Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunity ; 50(1): 121-136.e5, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30594464

RESUMEN

Dermal fibroblasts (dFBs) resist infection by locally differentiating into adipocytes and producing cathelicidin antimicrobial peptide in response to Staphylococcus aureus (S. aureus). Here, we show that neonatal skin was enriched with adipogenic dFBs and immature dermal fat that highly expressed cathelicidin. The pool of adipogenic and antimicrobial dFBs declined after birth, leading to an age-dependent loss of dermal fat and a decrease in adipogenesis and cathelidicin production in response to infection. Transforming growth factor beta (TGF-ß), which acted on uncommitted embryonic and adult dFBs and inhibited their adipogenic and antimicrobial function, was identified as a key upstream regulator of this process. Furthermore, inhibition of the TGF-ß receptor restored the adipogenic and antimicrobial function of dFBs in culture and increased resistance of adult mice to S. aureus infection. These results provide insight into changes that occur in the skin innate immune system between the perinatal and adult periods of life.


Asunto(s)
Envejecimiento/inmunología , Fibroblastos/fisiología , Piel/metabolismo , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/fisiología , Grasa Subcutánea/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adipocitos/metabolismo , Adipogénesis , Animales , Antiinfecciosos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Células Cultivadas , Embrión de Mamíferos , Humanos , Inmunidad Innata , Ratones , Catelicidinas
2.
FASEB J ; 37(10): e23171, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37682531

RESUMEN

Intradermal adipocytes form dermal white adipose tissue (dWAT), a unique fat depot localized in the lower layer of the dermis. However, recognition of molecular factors regulating dWAT development, homeostasis, and bioactivity is limited. Using Foxn1-/- and Foxn1+/+ mice, we demonstrated that epidermally expressed Foxn1 regulates dWAT development and defines the adipogenic capacity of dermal fibroblasts. In intact and post-wounded skin, Foxn1 contributes to the initial stimulation of dWAT adipogenesis and participates in the modulation of lipid metabolism processes. Furthermore, Foxn1 activity strengthens adipogenic processes through Bmp2 and Igf2 signaling and regulates lipid metabolism in differentiated dermal fibroblasts. The results reveal the contribution of Foxn1 to dWAT metabolism, thus identifying possible targets for modulation and regulation of dWAT in physiological and pathological processes in the skin.


Asunto(s)
Adipogénesis , Tejido Adiposo Blanco , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Animales , Ratones , Homeostasis , Metabolismo de los Lípidos , Factores de Transcripción Forkhead/metabolismo
3.
J Am Acad Dermatol ; 89(4): 784-794, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-34883154

RESUMEN

Dermal white adipose tissue (dWAT) is a dynamic component of the skin and closely interacts with the hair follicle. Interestingly, dWAT envelops the hair follicle during anagen and undergoes fluctuations in volume throughout the hair cycle. dWAT-derived extracellular vesicles can significantly regulate the hair cycle, and this provides a theoretical basis for utilizing adipose tissue as a feasible clinical strategy to treat hair loss. However, the amount and depth of the available literature are far from enough to fully elucidate the prominent role of dWAT in modulating the hair growth cycle. This review starts by investigating the hair cycle-coupled dWAT remodeling and the reciprocal signaling interplay underneath. Then, it summarizes the current literature and assesses the advantages and limitations of clinical research utilizing adipose-derived therapies for hair regeneration.


Asunto(s)
Enfermedades del Cabello , Cabello , Humanos , Estudios de Factibilidad , Piel , Folículo Piloso , Obesidad , Regeneración
4.
J Physiol ; 600(4): 847-868, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33724479

RESUMEN

KEY POINTS: Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production  We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally and genetically induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body-wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue ABSTRACT: Mammalian skin impacts metabolic efficiency system-wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding functions and regulation. For humans, we assay a skin-associated fat (SAF) body-wide depot to distinguish it from the subcutaneous fat pads characteristic of the abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6-fold) in women than men, and highly subject-specific. We used molecular and cellular assays of ß-adrenergic-induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body-wide human SAF depot becomes lipolytic, generating heat in response to ß-adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: a corresponding ß-adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin-associated adipocytes by age, sex and adiposity, for both species. We conclude that the body-wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defence. The adipose tissue that covers human subjects produces heat directly, providing an alternative to the brown adipose tissues.


Asunto(s)
Tejido Adiposo Pardo , Termogénesis , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/metabolismo , Animales , Femenino , Humanos , Lipólisis , Grasa Subcutánea/metabolismo , Termogénesis/fisiología
5.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35008683

RESUMEN

Dermal white adipose tissue (dWAT) is involved in the maintenance of skin homeostasis. However, the studies concerning its molecular regulation are limited. In the present paper, we ask whether the introduction of two transcription factors, Foxn1 and Hif-1α, into the post-wounded skin of Foxn1-/- mice regulates dWAT during wound healing (days 3 and 6). We have chosen lentivirus vectors (LVs) as a tool to deliver Foxn1 and Hif-1α into the post-wounded skin. We documented that combinations of both transgenes reduces the number, size and diameter of dermal adipocytes at the wound bed area. The qRT-PCR analysis of pro-adipogenic genes, revealed that LV-Hif-1α alone, or combined with LV-Foxn1, increases the mRNA expression of Pparγ, Glut 4 and Fasn at post-wounding day 6. However, the most spectacular stimulatory effect of Foxn1 and/or Hif-1α was observed for Igf2, the growth factor participating in adipogenic signal transduction. Our data also shows that Foxn1/Hif-1α, at post-wounding day 3, reduces levels of CD68 and MIP-1γ mRNA expression and the percentage of CD68 positive cells in the wound site. In conclusion, the present data are the first to document that Foxn1 and Hif-1α cooperatively (1) regulate dWAT during the proliferative phase of skin wound healing through the Igf2 signaling pathway, and (2) reduce the macrophages content in the wound site.


Asunto(s)
Tejido Adiposo Blanco/patología , Dermis/patología , Factores de Transcripción Forkhead/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Cicatrización de Heridas , Adipogénesis/genética , Animales , Factores de Transcripción Forkhead/deficiencia , Regulación de la Expresión Génica , Inflamación/genética , Inflamación/patología , Factor II del Crecimiento Similar a la Insulina/metabolismo , Lentivirus/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Repitelización , Transducción de Señal , Transgenes
6.
Front Physiol ; 15: 1346612, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38465261

RESUMEN

Dermal white adipose tissue (dWAT) is a newly recognized layer of adipocytes within the reticular dermis of the skin. In many mammals, this layer is clearly separated by panniculus carnosus from subcutaneous adipose tissue (sWAT). While, they concentrated around the hair shaft and follicle, sebaceous gland, and arrector pili muscle, and forms a very specific cone geometry in human. Both the anatomy and the histology indicate that dWAT has distinct development and functions. Different from sWAT, the developmental origin of dWAT shares a common precursor with dermal fibroblasts during embryogenesis. Therefore, when skin injury happens and mature adipocytes in dWAT are exposed, they may undergo lipolysis and dedifferentiate into fibroblasts to participate in wound healing as embryogenetic stage. Studies using genetic strategies to selectively ablate dermal adipocytes observed delayed revascularization and re-epithelialization in wound healing. This review specifically summarizes the hypotheses of the functions of dWAT in wound healing. First, lipolysis of dermal adipocytes could contribute to wound healing by regulating inflammatory macrophage infiltration. Second, loss of dermal adipocytes occurs at the wound edge, and adipocyte-derived cells then become ECM-producing wound bed myofibroblasts during the proliferative phase of repair. Third, mature dermal adipocytes are rich resources for adipokines and cytokines and could release them in response to injury. In addition, the dedifferentiated dermal adipocytes are more sensitive to redifferentiation protocol and could undergo expansion in infected wound. We then briefly introduce the roles of dWAT in protecting the skin from environmental challenges: production of an antimicrobial peptide against infection. In the future, we believe there may be great potential for research in these areas: (1) taking advantage of the plasticity of dermal adipocytes and manipulating them in wound healing; (2) investigating the precise mechanism of dWAT expansion in infected wound healing.

7.
Ann Anat ; 255: 152289, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848928

RESUMEN

BACKGROUND: Dermal white adipose tissue (dWAT) in humans can be characterized as a relaxed dermal skin compartment consisting of functionally interlinked adipocytes. dWAT is typically discerned both in terms of morphology and function from subcutaneous white adipose tissue (sWAT). In particular in human thigh, the dWAT appears as thin extensions from the adipose panniculus to the dermis, and it is primarily associated with pilosebaceous units, hair follicles, sebaceous glands, and erector pili muscles. In this work, human fat tissue samples obtained post-mortem from the gluteo-femoral region were analyzed focusing on the thin extensions of dWAT named dermal cones. This anatomical region was chosen to deepen the dWAT morphological features of this site which is interesting both for clinical applications and genetical studies. The purpose of this exploratory methodological study was to gain deeper insights into the morphological features of human dWAT through a multimodal imaging approach. METHODS: Optical microscopy, Magnetic Resonance Imaging (MRI) and Scanning Electron Microscopy (SEM), have been employed in this study. The cones' length and their distances were measured on the acquired images for optical microscopy and SEM. The cone's apparent regular distribution in MRI images was evaluated using a mathematical criterion, the conformity ratio, which is the ratio of the mean nearest-neighbor distance to its standard deviation. RESULTS: The imaging techniques revealed white adipocytes forming a layer, referred to as sWAT, with cones measuring nearly 2 mm in size measured on SEM and Optical images (2.1 ± 0.4 mm), with the lower part embedded in the sWAT and the upper part extending into the dermis. The distance between the cones results about 1 mm measured on MRI images and they show an overall semiregular distribution. CONCLUSIONS: MRI images demonstrated an orderly arrangement of cones, and their 3D reconstruction allowed to elucidate the dermal cones' disposition in the tissue sample and a more general comprehensive visualization of the entire fat structure within the dermis.


Asunto(s)
Tejido Adiposo Blanco , Imagen por Resonancia Magnética , Imagen Multimodal , Humanos , Tejido Adiposo Blanco/anatomía & histología , Tejido Adiposo Blanco/diagnóstico por imagen , Masculino , Femenino , Microscopía Electrónica de Rastreo , Anciano , Persona de Mediana Edad , Dermis/anatomía & histología , Dermis/diagnóstico por imagen , Muslo/anatomía & histología , Muslo/diagnóstico por imagen , Anciano de 80 o más Años
8.
Mol Metab ; 74: 101763, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37364709

RESUMEN

OBJECTIVE: Glucocorticoid (GC) excess contributes to the development of metabolic syndrome, defined by visceral obesity, abnormal glucose tolerance, and dyslipidemia. While it is accepted that loss of metabolic control is causative of cutaneous diseases, the systemic effects of epidermal dysfunction have received limited attention. Importantly, independent of GC blood levels, skin synthesis of these hormones can provide tissue-specific variations that may affect global homeostasis. We aimed to assess whether the epidermal-specific loss of the GC receptor (GR) had an impact on the dermal white adipose tissue (dWAT), a specialized fat depot functionally different from other fat pads, as well as on whole body homeostasis. METHODS: GR epidermal KO (GREKO) and control female mice were treated with oral corticosterone (CORT) for 4 weeks, a protocol inducing metabolic dysfunction. Metabolic parameters including body weight, visceral and hepatic fat accumulation, blood glucose and insulin levels, glucose tolerance tests upon fasting, and triglycerides levels, were determined. Systemic alterations of soluble factors with known roles in immunity and inflammation were also assessed by a multiplex antibody array system containing selected cytokines, chemokines, and growth factors. The levels of cutaneous GCs and the profile of skin-secreted factors were determined in tissue explants by ELISA and the multiplex array system. Morphometric studies quantitated changes in dWAT thickness and adipocyte size in both genotypes, basally and at the end of CORT treatment. The expression of adipocyte markers was assessed in purified dermal adipocytes in vehicle and CORT-treated GREKOvs controls. RESULTS: Despite similar circulating levels of GCs, GREKO mice were highly resistant to CORT-induced systemic metabolic anomalies including body weight gain, visceral and hepatic fat, hyperglycemia, insulinemia, and elevated levels of plasma triglycerides, leptin, FGF-21, PAI-1, and CCL11. GREKO mice featured constitutively enhanced levels of cutaneous GCs relative to controls at least partially due to keratinocyte-specific increased expression of the critical steroidogenic enzyme Cyp11b1. Also, the higher ratio of skin-secreted protective vs inflammatory adipokines in GREKOvs controls, correlated with higher capacity of adipogenic conversion in experiments using conditioned media from tissue explants. Following CORT treatment, relative to controls, GREKO mice featured reduced dWAT hyperplasia and adipocyte hypertrophy, with increased Adipoq and decreased Lipocalin 2 expression in purified dermal adipocytes. CONCLUSIONS: Overall data suggest that epidermal GR loss results in paracrine actions on dermal adipocytes as well as endocrine actions on key metabolic tissues that significantly improve the whole body metabolism in a mouse model of metabolic dysfunction.


Asunto(s)
Corticosterona , Receptores de Glucocorticoides , Femenino , Animales , Ratones , Corticosterona/metabolismo , Receptores de Glucocorticoides/metabolismo , Tejido Adiposo/metabolismo , Glucocorticoides/metabolismo , Peso Corporal , Triglicéridos/metabolismo
9.
JID Innov ; 2(1): 100064, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35024685

RESUMEN

Obesity is a growing epidemic worldwide, and it is also considered a major environmental factor contributing to the pathogenesis of inflammatory skin diseases, including psoriasis (PSO) and atopic dermatitis (AD). Moreover, obesity worsens the course and impairs the treatment response of these inflammatory skin diseases. Emerging evidence highlights that hypertrophied adipocytes and infiltrated immune cells secrete a variety of molecules, including fatty acids and adipokines, such as leptin, adiponectin, and a panel of cytokines/chemokines that modulate our immune system. In this review, we describe how adipose hypertrophy leads to a chronic low-grade inflammatory state in obesity and how obesity-related inflammatory factors are involved in the pathogenesis of PSO and/or AD. Finally, we discuss the potential role of antimicrobial peptides, mechanical stress and impairment of epidermal barrier function mediated by fast expansion, and dermal fat in modulating skin inflammation. Together, this review summarizes the current literature on how obesity is associated with the pathogenesis of PSO and AD, highlighting the potentially important but overlooked immunomodulatory role of adipose tissue in the skin.

10.
Front Cell Dev Biol ; 9: 728188, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722509

RESUMEN

Hair follicle stem cells are extensively reprogrammed by the aging process, manifesting as diminished self-renewal and delayed responsiveness to activating cues, orchestrated by both intrinsic microenvironmental and extrinsic macroenvironmental regulators. Dermal white adipose tissue (dWAT) is one of the peripheral tissues directly adjacent to hair follicles (HFs) and acts as a critical macroenvironmental niche of HF. dWAT directly contributes to HF aging by paracrine signal secretion. However, the altered interrelationship between dWAT and HF with aging has not been thoroughly understood. Here, through microdissection, we separated dWAT from the skin of aged mice (18 months) and young mice (2 months) in telogen and depilation-induced anagen for transcriptome comparing. Notably, compared with young dWAT, aberrant inflammatory regulators were recapitulated in aging dWAT in telogen, including substantial overexpressed inflammatory cytokines, matrix metalloproteinases, and prostaglandin members. Nonetheless, with anagen initiation, inflammation programs were mostly abolished in aging dWAT, and instead of which, impaired collagen biosynthesis, angiogenesis, and melanin synthesis were identified. Furthermore, we confirmed the inhibitory effect on hair growth of CXCL1, one of the most significantly upregulated inflammation cytokines in aging dWAT. Besides this, we also identified the under-expressed genes related to Wnt signaling fibroblast growth factor family members and increased BMP signaling in aging dWAT, further unraveling the emerging role of dWAT in aging HFs malfunction. Finally, we proved that relieving inflammation of aging dWAT by injecting high-level veratric acid stimulated HF regenerative behavior in aged mice. Concomitantly, significantly decreased TNF-a, CCL2, IL-5, CSF2, and increased IL10 in dWAT was identified. Overall, the results elaborated on the complex physiological cycling changes of dWAT during aging, providing a basis for the potential regulatory effect of dWAT on aging HFs.

11.
Trends Endocrinol Metab ; 30(2): 93-105, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30558832

RESUMEN

Hair follicles (HFs) strongly interact with adipocytes within the dermal white adipose tissue (dWAT), suggesting a strong physiological dependence on the content of immature and mature adipocytes in this layer. This content is regulated by the proliferation and differentiation of adipocyte precursors, as well as by dedifferentiation of mature existing adipocytes. Spatially, long-range interactions between HFs and dWAT involve the exchange of extracellular vesicles which are differentially released by precursors, preadipocytes, and mature adipocytes. Different exogenous factors, including light irradiation, are likely to modify the release of adipocyte-derived exosomes in dWAT, which can lead to aberrations of the HF cycle. Consequently, dWAT should be considered as a potential target for the modulation of hair growth.


Asunto(s)
Tejido Adiposo Blanco/citología , Folículo Piloso/citología , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Folículo Piloso/metabolismo , Humanos
12.
Mol Metab ; 27: 47-61, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31302039

RESUMEN

OBJECTIVE: Elimination of food calories as heat could help redress the excess accumulation of metabolic energy exhibited as obesity. Prior studies have focused on the induction of thermogenesis in beige and brown adipose tissues as the application of this principle, particularly because the ß-adrenergic environment associated with thermogenic activation has been shown to have positive health implications. The counterpoint to this strategy is the regulation of heat loss; we propose that mammals with inefficient heat conservation will require more thermogenesis to maintain body temperature. METHODS: Surface temperature thermography and rates of trans-epidermal water loss were integrated to profile the total heat transfer of genetically-engineered and genetically variable mice. RESULTS: These data were incorporated with energy expenditure data to generate a biophysical profile to test the significance of increased rates of evaporative cooling. CONCLUSIONS: We show that mouse skins vary considerably in their heat retention properties, whether because of naturally occurring variation (SKH-1 mice), or genetic modification of the heat-retaining lipid lamellae (SCD1, DGAT1 or Agouti Ay obese mice). In particular, we turn attention to widely different rates of evaporative cooling as the result of trans-epidermal water loss; higher rates of heat loss by evaporative cooling leads to increased demand for thermogenesis. We speculate that this physiology could be harnessed to create an energy sink to assist with strategies aimed at treating metabolic diseases.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Regulación de la Temperatura Corporal , Metabolismo Energético , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Fenómenos Fisiológicos de la Piel , Termogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA