Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.526
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(22): 4868-4884.e12, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37863056

RESUMEN

Single-cell analysis in living humans is essential for understanding disease mechanisms, but it is impractical in non-regenerative organs, such as the eye and brain, because tissue biopsies would cause serious damage. We resolve this problem by integrating proteomics of liquid biopsies with single-cell transcriptomics from all known ocular cell types to trace the cellular origin of 5,953 proteins detected in the aqueous humor. We identified hundreds of cell-specific protein markers, including for individual retinal cell types. Surprisingly, our results reveal that retinal degeneration occurs in Parkinson's disease, and the cells driving diabetic retinopathy switch with disease stage. Finally, we developed artificial intelligence (AI) models to assess individual cellular aging and found that many eye diseases not associated with chronological age undergo accelerated molecular aging of disease-specific cell types. Our approach, which can be applied to other organ systems, has the potential to transform molecular diagnostics and prognostics while uncovering new cellular disease and aging mechanisms.


Asunto(s)
Envejecimiento , Humor Acuoso , Inteligencia Artificial , Biopsia Líquida , Proteómica , Humanos , Envejecimiento/metabolismo , Humor Acuoso/química , Biopsia , Enfermedad de Parkinson/diagnóstico
2.
Cell ; 172(5): 1122-1131.e9, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474911

RESUMEN

The implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpretability. Here, we establish a diagnostic tool based on a deep-learning framework for the screening of patients with common treatable blinding retinal diseases. Our framework utilizes transfer learning, which trains a neural network with a fraction of the data of conventional approaches. Applying this approach to a dataset of optical coherence tomography images, we demonstrate performance comparable to that of human experts in classifying age-related macular degeneration and diabetic macular edema. We also provide a more transparent and interpretable diagnosis by highlighting the regions recognized by the neural network. We further demonstrate the general applicability of our AI system for diagnosis of pediatric pneumonia using chest X-ray images. This tool may ultimately aid in expediting the diagnosis and referral of these treatable conditions, thereby facilitating earlier treatment, resulting in improved clinical outcomes. VIDEO ABSTRACT.


Asunto(s)
Aprendizaje Profundo , Diagnóstico por Imagen , Neumonía/diagnóstico , Niño , Humanos , Redes Neurales de la Computación , Neumonía/diagnóstico por imagen , Curva ROC , Reproducibilidad de los Resultados , Tomografía de Coherencia Óptica
3.
EMBO J ; 40(15): e107134, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34180064

RESUMEN

Long non-coding RNAs (lncRNAs) are emerging as key regulators of endothelial cell function. Here, we investigated the role of a novel vascular endothelial-associated lncRNA (VEAL2) in regulating endothelial permeability. Precise editing of veal2 loci in zebrafish (veal2gib005Δ8/+ ) induced cranial hemorrhage. In vitro and in vivo studies revealed that veal2 competes with diacylglycerol for interaction with protein kinase C beta-b (Prkcbb) and regulates its kinase activity. Using PRKCB2 as bait, we identified functional ortholog of veal2 in humans from HUVECs and named it as VEAL2. Overexpression and knockdown of VEAL2 affected tubulogenesis and permeability in HUVECs. VEAL2 was differentially expressed in choroid tissue in eye and blood from patients with diabetic retinopathy, a disease where PRKCB2 is known to be hyperactivated. Further, VEAL2 could rescue the effects of PRKCB2-mediated turnover of endothelial junctional proteins thus reducing hyperpermeability in hyperglycemic HUVEC model of diabetic retinopathy. Based on evidence from zebrafish and hyperglycemic HUVEC models and diabetic retinopathy patients, we report a hitherto unknown VEAL2 lncRNA-mediated regulation of PRKCB2, for modulating junctional dynamics and maintenance of endothelial permeability.


Asunto(s)
Retinopatía Diabética/genética , Proteína Quinasa C beta/genética , ARN Largo no Codificante/genética , Pez Cebra/genética , Anciano , Anciano de 80 o más Años , Animales , Animales Modificados Genéticamente , Estudios de Casos y Controles , Retinopatía Diabética/fisiopatología , Embrión no Mamífero , Endotelio Vascular , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Persona de Mediana Edad , Permeabilidad , Proteína Quinasa C beta/metabolismo , ARN Largo no Codificante/sangre , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Stem Cells ; 42(1): 64-75, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37847598

RESUMEN

PURPOSE: This study aimed to investigate the effect of mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) on diabetic retinopathy (DR) and its underlying mechanism. METHODS: In vivo, MSC-sEVs were injected intravitreally into diabetic rats to determine the therapeutic efficacy. In vitro, MSC-sEVs with/without miR-22-3p inhibition were cocultured with advanced glycation end-products (AGEs)-induced microglia with/without NLRP3 overexpression to explore the molecular mechanism. RESULTS: In vivo, MSC-sEVs inhibited NLRP3 inflammasome activation, suppressed microglial activation, decreased inflammatory cytokines levels in the retina, and alleviated DR as evidenced by improved histological morphology and blood-retinal barrier function. Based on miRNA sequencing of MSC-sEVs, bioinformatic software, and dual-luciferase reporter assay, miR-22-3p stood out as the critical molecule for the role of MSC-sEVs in regulating NLRP3 inflammasome activation. Diabetic rats had lower level of miR-22-3p in their retina than those of control and sEV-treated rats. Confocal microscopy revealed that sEV could be internalized by microglia both in vivo and in vitro. In vitro, compared with sEV, the anti-inflammation effect of sEVmiR-22-3p(-) on AGEs-induced microglia was compromised, as they gave a lower suppression of NLRP3 inflammasome activation and inflammatory cytokines. In addition, NLRP3 overexpression in microglia damped the anti-inflammatory effect of sEV. CONCLUSION: These results indicated that MSC-sEVs alleviated DR via delivering miR-22-3p to inhibit NLRP3 inflammasome activation. Our findings indicate that MSC-sEVs might be a potential therapeutic method for DR.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Inflamasomas/genética , Retinopatía Diabética/genética , Retinopatía Diabética/terapia , MicroARNs/genética , Citocinas
5.
FASEB J ; 38(9): e23638, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713098

RESUMEN

Diabetic retinopathy (DR) is associated with ocular inflammation leading to retinal barrier breakdown, vascular leakage, macular edema, and vision loss. DR is not only a microvascular disease but also involves retinal neurodegeneration, demonstrating that pathological changes associated with neuroinflammation precede microvascular injury in early DR. Macrophage activation plays a central role in neuroinflammation. During DR, the inflammatory response depends on the polarization of retinal macrophages, triggering pro-inflammatory (M1) or anti-inflammatory (M2) activity. This study aimed to determine the role of macrophages in vascular leakage through the tight junction complexes of retinal pigment epithelium, which is the outer blood-retinal barrier (BRB). Furthermore, we aimed to assess whether interleukin-10 (IL-10), a representative M2-inducer, can decrease inflammatory macrophages and alleviate outer-BRB disruption. We found that modulation of macrophage polarization affects the structural and functional integrity of ARPE-19 cells in a co-culture system under high-glucose conditions. Furthermore, we demonstrated that intravitreal IL-10 injection induces an increase in the ratio of anti-inflammatory macrophages and effectively suppresses outer-BRB disruption and vascular leakage in a mouse model of early-stage streptozotocin-induced diabetes. Our results suggest that modulation of macrophage polarization by IL-10 administration during early-stage DR has a promising protective effect against outer-BRB disruption and vascular leakage. This finding provides valuable insights for early intervention in DR.


Asunto(s)
Barrera Hematorretinal , Diabetes Mellitus Experimental , Retinopatía Diabética , Interleucina-10 , Macrófagos , Animales , Humanos , Masculino , Ratones , Barrera Hematorretinal/metabolismo , Barrera Hematorretinal/patología , Polaridad Celular/efectos de los fármacos , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Modelos Animales de Enfermedad , Interleucina-10/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Estreptozocina
6.
Arterioscler Thromb Vasc Biol ; 44(2): 465-476, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38152885

RESUMEN

BACKGROUND: Vascular mural cells (VMCs) are integral components of the retinal vasculature with critical homeostatic functions such as maintaining the inner blood-retinal barrier and vascular tone, as well as supporting the endothelial cells. Histopathologic donor eye studies have shown widespread loss of pericytes and smooth muscle cells, the 2 main VMC types, suggesting these cells are critical to the pathogenesis of diabetic retinopathy (DR). There remain, however, critical gaps in our knowledge regarding the timeline of VMC demise in human DR. METHODS: In this study, we address this gap using adaptive optics scanning laser ophthalmoscopy to quantify retinal VMC density in eyes with no retinal disease (healthy), subjects with diabetes without diabetic retinopathy, and those with clinical DR and diabetic macular edema. We also used optical coherence tomography angiography to quantify capillary density of the superficial and deep capillary plexuses in these eyes. RESULTS: Our results indicate significant VMC loss in retinal arterioles before the appearance of classic clinical signs of DR (diabetes without diabetic retinopathy versus healthy, 5.0±2.0 versus 6.5±2.0 smooth muscle cells per 100 µm; P<0.05), while a significant reduction in capillary VMC density (5.1±2.3 in diabetic macular edema versus 14.9±6.0 pericytes per 100 µm in diabetes without diabetic retinopathy; P=0.01) and capillary density (superficial capillary plexus vessel density, 37.6±3.8 in diabetic macular edema versus 45.5±2.4 in diabetes without diabetic retinopathy; P<0.0001) is associated with more advanced stages of clinical DR, particularly diabetic macular edema. CONCLUSIONS: Our results offer a new framework for understanding the pathophysiologic course of VMC compromise in DR, which may facilitate the development and monitoring of therapeutic strategies aimed at VMC preservation and potentially the prevention of clinical DR and its associated morbidity. Imaging retinal VMCs provides an unparalleled opportunity to visualize these cells in vivo and may have wider implications in a range of diseases where these cells are disrupted.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Edema Macular , Humanos , Retinopatía Diabética/etiología , Retinopatía Diabética/patología , Edema Macular/diagnóstico por imagen , Edema Macular/etiología , Edema Macular/patología , Angiografía con Fluoresceína/métodos , Células Endoteliales/patología , Retina , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/patología , Tomografía de Coherencia Óptica/métodos
7.
Exp Cell Res ; 439(1): 114087, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38735619

RESUMEN

Diabetic retinopathy (DR) is a common microvascular complication that causes visual impairment or loss. Aquaporin 4 (AQP4) is a regulatory protein involved in water transport and metabolism. In previous studies, we found that AQP4 is related to hypoxia injury in Muller cells. Transient receptor potential cation channel subfamily V member 4 (TRPV4) is a non-selective cation channel protein involved in the regulation of a variety of ophthalmic diseases. However, the effects of AQP4 and TRPV4 on ferroptosis and oxidative stress in high glucose (HG)-treated Muller cells are unclear. In this study, we investigated the functions of AQP4 and TRPV4 in DR. HG was used to treat mouse Muller cells. Reverse transcription quantitative polymerase chain reaction was used to measure AQP4 mRNA expression. Western blotting was used to detect the protein levels of AQP4, PTGS2, GPX4, and TRPV4. Cell count kit-8, flow cytometry, 5,5',6,6'-tetrachloro-1,1,3,3'-tetraethylbenzimidazolyl carbocyanine iodide staining, and glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) kits were used to evaluate the function of the Muller cells. Streptozotocin was used to induce DR in rats. Haematoxylin and eosin staining was performed to stain the retina of rats. GSH, SOD, and MDA detection kits, immunofluorescence, and flow cytometry assays were performed to study the function of AQP4 and TRPV4 in DR rats. Results found that AQP4 and TRPV4 were overexpressed in HG-induced Muller cells and streptozotocin-induced DR rats. AQP4 inhibition promoted proliferation and cell cycle progression, repressed cell apoptosis, ferroptosis, and oxidative stress, and alleviated retinal injury in DR rats. Mechanistically, AQP4 positively regulated TRPV4 expression. Overexpression of TRPV4 enhanced ferroptosis and oxidative stress in HG-treated Muller cells, and inhibition of TRPV4 had a protective effect on DR-induced retinal injury in rats. In conclusion, inhibition of AQP4 inhibits the ferroptosis and oxidative stress in Muller cells by downregulating TRPV4, which may be a potential target for DR therapy.


Asunto(s)
Acuaporina 4 , Retinopatía Diabética , Células Ependimogliales , Ferroptosis , Estrés Oxidativo , Canales Catiónicos TRPV , Animales , Masculino , Ratones , Ratas , Acuaporina 4/metabolismo , Acuaporina 4/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Retinopatía Diabética/genética , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Glucosa/metabolismo , Glucosa/farmacología , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética
8.
Exp Cell Res ; 441(2): 114170, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019426

RESUMEN

Diabetic retinopathy (DR) is a major cause of vision loss and blindness in adults. Cellular senescence was involved in the pathogenesis of early-stage DR and is positively correlated with progression. Thus, our study aimed at exploring the effect and potential mechanism of Mesenchymal stem cells-derived exosomes (MSCs-EXOs) on Retinal Pigment Epithelial (RPE) cells senescence at an early stage of DR in vivo and in vitro. ARPE-19 cells were incubated in high glucose (HG) medium mixed with MSCs-EXOs to observe the changes in cell viability. Senescence-associated ß-galactosidase (SA-ß-gal) staining, Western blot and qRT-PCR were used to assess the expression of senescence-related genes and antioxidant mediators. Quantitative Real-Time polymerase chain reaction (qRT-PCR), Optical coherence tomography (OCT) Hematoxylin and eosin (HE) staining and Electroretinogram (ERG) were respectively used to verify cellular senescence, the structure and function of the retina. Our findings demonstrated that MSCs-EXOs inhibited HG-induced senescence in ARPE-19 cells. Furthermore, MSCs-EXOs reduced HG-induced cell apoptosis and oxidative stress levels while promoting cell proliferation. Mechanistically, HG suppressed PI3K/AKT phosphorylation as well as nuclear factor erythroid 2-related factor 2 (Nrf2) expression along with its downstream target gene expression in ARPE-19 cells. However, MSCs-EXOs reversed these changes by alleviating cellular senescence while enhancing antioxidant activity. In line with our results in vitro, MSCs-EXOs significantly ameliorated hyperglycemia-induced senescence in DR mice by downregulating mRNA expression of P53, P21, P16, and SASP. Additionally, MSCs-EXOs improved the functional and structural integrity of the retina in DR mice. Our study revealed the protective effect of MSCs-EXOs on cellular senescence, offering new insights for the treatment of DR.

9.
Cell Mol Life Sci ; 81(1): 47, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236305

RESUMEN

Type 2 diabetes mellitus is a global epidemic that due to its increasing prevalence worldwide will likely become the most common debilitating health condition. Even if diabetes is primarily a metabolic disorder, it is now well established that key aspects of the pathogenesis of diabetes are associated with nervous system alterations, including deleterious chronic inflammation of neural tissues, referred here as neuroinflammation, along with different detrimental glial cell responses to stress conditions and neurodegenerative features. Moreover, diabetes resembles accelerated aging, further increasing the risk of developing age-linked neurodegenerative disorders. As such, the most common and disabling diabetic comorbidities, namely diabetic retinopathy, peripheral neuropathy, and cognitive decline, are intimately associated with neurodegeneration. As described in aging and other neurological disorders, glial cell alterations such as microglial, astrocyte, and Müller cell increased reactivity and dysfunctionality, myelin loss and Schwann cell alterations have been broadly described in diabetes in both human and animal models, where they are key contributors to chronic noxious inflammation of neural tissues within the PNS and CNS. In this review, we aim to describe in-depth the common and unique aspects underlying glial cell changes observed across the three main diabetic complications, with the goal of uncovering shared glial cells alterations and common pathological mechanisms that will enable the discovery of potential targets to limit neuroinflammation and prevent neurodegeneration in all three diabetic complications. Diabetes and its complications are already a public health concern due to its rapidly increasing incidence, and thus its health and economic impact. Hence, understanding the key role that glial cells play in the pathogenesis underlying peripheral neuropathy, retinopathy, and cognitive decline in diabetes will provide us with novel therapeutic approaches to tackle diabetic-associated neurodegeneration.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Enfermedades del Sistema Nervioso Periférico , Animales , Humanos , Enfermedades Neuroinflamatorias , Neuroglía , Inflamación
10.
Diabetologia ; 67(6): 1114-1121, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38413436

RESUMEN

AIMS/HYPOTHESIS: The aim of this study was to explore whether diabetic retinopathy is associated with alterations of the circadian system, and to examine the role of reduced intrinsically photosensitive retinal ganglion cell (ipRGC) function. METHODS: Participants with type 2 diabetes, with diabetic retinopathy (n=14) and without diabetic retinopathy (n=9) underwent 24 h blood sampling for melatonin and cortisol under controlled laboratory conditions. ipRGC function was inferred from the post-illumination pupil response (PIPR). Habitual sleep duration, efficiency and variability were assessed by actigraphy. RESULTS: Participants with diabetic retinopathy compared to participants without diabetic retinopathy had smaller PIPR (p=0.007), lower 24 h serum melatonin output (p=0.042) and greater day-to-day sleep variability (p=0.012). By contrast, 24 h cortisol profiles, sleep duration and efficiency were similar in both groups. Six individuals with diabetic retinopathy had no detectable dim-light melatonin onset. PIPR correlated with 24 h mean melatonin levels (r=0.555, p=0.007). CONCLUSIONS/INTERPRETATION: ipRCG dysfunction in diabetic retinopathy is associated with disruptions of the 24 h melatonin rhythm, suggesting circadian dysregulation in diabetic retinopathy.


Asunto(s)
Ritmo Circadiano , Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Melatonina , Células Ganglionares de la Retina , Humanos , Melatonina/sangre , Melatonina/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/sangre , Retinopatía Diabética/fisiopatología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Ritmo Circadiano/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Anciano , Hidrocortisona/sangre , Hidrocortisona/metabolismo , Sueño/fisiología , Adulto
11.
Diabetologia ; 67(3): 430-442, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38182909

RESUMEN

Beyond their conventional roles in intracellular energy production, some traditional metabolites also function as extracellular messengers that activate cell-surface G-protein-coupled receptors (GPCRs) akin to hormones and neurotransmitters. These signalling metabolites, often derived from nutrients, the gut microbiota or the host's intermediary metabolism, are now acknowledged as key regulators of various metabolic and immune responses. This review delves into the multi-dimensional aspects of succinate, a dual metabolite with roots in both the mitochondria and microbiome. It also connects the dots between succinate's role in the Krebs cycle, mitochondrial respiration, and its double-edge function as a signalling transmitter within and outside the cell. We aim to provide an overview of the role of the succinate-succinate receptor 1 (SUCNR1) axis in diabetes, discussing the potential use of succinate as a biomarker and the novel prospect of targeting SUCNR1 to manage complications associated with diabetes. We further propose strategies to manipulate the succinate-SUCNR1 axis for better diabetes management; this includes pharmacological modulation of SUCNR1 and innovative approaches to manage succinate concentrations, such as succinate administration and indirect strategies, like microbiota modulation. The dual nature of succinate, both in terms of origins and roles, offers a rich landscape for understanding the intricate connections within metabolic diseases, like diabetes, and indicates promising pathways for developing new therapeutic strategies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Succinatos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Succinatos/metabolismo
12.
Diabetologia ; 67(5): 928-939, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431705

RESUMEN

AIMS/HYPOTHESIS: As the prevalence of insulin resistance and glucose intolerance is increasing throughout the world, diabetes-induced eye diseases are a global health burden. We aim to identify distinct optical bands which are closely related to insulin and glucose metabolism, using non-invasive, high-resolution spectral domain optical coherence tomography (SD-OCT) in a large, population-based dataset. METHODS: The LIFE-Adult-Study randomly selected 10,000 participants from the population registry of Leipzig, Germany. Cross-sectional, standardised phenotyping included the assessment of various metabolic risk markers and ocular imaging, such as SD-OCT-derived thicknesses of ten optical bands of the retina. Global and Early Treatment Diabetic Retinopathy Study (ETDRS) subfield-specific optical retinal layer thicknesses were investigated in 7384 healthy eyes of 7384 participants from the LIFE-Adult-Study stratified by normal glucose tolerance, prediabetes (impaired fasting glucose and/or impaired glucose tolerance and/or HbA1c 5.7-6.4% [39-47 mmol/mol]) and diabetes. The association of optical retinal band characteristics with different indices of glucose tolerance (e.g. fasting glucose, area under the glucose curve), insulin resistance (e.g. HOMA2-IR, triglyceride glucose index), or insulin sensitivity (e.g. estimated glucose disposal rate [eGDR], Stumvoll metabolic clearance rate) was determined using multivariable linear regression analyses for the individual markers adjusted for age, sex and refraction. Various sensitivity analyses were performed to validate the observed findings. RESULTS: In the study cohort, nine out of ten optical bands of the retina showed significant sex- and glucose tolerance-dependent differences in band thicknesses. Multivariable linear regression analyses revealed a significant, independent, and inverse association between markers of glucose intolerance and insulin resistance (e.g. HOMA2-IR) with the thickness of the optical bands representing the anatomical retinal outer nuclear layer (ONL, standardised ß=-0.096; p<0.001 for HOMA2-IR) and myoid zone (MZ; ß=-0.096; p<0.001 for HOMA2-IR) of the photoreceptors. Conversely, markers of insulin sensitivity (e.g. eGDR) positively and independently associated with ONL (ß=0.090; p<0.001 for eGDR) and MZ (ß=0.133; p<0.001 for eGDR) band thicknesses. These global associations were confirmed in ETDRS subfield-specific analyses. Sensitivity analyses further validated our findings when physical activity, neuroanatomical cell/tissue types and ETDRS subfield categories were investigated after stratifying the cohort by glucose homeostasis. CONCLUSIONS/INTERPRETATION: An impaired glucose homeostasis associates with a thinning of the optical bands of retinal ONL and photoreceptor MZ. Changes in ONL and MZ thicknesses might predict early metabolic retinal alterations in diabetes.


Asunto(s)
Retinopatía Diabética , Intolerancia a la Glucosa , Resistencia a la Insulina , Estado Prediabético , Adulto , Humanos , Estudios Transversales , Retina , Glucosa
13.
J Cell Mol Med ; 28(7): e18200, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38506069

RESUMEN

Diabetic retinopathy (DR) is one of leading causes of vision loss in adults with increasing prevalence worldwide. Increasing evidence has emphasized the importance of gut microbiome in the aetiology and development of DR. However, the causal relationship between gut microbes and DR remains largely unknown. To investigate the causal associations of DR with gut microbes and DR risk factors, we employed two-sample Mendelian Randomization (MR) analyses to estimate the causal effects of 207 gut microbes on DR outcomes. Inputs for MR included Genome-wide Association Study (GWAS) summary statistics of 207 taxa of gut microbes (the Dutch Microbiome Project) and 21 risk factors for DR. The GWAS summary statistics data of DR was from the FinnGen Research Project. Data analysis was performed in May 2023. We identified eight bacterial taxa that exhibited significant causal associations with DR (FDR < 0.05). Among them, genus Collinsella and species Collinsella aerofaciens were associated with increased risk of DR, while the species Bacteroides faecis, Burkholderiales bacterium_1_1_47, Ruminococcus torques, Streptococcus salivarius, genus Burkholderiales_noname and family Burkholderiales_noname showed protective effects against DR. Notably, we found that the causal effect of species Streptococcus salivarius on DR was mediated through the level of host fasting glucose, a well-established risk factor for DR. Our results reveal that specific gut microbes may be causally linked to DR via mediating host metabolic risk factors, highlighting potential novel therapeutic or preventive targets for DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Streptococcus salivarius , Adulto , Humanos , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Ayuno , Glucosa
14.
J Biol Chem ; 299(8): 104991, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392853

RESUMEN

Increasing evidence supports a role for inflammation in the early development and progression of retinal complications caused by diabetes. We recently demonstrated that the stress response protein regulated in development and DNA damage response 1 (REDD1) promotes diabetes-induced retinal inflammation by sustaining canonical activation of nuclear transcription factor, NF-κB. The studies here were designed to identify signaling events whereby REDD1 promotes NF-κB activation in the retina of diabetic mice. We observed increased REDD1 expression in the retina of mice after 16 weeks of streptozotocin (STZ)-induced diabetes and found that REDD1 was essential for diabetes to suppress inhibitory phosphorylation of glycogen synthase kinase 3ß (GSK3ß) at S9. In human retinal MIO-M1 Müller cell cultures, REDD1 deletion prevented dephosphorylation of GSK3ß and increased NF-κB activation in response to hyperglycemic conditions. Expression of a constitutively active GSK3ß variant restored NF-κB activation in cells deficient for REDD1. In cells exposed to hyperglycemic conditions, GSK3ß knockdown inhibited NF-κB activation and proinflammatory cytokine expression by preventing inhibitor of κB kinase complex autophosphorylation and inhibitor of κB degradation. In both the retina of STZ-diabetic mice and in Müller cells exposed to hyperglycemic conditions, GSK3 inhibition reduced NF-κB activity and prevented an increase in proinflammatory cytokine expression. In contrast with STZ-diabetic mice receiving a vehicle control, macrophage infiltration was not observed in the retina of STZ-diabetic mice treated with GSK3 inhibitor. Collectively, the findings support a model wherein diabetes enhances REDD1-dependent activation of GSK3ß to promote canonical NF-κB signaling and the development of retinal inflammation.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Animales , Humanos , Masculino , Ratones , Citocinas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hiperglucemia/metabolismo , Inflamación/genética , Inflamación/metabolismo , FN-kappa B/metabolismo , Retina/metabolismo
15.
Glia ; 72(3): 504-528, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37904673

RESUMEN

Retinal degeneration, characterized by Müller cell gliosis and photoreceptor apoptosis, is considered an early event in diabetic retinopathy (DR). Our previous study proposed that GMFB may mediate diabetic retinal degeneration. This study identified GMFB as a sensitive and functional gliosis marker for DR. Compared to the wild type (WT) group, Gmfb knockout (KO) significantly improved visual function, attenuated gliosis, reduced the apoptosis of neurons, and decreased the mRNA levels of tumor necrosis factor α (Tnf-α) and interleukin-1ß (Il-1ß) in diabetic retinas. Tgf-ß3 was enriched by hub genes using RNA sequencing in primary WT and KO Müller cells. Gmfb KO significantly upregulated the transforming growth factor (TGF)-ß3 protein level via the AKT pathway. The protective effect of TGF-ß3 in the vitreous resulted in significantly improved visual function and decreased the number of apoptotic cells in the diabetic retina. The protection of Gmfb KO in primary Müller cells against high glucose (HG)-induced photoreceptor apoptosis was partially counteracted by TGF-ß3 antibody and administration of TGFBR1/2 inhibitors. Nuclear receptor subfamily 3 group C member 1 (NR3C1) binds to the promoter region of Gmfb and regulates Gmfb mRNA at the transcriptional level. NR3C1 was increased in the retinas of early diabetic rats but decreased in the retinas of late diabetic rats. N'-[(1E)-(3-Methoxyphenyl)Methylene]-3-Methyl-1H-Pyrazole-5-Carbohydrazide (DS-5) was identified as an inhibitor of GMFB, having a protective role in DR. We demonstrated that GMFB/AKT/TGF-ß3 mediated early diabetic retinal degeneration in diabetic rats. This study provides a novel therapeutic strategy for treating retinal degeneration in patients with DR.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Degeneración Retiniana , Humanos , Ratas , Animales , Degeneración Retiniana/patología , Células Ependimogliales/metabolismo , Estreptozocina/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Transformador beta3/efectos adversos , Factor de Crecimiento Transformador beta3/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Gliosis/patología , Retina/metabolismo , Retinopatía Diabética/patología , ARN Mensajero/metabolismo
16.
Angiogenesis ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564108

RESUMEN

Diabetic retinopathy has a high probability of causing visual impairment or blindness throughout the disease progression and is characterized by the growth of new blood vessels in the retina at an advanced, proliferative stage. Microglia are a resident immune population in the central nervous system, known to play a crucial role in regulating retinal angiogenesis in both physiological and pathological conditions, including diabetic retinopathy. Physiologically, they are located close to blood vessels and are essential for forming new blood vessels (neovascularization). In diabetic retinopathy, microglia become widely activated, showing a distinct polarization phenotype that leads to their accumulation around neovascular tufts. These activated microglia induce pathogenic angiogenesis through the secretion of various angiogenic factors and by regulating the status of endothelial cells. Interestingly, some subtypes of microglia simultaneously promote the regression of neovascularization tufts and normal angiogenesis in neovascularization lesions. Modulating the state of microglial activation to ameliorate neovascularization thus appears as a promising potential therapeutic approach for managing diabetic retinopathy.

17.
Mol Med ; 30(1): 24, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321393

RESUMEN

BACKGROUND: Lipid peroxidation is a characteristic metabolic manifestation of diabetic retinopathy (DR) that causes inflammation, eventually leading to severe retinal vascular abnormalities. Selenium (Se) can directly or indirectly scavenge intracellular free radicals. Due to the narrow distinction between Se's effective and toxic doses, porous Se@SiO2 nanospheres have been developed to control the release of Se. They exert strong antioxidant and anti-inflammatory effects. METHODS: The effect of anti-lipid peroxidation and anti-inflammatory effects of porous Se@SiO2 nanospheres on diabetic mice were assessed by detecting the level of Malondialdehyde (MDA), glutathione peroxidase 4 (GPX4), decreased reduced/oxidized glutathione (GSH/GSSG) ratio, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL) -1ß of the retina. To further examine the protective effect of porous Se@SiO2 nanospheres on the retinal vasculopathy of diabetic mice, retinal acellular capillary, the expression of tight junction proteins, and blood-retinal barrier destruction was observed. Finally, we validated the GPX4 as the target of porous Se@SiO2 nanospheres via decreased expression of GPX4 and detected the level of MDA, GSH/GSSG, TNF-α, IFN-γ, IL -1ß, wound healing assay, and tube formation in high glucose (HG) cultured Human retinal microvascular endothelial cells (HRMECs). RESULTS: The porous Se@SiO2 nanospheres reduced the level of MDA, TNF-α, IFN-γ, and IL -1ß, while increasing the level of GPX4 and GSH/GSSG in diabetic mice. Therefore, porous Se@SiO2 nanospheres reduced the number of retinal acellular capillaries, depletion of tight junction proteins, and vascular leakage in diabetic mice. Further, we identified GPX4 as the target of porous Se@SiO2 nanospheres as GPX4 inhibition reduced the repression effect of anti-lipid peroxidation, anti-inflammatory, and protective effects of endothelial cell dysfunction of porous Se@SiO2 nanospheres in HG-cultured HRMECs. CONCLUSION: Porous Se@SiO2 nanospheres effectively attenuated retinal vasculopathy in diabetic mice via inhibiting excess lipid peroxidation and inflammation by target GPX4, suggesting their potential as therapeutic agents for DR.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Nanosferas , Selenio , Humanos , Ratones , Animales , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Selenio/metabolismo , Selenio/farmacología , Selenio/uso terapéutico , Dióxido de Silicio/metabolismo , Dióxido de Silicio/farmacología , Dióxido de Silicio/uso terapéutico , Diabetes Mellitus Experimental/metabolismo , Células Endoteliales/metabolismo , Peroxidación de Lípido , Porosidad , Factor de Necrosis Tumoral alfa/metabolismo , Disulfuro de Glutatión/metabolismo , Disulfuro de Glutatión/farmacología , Disulfuro de Glutatión/uso terapéutico , Inflamación/metabolismo , Antiinflamatorios/uso terapéutico , Proteínas de Uniones Estrechas/metabolismo
18.
Biochem Biophys Res Commun ; 709: 149760, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38554602

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is a retinal microvascular complication caused by hyperglycemia, which can lead to visual impairment or blindness. Pyroptosis is a type of inflammation-related programmed cell death, activated by caspase-1, resulting in the maturation of IL-1ß and IL-18 and the rupture of the cell membrane. RNA sequencing (RNA-seq) is a high-throughput sequencing technique that reveals the presence and quantity of RNA in the genome at a specific time point, i.e., the transcriptome. RNA-seq can analyze gene expression levels, splicing variants, mutations, fusions, editing and other post-transcriptional modifications, as well as gene expression differences between different samples or conditions. It has been widely used in biological and medical research, clinical diagnosis and new drug development. This study aimed to establish an in vitro model of diabetic retinopathy by culturing human retinal endothelial cells (HREC) with high glucose (30 mmol/L), and to detect their transcriptome expression by RNA-seq, screen for key genes related to pyroptosis, and validate the sequencing results by subsequent experiments. METHODS: We used RNA-seq to detect the transcriptome expression differences between HREC cells cultured with high glucose and control group, and identified differentially expressed genes by GO/KEGG analysis. We constructed a PPI network and determined the key genes by Cytoscape software and CytoHubba plugin. We validated the expression of related factors by Western Blot, qPCR and ELISA. RESULTS: We performed GO and KEGG analysis on the RNA-seq data and found differentially expressed genes. We used Cytoscape and CytoHubba plugin to screen out IRF1 as the key gene, and then detected the expression of IRF1 in HREC under high glucose and control group by Western Blot and qPCR. We found that the expression of Caspase-1, GSDMD and IL-1ß proteins in HREC under high glucose increased, while the expression of these proteins decreased after the inhibition of IRF1 by siRNA. ELISA showed that the secretion of IL-1ß in HREC under high glucose increased, while the inhibition of IRF1 reduced the secretion of IL-1ß. These results indicate that IRF1 plays an important role in DR, and provides a new target and strategy for the prevention and treatment of this disease.


Asunto(s)
Retinopatía Diabética , Factor 1 Regulador del Interferón , Piroptosis , Humanos , Caspasas/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Glucosa/metabolismo , Factor 1 Regulador del Interferón/genética , Piroptosis/genética
19.
Biochem Biophys Res Commun ; 694: 149389, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38128383

RESUMEN

PURPOSE: To examine whether and how carbohydrate response element-binding protein (ChREBP) plays a role in diabetic retinopathy. METHODS: Western blotting was used to detect ChREBP expression and location following high glucose stimulation of Human Retinal Microvascular Endothelial Cells (HRMECs). Flow cytometry, TUNEL staining, and western blotting were used to evaluate apoptosis following ChREBP siRNA silencing. Cell scratch, transwell migration, and tube formation assays were used to determine cell migration and angiogenesis. Diabetic models for wild-type (WT) and ChREBP knockout (ChKO) mice were developed. Retinas of WT and ChKO animals were cultivated in vitro with vascular endothelial growth factor + high glucose to assess neovascular development. RESULTS: ChREBP gene knockdown inhibited thioredoxin-interacting protein and NOD-like receptor family pyrin domain containing protein 3 expression in HRMECs, which was caused by high glucose stimulation, reduced apoptosis, hindered migration, and tube formation, and repressed AKT/mTOR signaling pathway activation. Compared with WT mice, ChKO mice showed suppressed high glucose-induced alterations in retinal structure, alleviated retinal vascular leakage, and reduced retinal neovascularization. CONCLUSIONS: ChREBP deficiency decreased high glucose-induced apoptosis, migration, and tube formation in HRMECs as well as structural and angiogenic responses in the mouse retina; thus, it is a potential therapeutic target for diabetic retinopathy.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Animales , Humanos , Ratones , Diabetes Mellitus/metabolismo , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Glucosa/metabolismo , Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38718570

RESUMEN

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Asunto(s)
Apigenina , Transición Epitelial-Mesenquimal , Glucosa , Histonas , Epitelio Pigmentado de la Retina , Transición Epitelial-Mesenquimal/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Animales , Apigenina/farmacología , Acetilación/efectos de los fármacos , Humanos , Glucosa/metabolismo , Glucosa/toxicidad , Histonas/metabolismo , Línea Celular , Ratones , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Ratones Endogámicos C57BL , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Retinopatía Diabética/tratamiento farmacológico , Proteína p300 Asociada a E1A/metabolismo , Masculino , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteína de Unión a CREB/metabolismo , Proteína de Unión a CREB/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA