathways and further reveals a common mechanism for the definition of neuronal microexons that is disrupted in autism.


Asunto(s)
Empalme Alternativo/fisiología , Ingeniería Genética/métodos , Sitios de Empalme de ARN/fisiología , Animales , Trastorno Autístico/genética , Sistemas CRISPR-Cas/genética , Línea Celular , Exones/fisiología , Humanos , Ratones , Proteínas del Tejido Nervioso , Neurogénesis , Neuronas , Precursores del ARN/fisiología , Empalme del ARN/fisiología , Proteínas de Unión al ARN , Ribonucleoproteínas , Factores de Empalme Serina-Arginina , Empalmosomas
11.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38850217

RESUMEN

This study aimed to investigate the effects of high-definition transcranial direct current stimulation on ankle force sense and underlying cerebral hemodynamics. Sixteen healthy adults (8 males and 8 females) were recruited in the study. Each participant received either real or sham high-definition transcranial direct current stimulation interventions in a randomly assigned order on 2 visits. An isokinetic dynamometer was used to assess the force sense of the dominant ankle; while the functional near-infrared spectroscopy was employed to monitor the hemodynamics of the sensorimotor cortex. Two-way analyses of variance with repeated measures and Pearson correlation analyses were performed. The results showed that the absolute error and root mean square error of ankle force sense dropped more after real stimulation than after sham stimulation (dropped by 23.4% vs. 14.9% for absolute error, and 20.0% vs. 10.2% for root mean square error). The supplementary motor area activation significantly increased after real high-definition transcranial direct current stimulation. The decrease in interhemispheric functional connectivity within the Brodmann's areas 6 was significantly correlated with ankle force sense improvement after real high-definition transcranial direct current stimulation. In conclusion, high-definition transcranial direct current stimulation can be used as a potential intervention for improving ankle force sense. Changes in cerebral hemodynamics could be one of the explanations for the energetic effect of high-definition transcranial direct current stimulation.


Asunto(s)
Tobillo , Espectroscopía Infrarroja Corta , Estimulación Transcraneal de Corriente Directa , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Tobillo/fisiología , Circulación Cerebrovascular/fisiología , Hemodinámica/fisiología , Corteza Motora/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Estudios Cruzados
12.
Mol Cell ; 68(5): 940-954.e3, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29174924

RESUMEN

Many eukaryotic genes generate linear mRNAs and circular RNAs, but it is largely unknown how the ratio of linear to circular RNA is controlled or modulated. Using RNAi screening in Drosophila cells, we identify many core spliceosome and transcription termination factors that control the RNA outputs of reporter and endogenous genes. When spliceosome components were depleted or inhibited pharmacologically, the steady-state levels of circular RNAs increased while expression of their associated linear mRNAs concomitantly decreased. Upon inhibiting RNA polymerase II termination via depletion of the cleavage/polyadenylation machinery, circular RNA levels were similarly increased. This is because readthrough transcripts now extend into downstream genes and are subjected to backsplicing. In total, these results demonstrate that inhibition or slowing of canonical pre-mRNA processing events shifts the steady-state output of protein-coding genes toward circular RNAs. This is in part because nascent RNAs become directed into alternative pathways that lead to circular RNA production.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Precursores del ARN/biosíntesis , Empalme del ARN , ARN Mensajero/biosíntesis , ARN/biosíntesis , Empalmosomas/genética , Transcripción Genética , Animales , Línea Celular , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/metabolismo , Lacasa/biosíntesis , Lacasa/genética , ARN/genética , Interferencia de ARN , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Estabilidad del ARN , ARN Circular , ARN Mensajero/genética , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Empalmosomas/metabolismo , Terminación de la Transcripción Genética , Transfección
13.
Proc Natl Acad Sci U S A ; 119(44): e2211147119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36302042

RESUMEN

Understanding the neural mechanisms of conscious and unconscious experience is a major goal of fundamental and translational neuroscience. Here, we target the early visual cortex with a protocol of noninvasive, high-resolution alternating current stimulation while participants performed a delayed target-probe discrimination task and reveal dissociable mechanisms of mnemonic processing for conscious and unconscious perceptual contents. Entraining ß-rhythms in bilateral visual areas preferentially enhanced short-term memory for seen information, whereas α-entrainment in the same region preferentially enhanced short-term memory for unseen information. The short-term memory improvements were frequency-specific and long-lasting. The results add a mechanistic foundation to existing theories of consciousness, call for revisions to these theories, and contribute to the development of nonpharmacological therapeutics for improving visual cortical processing.


Asunto(s)
Estado de Conciencia , Percepción Visual , Humanos , Estado de Conciencia/fisiología , Percepción Visual/fisiología , Inconsciencia , Memoria a Corto Plazo
14.
Clin Infect Dis ; 78(6): 1727-1731, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38607928

RESUMEN

BACKGROUND: In 2020, the Council of State and Territorial Epidemiologists (CSTE) pertussis case definition was modified; the main change was classifying polymerase chain reaction (PCR)-positive cases as confirmed, regardless of cough duration. Pertussis data reported through Enhanced Pertussis Surveillance (EPS) in 7 sites and the National Notifiable Diseases Surveillance System (NNDSS) were used to evaluate the impact of the new case definition. METHODS: We compared the number of EPS cases with cough onset in 2020 to the number that would have been reported based on the prior (2014) CSTE case definition. To assess the impact of the change nationally, the proportion of EPS cases newly reportable under the 2020 CSTE case definition was applied to 2020 NNDSS data to estimate how many additional cases were captured nationally. RESULTS: Among 442 confirmed and probable cases reported to EPS states in 2020, 42 (9.5%) were newly reportable according to the 2020 case definition. Applying this proportion to the 6124 confirmed and probable cases reported nationally in 2020, we estimated that the new definition added 582 cases. Had the case definition not changed, reported cases in 2020 would have decreased by 70% from 2019; the observed decrease was 67%. CONCLUSIONS: Despite a substantial decrease in reported pertussis cases in the setting of coronavirus disease 2019 (COVID-19), our data show that the 2020 pertussis case definition change resulted in additional case reporting compared with the previous case definition, providing greater opportunities for public health interventions such as prophylaxis of close contacts.


Asunto(s)
Bordetella pertussis , Tos Ferina , Tos Ferina/epidemiología , Tos Ferina/diagnóstico , Tos Ferina/prevención & control , Humanos , Estados Unidos/epidemiología , Niño , Bordetella pertussis/genética , Bordetella pertussis/aislamiento & purificación , Preescolar , Lactante , Adolescente , Adulto , Adulto Joven , Masculino , Vigilancia de la Población , Femenino , Notificación de Enfermedades/estadística & datos numéricos , Reacción en Cadena de la Polimerasa
15.
J Hepatol ; 81(2): 360-366, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38554849

RESUMEN

Acute-on-chronic liver failure (ACLF), usually precipitated by alcohol misuse or viral reactivation, is characterised by rapid onset and usually reversible liver failure. Various definitions of ACLF have been proposed and widely used across the globe, including those by APASL, COSSH, EASL-CLIF, Japanese experts, and NACSELD. Although all the definitions have several similarities and connote high short-term mortality, a clear and standardised definition is still lacking, hampering research in this key area. In this review, we discuss the similarities and differences among various definitions and propose steps to harmonise EASL-CLIF, APASL, NACSELD, Japanese, and Chinese definitions of ACLF.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Humanos , Insuficiencia Hepática Crónica Agudizada/diagnóstico , Insuficiencia Hepática Crónica Agudizada/etiología , Terminología como Asunto
16.
Development ; 148(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34932803

RESUMEN

A fundamental challenge when studying biological systems is the description of cell state dynamics. During transitions between cell states, a multitude of parameters may change - from the promoters that are active, to the RNAs and proteins that are expressed and modified. Cells can also adopt different shapes, alter their motility and change their reliance on cell-cell junctions or adhesion. These parameters are integral to how a cell behaves and collectively define the state a cell is in. Yet, technical challenges prevent us from measuring all of these parameters simultaneously and dynamically. How, then, can we comprehend cell state transitions using finite descriptions? The recent virtual workshop organised by The Company of Biologists entitled 'Cell State Transitions: Approaches, Experimental Systems and Models' attempted to address this question. Here, we summarise some of the main points that emerged during the workshop's themed discussions. We also present examples of cell state transitions and describe models and systems that are pushing forward our understanding of how cells rewire their state.


Asunto(s)
Linaje de la Célula/genética , Regiones Promotoras Genéticas/genética , Proteínas/genética , ARN/genética , Adhesión Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Uniones Intercelulares/genética , Biología de Sistemas
17.
Magn Reson Med ; 92(1): 215-225, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38321594

RESUMEN

PURPOSE: Determine the correct mathematical phase description for balanced steady-state free precession (bSSFP) signals in multi-compartment systems. THEORY AND METHODS: Based on published bSSFP signal models, different phase descriptions can be formulated: one predicting the presence and the other predicting the absence of destructive interference effects in multi-compartment systems. Numerical simulations of bSSFP signals of water and acetone were performed to evaluate the predictions of these different phase descriptions. For experimental validation, bSSFP profiles were measured at 3T using phase-cycled bSSFP acquisitions performed in a phantom containing mixtures of water and acetone, which replicates a system with two signal components. Localized single voxel MRS was performed at 7T to determine the relative chemical shift of the acetone-water mixtures. RESULTS: Based on the choice of phase description, the simulated bSSFP profiles of water-acetone mixtures varied significantly, either displaying or lacking destructive interference effects, as predicted theoretically. In phantom experiments, destructive interference was consistently observed in the measured bSSFP profiles of water-acetone mixtures, supporting the theoretical description that predicts such interference effects. The connection between the choice of phase description and predicted observation enables unambiguous experimental identification of the correct phase description for multi-compartment bSSFP profiles, which is consistent with the Bloch equations. CONCLUSION: The study emphasizes that consistent phase descriptions are crucial for accurately describing multi-compartment bSSFP signals, as incorrect phase descriptions result in erroneous predictions.


Asunto(s)
Acetona , Algoritmos , Simulación por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen , Agua , Imagen por Resonancia Magnética/métodos , Agua/química , Acetona/química , Acetona/análisis , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador
18.
J Card Fail ; 30(1): 64-77, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065308

RESUMEN

Given the numerous opportunities and the wide knowledge gaps in pediatric heart failure, an international group of pediatric heart failure experts with diverse backgrounds were invited and tasked with identifying research gaps in each pediatric heart failure domain that scientists and funding agencies need to focus on over the next decade.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Niño , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Lagunas en las Evidencias
19.
Strahlenther Onkol ; 200(1): 83-96, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37872398

RESUMEN

PURPOSE: In stereotactic arrhythmia radioablation (STAR), the target is defined using multiple imaging studies and a multidisciplinary team consisting of electrophysiologist, cardiologist, cardiac radiologist, and radiation oncologist collaborate to identify the target and delineate it on the imaging studies of interest. This report describes the workflow employed in our radiotherapy department to transfer the target identified based on electrophysiology and cardiology imaging to the treatment planning image set. METHODS: The radiotherapy team was presented with an initial target in cardiac axes orientation, contoured on a wideband late gadolinium-enhanced (WB-LGE) cardiac magnetic resonance (CMR) study, which was subsequently transferred to the computed tomography (CT) scan used for treatment planning-i.e., the average intensity projection (AIP) image set derived from a 4D CT-via an axial CMR image set, using rigid image registration focused on the target area. The cardiac and the respiratory motion of the target were resolved using ciné-CMR and 4D CT imaging studies, respectively. RESULTS: The workflow was carried out for 6 patients and resulted in an internal target defined in standard anatomical orientation that encompassed the cardiac and the respiratory motion of the initial target. CONCLUSION: An image registration-based workflow was implemented to render the STAR target on the planning image set in a consistent manner, using commercial software traditionally available for radiation therapy.


Asunto(s)
Tomografía Computarizada Cuatridimensional , Planificación de la Radioterapia Asistida por Computador , Humanos , Flujo de Trabajo , Planificación de la Radioterapia Asistida por Computador/métodos , Aceleradores de Partículas , Arritmias Cardíacas
20.
Diabetes Metab Res Rev ; 40(3): e3654, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37186781

RESUMEN

Multiple disciplines are involved in the management of diabetes-related foot disease and a common vocabulary is essential for clear communication. Based on the systematic reviews of the literature that form the basis of the International Working Group on the Diabetic Foot (IWGDF) Guidelines, the IWGDF has developed a set of definitions and criteria for diabetes-related foot disease. This document describes the 2023 update of these definitions and criteria. We suggest these definitions be used consistently in both clinical practice and research, to facilitate clear communication with people with diabetes-related foot disease and between professionals around the world.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Enfermedades del Pie , Humanos , Pie Diabético/diagnóstico , Pie Diabético/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA