Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.132
Filtrar
Más filtros

Intervalo de año de publicación
1.
Stroke ; 55(7): 1730-1738, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38804134

RESUMEN

BACKGROUND: We aimed to examine the boundary of the ischemic core volume in patients undergoing endovascular thrombectomy (EVT) versus those receiving medical management to determine the minimum optimal size for favorable treatment outcomes. METHODS: This is a prespecified substudy of the RESCUE-Japan LIMIT (Recovery by Endovascular Salvage for Cerebral Ultra-Acute Embolism-Japan Large Ischemic Core Trial). Patients with large vessel occlusion were enrolled between November 2018 and September 2021 with a National Institutes of Health Stroke Scale score of at least 6 on admission and an Alberta Stroke Program Early Computed Tomography Score value of 3 to 5. We investigated the correlation between optimal quantified ischemic core volume, assessed solely using magnetic resonance diffusion-weighted imaging, and functional outcomes (modified Rankin Scale score, 0-3) at 90 days by predictive marginal plots. Final infarct volume and safety outcomes (symptomatic intracerebral hemorrhage and mortality) were also assessed. RESULTS: Of the 203 cases, 168 patients (85 in the EVT group versus 83 in the medical management group) were included. The median (interquartile range) core volume was 94 (65-160) mL in patients with EVT and 115 (71-141) mL in the medical management group (P=0.72). The predictive marginal probabilities of the 2 groups intersected at 128 mL for estimating functional outcomes. Symptomatic intracerebral hemorrhage and mortality within 90 days had overlay margins through all core volumes in both groups. The median final infarct volume (interquartile range) was smaller in the EVT group (142 [80-223] mL versus 211 [123-289] mL in the medical management group; P<0.001). CONCLUSIONS: In this prespecified analysis of a randomized clinical trial involving patients with large ischemic strokes, patients with an estimated core volume of up to 128 mL on diffusion-weighted imaging benefit from EVT. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03702413.


Asunto(s)
Procedimientos Endovasculares , Accidente Cerebrovascular Isquémico , Trombectomía , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/cirugía , Accidente Cerebrovascular Isquémico/terapia , Masculino , Femenino , Anciano , Trombectomía/métodos , Procedimientos Endovasculares/métodos , Persona de Mediana Edad , Anciano de 80 o más Años , Imagen de Difusión por Resonancia Magnética , Resultado del Tratamiento , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/terapia , Isquemia Encefálica/cirugía
2.
Neuroimage ; : 120858, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39317273

RESUMEN

Diffusion magnetic resonance imaging (dMRI) allows non-invasive assessment of brain tissue microstructure. Current model-based tissue microstructure reconstruction techniques require a large number of diffusion gradients, which is not clinically feasible due to imaging time constraints, and this has limited the use of tissue microstructure information in clinical settings. Recently, approaches based on deep learning (DL) have achieved promising tissue microstructure reconstruction results using clinically feasible dMRI. However, it remains unclear whether the subtle tissue changes associated with disease or age are properly preserved with DL approaches and whether DL reconstruction results can benefit clinical applications. Here, we provide the first evidence that DL approaches to tissue microstructure reconstruction yield reliable brain tissue microstructure analysis based on clinically feasible dMRI scans. Specifically, we reconstructed tissue microstructure from four different brain dMRI datasets with only 12 diffusion gradients, a clinically feasible protocol, and the neurite orientation dispersion and density imaging (NODDI) and spherical mean technique (SMT) models were considered. With these results we show that disease-related and age-dependent alterations of brain tissue were accurately identified. These findings demonstrate that DL tissue microstructure reconstruction can accurately quantify microstructural alterations in the brain based on clinically feasible dMRI.

3.
Neuroimage ; 297: 120734, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032791

RESUMEN

Brain development is a highly complex process regulated by numerous genes at the molecular and cellular levels. Brain tissue exhibits serial microstructural changes during the development process. High-resolution diffusion magnetic resonance imaging (dMRI) affords a unique opportunity to probe these changes in the developing brain non-destructively. In this study, we acquired multi-shell dMRI datasets at 32 µm isotropic resolution to investigate the tissue microstructure alterations, which we believe to be the highest spatial resolution dMRI datasets obtained for postnatal mouse brains. We adapted the Allen Developing Mouse Brain Atlas (ADMBA) to integrate quantitative MRI metrics and spatial transcriptomics. Diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and neurite orientation dispersion and density imaging (NODDI) metrics were used to quantify brain development at different postnatal days. We demonstrated that the differential evolutions of fiber orientation distributions contribute to the distinct development patterns in white matter (WM) and gray matter (GM). Furthermore, the genes enriched in the nervous system that regulate brain structure and function were expressed in spatial correlation with age-matched dMRI. This study is the first one providing high-resolution dMRI, including DTI, DKI, and NODDI models, to trace mouse brain microstructural changes in WM and GM during postnatal development. This study also highlighted the genotype-phenotype correlation of spatial transcriptomics and dMRI, which may improve our understanding of brain microstructure changes at the molecular level.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Transcriptoma , Animales , Ratones , Encéfalo/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Sustancia Blanca/crecimiento & desarrollo , Sustancia Blanca/diagnóstico por imagen , Sustancia Gris/crecimiento & desarrollo , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/anatomía & histología , Ratones Endogámicos C57BL , Masculino , Femenino
4.
Hum Brain Mapp ; 45(12): e26805, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39185685

RESUMEN

The glymphatic system (GS) is a whole-brain perivascular network, consisting of three compartments: the periarterial and perivenous spaces and the interposed brain parenchyma. GS dysfunction has been implicated in neurodegenerative diseases, particularly Alzheimer's disease (AD). So far, comprehensive research on GS in humans has been limited by the absence of easily accessible biomarkers. Recently, promising non-invasive methods based on magnetic resonance imaging (MRI) along with aquaporin-4 (AQP4) quantification in the cerebrospinal fluid (CSF) were introduced for an indirect assessment of each of the three GS compartments. We recruited 111 consecutive subjects presenting with symptoms suggestive of degenerative cognitive decline, who underwent 3 T MRI scanning including multi-shell diffusion-weighted images. Forty nine out of 111 also underwent CSF examination with quantification of CSF-AQP4. CSF-AQP4 levels and MRI measures-including perivascular spaces (PVS) counts and volume fraction (PVSVF), white matter free water fraction (FW-WM) and mean kurtosis (MK-WM), diffusion tensor imaging analysis along the perivascular spaces (DTI-ALPS) (mean, left and right)-were compared among patients with AD (n = 47) and other neurodegenerative diseases (nAD = 24), patients with stable mild cognitive impairment (MCI = 17) and cognitively unimpaired (CU = 23) elderly people. Two runs of analysis were conducted, the first including all patients; the second after dividing both nAD and AD patients into two subgroups based on gray matter atrophy as a proxy of disease stage. Age, sex, years of education, and scanning time were included as confounding factors in the analyses. Considering the whole cohort, patients with AD showed significantly higher levels of CSF-AQP4 (exp(b) = 2.05, p = .005) and FW-WM FW-WM (exp(b) = 1.06, p = .043) than CU. AQP4 levels were also significantly higher in nAD in respect to CU (exp(b) = 2.98, p < .001). CSF-AQP4 and FW-WM were significantly higher in both less atrophic AD (exp(b) = 2.20, p = .006; exp(b) = 1.08, p = .019, respectively) and nAD patients (exp(b) = 2.66, p = .002; exp(b) = 1.10, p = .019, respectively) compared to CU subjects. Higher total (exp(b) = 1.59, p = .013) and centrum semiovale PVS counts (exp(b) = 1.89, p = .016), total (exp(b) = 1.50, p = .036) and WM PVSVF (exp(b) = 1.89, p = .005) together with lower MK-WM (exp(b) = 0.94, p = .006), mean and left ALPS (exp(b) = 0.91, p = .043; exp(b) = 0.88, p = .010 respectively) were observed in more atrophic AD patients in respect to CU. In addition, more atrophic nAD patients exhibited higher levels of AQP4 (exp(b) = 3.39, p = .002) than CU. Our results indicate significant changes in putative MRI biomarkers of GS and CSF-AQP4 levels in AD and in other neurodegenerative dementias, suggesting a close interaction between glymphatic dysfunction and neurodegeneration, particularly in the case of AD. However, the usefulness of some of these biomarkers as indirect and standalone indices of glymphatic activity may be hindered by their dependence on disease stage and structural brain damage.


Asunto(s)
Enfermedad de Alzheimer , Acuaporina 4 , Imagen de Difusión por Resonancia Magnética , Sistema Glinfático , Humanos , Acuaporina 4/líquido cefalorraquídeo , Femenino , Sistema Glinfático/diagnóstico por imagen , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Anciano , Persona de Mediana Edad , Imagen de Difusión por Resonancia Magnética/métodos , Anciano de 80 o más Años , Demencia/diagnóstico por imagen , Demencia/líquido cefalorraquídeo , Demencia/patología , Imagen de Difusión Tensora/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/líquido cefalorraquídeo , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
5.
NMR Biomed ; : e5227, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136393

RESUMEN

Diffusion tensor imaging (DTI) can provide unique contrast and insight into microstructural changes with age or disease of the hippocampus, although it is difficult to measure the hippocampus because of its comparatively small size, location, and shape. This has been markedly improved by the advent of a clinically feasible 1-mm isotropic resolution 6-min DTI protocol at 3 T of the hippocampus with limited brain coverage of 20 axial-oblique slices aligned along its long axis. However, manual segmentation is too laborious for large population studies, and it cannot be automatically segmented directly on the diffusion images using traditional T1 or T2 image-based methods because of the limited brain coverage and different contrast. An automatic method is proposed here that segments the hippocampus directly on high-resolution diffusion images based on an extension of well-known deep learning architectures like UNet and UNet++ by including additional dense residual connections. The method was trained on 100 healthy participants with previously performed manual segmentation on the 1-mm DTI, then evaluated on typical healthy participants (n = 53), yielding an excellent voxel overlap with a Dice score of ~ 0.90 with manual segmentation; notably, this was comparable with the inter-rater reliability of manually delineating the hippocampus on diffusion magnetic resonance imaging (MRI) (Dice score of 0.86). This method also generalized to a different DTI protocol with 36% fewer acquisitions. It was further validated by showing similar age trajectories of volumes, fractional anisotropy, and mean diffusivity from manual segmentations in one cohort (n = 153, age 5-74 years) with automatic segmentations from a second cohort without manual segmentations (n = 354, age 5-90 years). Automated high-resolution diffusion MRI segmentation of the hippocampus will facilitate large cohort analyses and, in future research, needs to be evaluated on patient groups.

6.
NMR Biomed ; : e5174, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712650

RESUMEN

The aim of the current study is to investigate the diagnostic value of R2* mapping versus reduced field-of-view diffusion-weighted imaging (rDWI) of the primary lesion of rectal cancer for preoperative prediction of nonenlarged lymph node metastasis (NLNM). Eighty-one patients with pathologically confirmed rectal cancer underwent preoperative R2* mapping and rDWI sequences before total mesorectal excisions and accompanying regional lymph node dissections. Two radiologists independently performed whole-tumor measurements of R2* and apparent diffusion coefficient (ADC) parameters on primary lesions of rectal cancer. Patients were divided into positive (NLNM+) and negative (NLNM-) groups based on their pathological analysis. The tumor location, maximum diameter of the tumor, and maximum short diameter of the lymph node were assessed. R2* and ADC, pT stage, tumor grade, status of mesorectal fascia, and extramural vascular invasion were also studied for their potential relationships with NLNM using multivariate logistic regression analysis. The NLNM+ group had significantly higher R2* (43.56 ± 8.43 vs. 33.87 ± 9.57, p < 0.001) and lower ADC (1.00 ± 0.13 vs. 1.06 ± 0.22, p = 0.036) than the NLNM- group. R2* and ADC were correlated to lymph node metastasis (r = 0.510, p < 0.001 for R2*; r = -0.235, p = 0.035 for ADC). R2* and ADC showed good and moderate diagnostic abilities in the assessment of NLNM status with corresponding area-under-the-curve values of 0.795 and 0.636. R2* provided a significantly better diagnostic performance compared with ADC for the prediction of NLNM status (z = 1.962, p = 0.0498). The multivariate logistic regression analysis demonstrated that R2* was a compelling factor of lymph node metastasis (odds ratio = 56.485, 95% confidence interval: 5.759-554.013; p = 0.001). R2* mapping had significantly higher diagnostic performance than rDWI from the primary tumor of rectal cancer in the prediction of NLNM status.

7.
Strahlenther Onkol ; 200(1): 19-27, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37429949

RESUMEN

PURPOSE: To analyze tumor characteristics derived from pelvic magnetic resonance imaging (MRI) of patients with squamous cell carcinoma of the anus (SCCA) before and during chemoradiotherapy (CRT), and to compare the changes in these characteristics between scans of responders vs. nonresponders to CRT. METHODS: We included 52 patients with a pelvic 3T MRI scan prior to CRT (baseline scan); 39 of these patients received an additional scan during week 2 of CRT (second scan). Volume, diameter, extramural tumor depth (EMTD), and external anal sphincter infiltration (EASI) of the tumor were assessed. Mean, kurtosis, skewness, standard deviation (SD), and entropy values were extracted from apparent diffusion coefficient (ADC) histograms. The main outcome was locoregional treatment failure. Correlations were evaluated with Wilcoxon's signed rank-sum test and Pearson's correlation coefficient, quantile regression, univariate logistic regression, and area under the ROC curve (AUC) analyses. RESULTS: In isolated analyses of the baseline and second MRI scans, none of the characteristics were associated with outcome. Comparison between the scans showed significant changes in several characteristics: volume, diameter, EMTD, and ADC skewness decreased in the second scan, although the mean ADC increased. Small decreases in volume and diameter were associated with treatment failure, and these variables had the highest AUC values (0.73 and 0.76, respectively) among the analyzed characteristics. CONCLUSION: Changes in tumor volume and diameter in an early scan during CRT could represent easily assessable imaging-based biomarkers to eliminate the need for analysis of more complex MRI characteristics.


Asunto(s)
Neoplasias del Ano , Neoplasias del Recto , Humanos , Neoplasias del Recto/patología , Imagen por Resonancia Magnética/métodos , Resultado del Tratamiento , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias del Ano/diagnóstico por imagen , Neoplasias del Ano/terapia , Quimioradioterapia/métodos , Estudios Retrospectivos
8.
Psychol Med ; 54(9): 2133-2143, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38497117

RESUMEN

BACKGROUND: Mild traumatic brain injury (mTBI) is common in children. Long-term cognitive and behavioral outcomes as well as underlying structural brain alterations following pediatric mTBI have yet to be determined. In addition, the effect of age-at-injury on long-term outcomes is largely unknown. METHODS: Children with a history of mTBI (n = 406; Mage = 10 years, SDage = 0.63 years) who participated in the Adolescent Brain Cognitive Development (ABCD) study were matched (1:2 ratio) with typically developing children (TDC; n = 812) and orthopedic injury (OI) controls (n = 812). Task-based executive functioning, parent-rated executive functioning and emotion-regulation, and self-reported impulsivity were assessed cross-sectionally. Regression models were used to examine the effect of mTBI on these domains. The effect of age-at-injury was assessed by comparing children with their first mTBI at either 0-3, 4-7, or 8-10 years to the respective matched TDC controls. Fractional anisotropy (FA) and mean diffusivity (MD), both MRI-based measures of white matter microstructure, were compared between children with mTBI and controls. RESULTS: Children with a history of mTBI displayed higher parent-rated executive dysfunction, higher impulsivity, and poorer self-regulation compared to both control groups. At closer investigation, these differences to TDC were only present in one respective age-at-injury group. No alterations were found in task-based executive functioning or white matter microstructure. CONCLUSIONS: Findings suggest that everyday executive function, impulsivity, and emotion-regulation are affected years after pediatric mTBI. Outcomes were specific to the age at which the injury occurred, suggesting that functioning is differently affected by pediatric mTBI during vulnerable periods. Groups did not differ in white matter microstructure.


Asunto(s)
Conmoción Encefálica , Función Ejecutiva , Sustancia Blanca , Humanos , Función Ejecutiva/fisiología , Niño , Masculino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Femenino , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Conmoción Encefálica/patología , Adolescente , Conducta Impulsiva/fisiología , Estudios Transversales , Imagen de Difusión Tensora , Regulación Emocional/fisiología , Preescolar , Pruebas Neuropsicológicas
9.
J Magn Reson Imaging ; 59(4): 1384-1393, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37315155

RESUMEN

BACKGROUND: The fetal neurodevelopmental microstructural alterations of intrauterine exposure to preeclampsia (PE) or gestational hypertension (GH) remain unknown. PURPOSE: To evaluate the differences in diffusion-weighted imaging (DWI) of the fetal brain between normotensive pregnancies and PE/GH pregnancies, with a focus on PE/GH pregnancies with fetal growth restriction (FGR). STUDY TYPE: Retrospective matched case-control study. POPULATION: 40 singleton pregnancies with PE/GH complicated by FGR, and 3 paired control groups (PE/GH without FGR, normotensive FGR, normotensive pregnancies) (28-38 gestational weeks). FIELD STRENGTH/SEQUENCE: DWI with single-shot echo-planar imaging at 1.5 Tesla. ASSESSMENT: The apparent diffusion coefficient (ADC) values were calculated in the centrum semi-ovale (CSO), parietal white matter (PWM), frontal white matter (FWM), occipital white matter (OWM), temporal white matter (TWM), basal ganglia, thalamus (THAL), pons, and cerebellar hemisphere. STATISTICAL TESTS: Student t test or Wilcoxon matched test was used to reveal the difference of ADC values among the investigated brain regions. A correlation between gestational age (GA) and ADC values was determined by linear regression analysis. RESULTS: Compared with fetuses in PE/GH without FGR and those with normotensive pregnancies, fetuses in the PE/GH with FGR group had significantly lower average ADC measurements of supratentorial regions (1.65 ± 0.09 vs. 1.71 ± 0.10 10-3 mm2 /sec; vs. 1.73 ± 0.11 10-3 mm2 /sec, respectively). Regions of significantly decreased ADC values in the fetal brain included CSO, FWM, PWM, OWM, TWM and THAL in cases of PE/GH with FGR. ADC values from supratentorial regions in PE/GH pregnancies were not significantly correlated with GA (P = 0.12, 0.26); however, this trend was statistically significant in the normotensive groups. DATA CONCLUSION: ADC values may indicate fetal brain developmental alterations in PE/GH with FGR fetuses but more microscopic and morphological studies are necessary to provide additional evidence to offer a different interpretation of this trend in fetal brain. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 3.


Asunto(s)
Hipertensión Inducida en el Embarazo , Preeclampsia , Embarazo , Femenino , Humanos , Estudios Retrospectivos , Estudios de Casos y Controles , Preeclampsia/diagnóstico por imagen , Hipertensión Inducida en el Embarazo/diagnóstico por imagen , Retardo del Crecimiento Fetal/diagnóstico por imagen , Encéfalo/anatomía & histología , Edad Gestacional , Imagen de Difusión por Resonancia Magnética/métodos
10.
J Magn Reson Imaging ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311711

RESUMEN

BACKGROUND: Primary open-angle glaucoma (POAG), a leading cause of irreversible blindness, is associated with neurodegeneration in the visual pathway, but the underlying pathophysiology remains incompletely resolved. PURPOSE: To characterize macro- and microstructural white matter abnormalities in optic tract (OT) and optic radiation (OR) of POAG. STUDY TYPE: Prospective. POPULATIONS: A total of 34 POAG patients (21 males, 13 females) and 25 healthy controls (HCs) (16 males, nine females). FIELD STRENGTH/SEQUENCE: 3 T; multiband spin-echo echo planar diffusion spectrum imaging (DSI). ASSESSMENT: We compared multiple morphology metrics, including volume, area, length, and shape metrics, as well as diffusion metrics such as diffusion tensor imaging (fractional anisotropy [FA], mean diffusivity, radial diffusivity, and axial diffusivity), mean apparent propagator (mean squared displacement, q-space inverse variance, return-to-origin probability, return-to-axis probabilities [RTAP] and return-to-plane probabilities, non-Gaussianity, perpendicular non-Gaussianity, parallel non-Gaussianity), and neurite orientation dispersion and density imaging (intracellular volume fraction, orientation dispersion index [ODI], and isotropic volume fraction of the OT and OR). STATISTICAL TESTS: Statistical comparisons and classifications employed linear mixed model and logistic regression. Diagnostic performance was assessed using area under the receiver operating characteristic curve (AUC). P-value <0.05 was statistically significant. RESULTS: Morphology analysis in POAG revealed a lower span in the OR (29.43 ± 2.30 vs. 30.59 ± 2.01, 3.8%) and OT (19.73 ± 2.21 vs. 20.68 ± 1.37, 4.6%), and a higher curl (3.03 ± 0.22 vs. 2.90 ± 0.16, 4.5%) in OT. Diffusion metrics revealed lower mean FA (OR: 0.328 ± 0.03 vs. 0.340 ± 0.018, 3.5%; OT: 0.255 ± 0.022 vs. 0.268 ± 0.018, 4.9%) and lower mean RTAP (OR: 5.919 ± 0.529 vs. 6.216 ± 0.489, 4.8%; OT: 4.089 ± 0.402 vs. 4.280 ± 0.353, 4.5%), with higher mean ODI in the OT (0.448 ± 0.029 vs. 0.433 ± 0.025, 3.5%). Combined models, incorporating these MRI metrics, effectively discriminated POAG from HCs, achieving AUCs of 0.84 for OR and 0.83 for OT. DATA CONCLUSIONS: DSI-derived morphology and diffusion metrics demonstrated macro- and micro abnormalities in the visual pathway, providing insights into POAG-related neurodegeneration. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.

11.
J Magn Reson Imaging ; 59(2): 599-610, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37203312

RESUMEN

BACKGROUND: Diffusion magnetic resonsance imaging (dMRI) can potentially predict the postoperative outcome of cervical spondylotic myelopathy (CSM). PURPOSE: To explore preoperative dMRI parameters to predict the postoperative outcome of CSM through multifactor correlation analysis. STUDY TYPE: Prospective. POPULATION: Post-surgery CSM patients; 102 total, 73 male (52.42 ± 10.60 years old) and 29 female (52.0 ± 11.45 years old). FIELD STRENGTH/SEQUENCE: 3.0 T/Turbo spin echo T1/T2-weighted, T2*-weighted multiecho gradient echo and dMRI. ASSESSMENT: Spinal cord function was evaluated using modified Japanese Orthopedic Association (mJOA) scoring at different time points: preoperative and 3, 6, and 12 months postoperative. Single-factor correlation and t test analyses were conducted based on fractional anisotropy (FA), mean diffusivity, intracellular volume fraction, isotropic volume fraction, orientation division index, increased signal intensity, compression ratio, age, sex, symptom duration and operation method, and multicollinearity was calculated. The linear quantile mixed model (LQMM) and the linear mixed-effects regression model (LMER) were used for multifactor correlation analysis using the combinations of the above variables. STATISTICAL TESTS: Distance correlation, Pearson's correlation, multiscale graph correlation and t tests were used for the single-factor correlation analyses. The variance inflation factor (VIF) was used to calculate multicollinearity. LQMM and LMER were used for multifactor correlation analyses. P < 0.05 was considered statistically significant. RESULTS: The single-factor correlation between all variables and the postoperative mJOA score was weak (all r < 0.3). The linear relationship was stronger than the nonlinear relationship, and there was no significant multicollinearity (VIF = 1.10-1.94). FA values in the LQMM and LMER models had a significant positive correlation with the mJOA score (r = 5.27-6.04), which was stronger than the other variables. DATA CONCLUSION: The FA value based on dMRI significantly positively correlated with CSM patient postoperative outcomes, helping to predict the surgical outcome and formulate a treatment plan before surgery. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Enfermedades de la Médula Espinal , Espondilosis , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Estudios Prospectivos , Imagen de Difusión Tensora/métodos , Espondilosis/diagnóstico por imagen , Espondilosis/cirugía , Espondilosis/patología , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Resultado del Tratamiento
12.
Eur Radiol ; 34(3): 1422-1433, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37658142

RESUMEN

OBJECTIVES: To evaluate the diffusion kurtosis and susceptibility change in the U-fiber region of patients with relapsing-remitting multiple sclerosis (pwRRMS) and their correlations with cognitive status and degeneration. MATERIALS AND METHODS: Mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), kurtosis fractional anisotropy (KFA), and the mean relative quantitative susceptibility mapping (mrQSM) values in the U-fiber region were compared between 49 pwRRMS and 48 healthy controls (HCs). The U-fiber were divided into upper and deeper groups based on the location. The whole brain volume, gray and white matter volume, and cortical thickness were obtained. The correlations between the mrQSM values, DKI-derived metrics in the U-fiber region and clinical scale scores, brain morphologic parameters were further investigated. RESULTS: The decreased MK, AK, RK, KFA, and increased mrQSM values in U-fiber lesions (p < 0.001, FDR corrected), decreased RK, KFA, and increased mrQSM values in U-fiber non-lesions (p = 0.034, p < 0.001, p < 0.001, FDR corrected) were found in pwRRMS. There were differences in DKI-derived metrics and susceptibility values between the upper U-fiber region and the deeper one for U-fiber non-lesion areas of pwRRMS and HCs (p < 0.05), but not for U-fiber lesions in DKI-derived metrics. The DKI-derived metrics and susceptibility values were widely related with cognitive tests and brain atrophy. CONCLUSION: RRMS patients show abnormal diffusion kurtosis and susceptibility characteristics in the U-fiber region, and these underlying tissue abnormalities are correlated with cognitive deficits and degeneration. CLINICAL RELEVANCE STATEMENT: The macroscopic and microscopic tissue damages of U-fiber help to identify cognitive impairment and brain atrophy in multiple sclerosis and provide underlying pathophysiological mechanism. KEY POINTS: • Diffusion kurtosis and susceptibility changes are present in the U-fiber region of multiple sclerosis. • There are gradients in diffusion kurtosis and susceptibility characteristics in the U-fiber region. • Tissue damages in the U-fiber region are correlated with cognitive impairment and brain atrophy.


Asunto(s)
Disfunción Cognitiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Sustancia Blanca , Humanos , Esclerosis Múltiple Recurrente-Remitente/complicaciones , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple/patología , Imagen de Difusión Tensora , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Disfunción Cognitiva/patología , Atrofia/patología , Cognición , Imagen de Difusión por Resonancia Magnética
13.
Eur Radiol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048742

RESUMEN

PURPOSE: To determine the performance of T2* cartilage mapping in diagnosing and assessing disease activity in early axial spondyloarthritis (axSpA), and to investigate the interaction of cartilage damage with clinical characteristics, sacroiliitis MRI scorings, and diffusion metrics. MATERIALS AND METHODS: This prospective study included 83 axSpA patients and 37 no-axSpA patients. Clinical characteristics, the Assessment of SpondyloArthritis International Society-defined active sacroiliitis on MRI, and T2* SIJs values were recorded. In axSpA, disease activity was evaluated using the ankylosing spondylitis disease activity score-C-reactive protein; active sacroiliitis was evaluated using Spondyloarthritis Research Consortium of Canada, intravoxel incoherent motion, and diffusion kurtosis imaging; chronic sacroiliitis was assessed using composite structural damage score (CSDS) and structural score fat. Mann-Whitney U-test, Kruskal-Wallis test with false discovery rate (FDR), ROC curve, and linear regression were used for statistical analysis. RESULTS: AxSpA patients had significantly higher T2*SIJs values than no-axSpA patients. (22.86 ± 2.42 ms vs 20.36 ± 1.30 ms, p < 0.001). The combination of T2*SIJs values and active sacroiliitis on MRI had the highest AUC for identifying axSpA. T2*SIJs values were significantly different between the inactive and very high, moderate and very high, high and very high, as well as inactive and high disease activity groups (all pFDR < 0.05). Dk (ß = 0.48) and CSDS (ß = 0.48) were independently associated with T2*SIJs values. CONCLUSION: T2* values may be a promising biomarker for diagnosing and differentiating disease activity in early axSpA. Both acute and chronic sacroiliitis influence cartilage properties. CLINICAL RELEVANCE STATEMENT: Sacroiliac joint cartilage abnormalities can be quantified with T2* relaxation time and allow better characterization of early axSpA. KEY POINTS: T2* mapping may have value in evaluating axSpA. The combination of T2* values and active sacroiliitis on MRI enhances diagnostic performance for axSpA. Abnormalities measured with T2* values correlate with disease activity, acute sacroiliitis, and degree of structural damage.

14.
Eur Radiol ; 34(4): 2546-2559, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37672055

RESUMEN

OBJECTIVES: To determine the value of conventional DWI, continuous-time random walk (CTRW), fractional order calculus (FROC), and stretched exponential model (SEM) in discriminating human epidermal growth factor receptor 2 (HER2) status of breast cancer (BC). METHODS: This prospective study included 158 women who underwent DWI, CTRW, FROC, and SEM and were pathologically categorized into the HER2-zero-expressing group (n = 10), HER2-low-expressing group (n = 86), and HER2-overexpressing group (n = 62). Nine diffusion parameters, namely ADC, αCTRW, ßCTRW, DCTRW, ßFROC, DFROC, µFROC, αSEM, and DDCSEM of the primary tumor, were derived from four diffusion models. These diffusion metrics and clinicopathologic features were compared between groups. Logistic regression was used to determine the optimal diffusion metrics and clinicopathologic variables for classifying the HER2-expressing statuses. Receiver operating characteristic (ROC) curves were used to evaluate their discriminative ability. RESULTS: The estrogen receptor (ER) status, progesterone receptor (PR) status, and tumor size differed between HER2-low-expressing and HER2-overexpressing groups (p < 0.001 to p = 0.009). The αCTRW, DCTRW, ßFROC, DFROC, µFROC, αSEM, and DDCSEM were significantly lower in HER2-low-expressing BCs than those in HER2-overexpressing BCs (p < 0.001 to p = 0.01). Further multivariable logistic regression analysis showed that the αCTRW was the single best discriminative metric, with an area under the curve (AUC) being higher than that of ADC (0.802 vs. 0.610, p < 0.05); the addition of ER status, PR status, and tumor size to the αCTRW improved the AUC to 0.877. CONCLUSIONS: The αCTRW could help discriminate the HER2-low-expressing and HER2-overexpressing BCs. CLINICAL RELEVANCE STATEMENT: Human epidermal growth factor receptor 2 (HER2)-low-expressing breast cancer (BC) might also benefit from the HER2-targeted therapy. Prediction of HER2-low-expressing BC or HER2-overexpressing BC is crucial for appropriate management. Advanced continuous-time random walk diffusion MRI offers a solution to this clinical issue. KEY POINTS: • Human epidermal receptor 2 (HER2)-low-expressing BC had lower αCTRW, DCTRW, ßFROC, DFROC, µFROC, αSEM, and DDCSEM values compared with HER2-overexpressing breast cancer. • The αCTRW was the single best diffusion metric (AUC = 0.802) for discrimination between the HER2-low-expressing and HER2-overexpressing breast cancers. • The addition of αCTRW to the clinicopathologic features (estrogen receptor status, progesterone receptor status, and tumor size) further improved the discriminative ability.


Asunto(s)
Neoplasias de la Mama , Receptor ErbB-2 , Femenino , Humanos , Neoplasias de la Mama/patología , Estudios Prospectivos , Receptores de Progesterona , Imagen de Difusión por Resonancia Magnética , Receptores de Estrógenos/metabolismo
15.
Eur Radiol ; 34(4): 2487-2499, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37672058

RESUMEN

OBJECTIVES: Differentiation between high-grade glioma (HGG) and post-treatment-related effects (PTRE) is challenging, but advanced imaging techniques were shown to provide benefit. We aim to investigate microstructure characteristics of metabolic compartments identified from amino acid PET and to evaluate the diagnostic potential of this multimodal and integrative O-(2-18F-fluoroethyl)-L-tyrosine-(FET)-PET and fast diffusion kurtosis imaging (DKI) approach for the detection of recurrence and IDH genotyping. METHODS: Fifty-nine participants with neuropathologically confirmed recurrent HGG (n = 39) or PTRE (n = 20) were investigated using static 18F-FET PET and a fast-DKI variant. PET and advanced diffusion metrics of metabolically defined (80-100% and 60-75% areas of 18F-FET uptake) compartments were assessed. Comparative analysis was performed using Mann-Whitney U tests with Holm-Sídák multiple-comparison test and Wilcoxon signed-rank test. Receiver operating characteristic (ROC) curves, regression, and Spearman's correlation analysis were used for statistical evaluations. RESULTS: Compared to PTRE, recurrent HGG presented increased 18F-FET uptake and diffusivity (MD60), but lower (relative) mean kurtosis tensor (rMKT60) and fractional anisotropy (FA60) (respectively p < .05). Diffusion metrics determined from the metabolic periphery showed improved diagnostic performance - most pronounced for FA60 (AUC = 0.86, p < .001), which presented similar benefit to 18F-FET PET (AUC = 0.86, p < .001) and was negatively correlated with amino acid uptake (rs = - 0.46, p < .001). When PET and DKI metrics were evaluated in a multimodal biparametric approach, TBRmax + FA60 showed highest diagnostic accuracy (AUC = 0.93, p < .001), which improved the detection of relapse compared to PET alone (difference in AUC = 0.069, p = .04). FA60 and MD60 distinguished the IDH genotype in the post-treatment setting. CONCLUSION: Detection of glioma recurrence benefits from a multimodal and integrative PET/DKI approach, which presented significant diagnostic advantage to the assessment based on PET alone. CLINICAL RELEVANCE STATEMENT: A multimodal and integrative 18F-FET PET/fast-DKI approach for the non-invasive microstructural characterization of metabolic compartments provided improved diagnostic capability for differentiation between recurrent glioma and post-treatment-related changes, suggesting a role for the diagnostic workup of patients in post-treatment settings. KEY POINTS: • Multimodal PET/MRI with integrative analysis of 18F-FET PET and fast-DKI presents clinical benefit for the assessment of CNS cancer, particularly for the detection of recurrent high-grade glioma. • Microstructure markers of the metabolic periphery yielded biologically pertinent estimates characterising the tumour microenvironment, and, thereby, presented improved diagnostic accuracy with similar accuracy to amino acid PET. • Combined 18F-FET PET/fast-DKI achieved the best diagnostic performance for detection of high-grade glioma relapse with significant benefit to the assessment based on PET alone.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/diagnóstico por imagen , Glioma/patología , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Enfermedad Crónica , Tirosina , Recurrencia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Microambiente Tumoral
16.
Eur Radiol ; 34(2): 1367-1375, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37581661

RESUMEN

OBJECTIVES: In the latest World Health Organization classification 2021, grade 4 adult diffuse gliomas can be diagnosed with several molecular features even without histological evidence of necrosis or microvascular proliferation. We aimed to explore whole tumor histogram-derived apparent diffusion coefficient (ADC) histogram profiles for differentiating between the presence (Mol-4) and absence (Mol-2/3) of grade 4 molecular features in histologically lower-grade gliomas. METHODS: Between June 2019 and October 2022, 184 adult patients with diffuse gliomas underwent MRI. After excluding 121 patients, 18 (median age, 64.5 [range, 37-84 years]) Mol-4 and 45 (median 40 [range, 18-73] years) Mol-2/3 patients with histologically lower-grade gliomas were enrolled. Whole tumor volume-of-interest-derived ADC histogram profiles were calculated and compared between the two groups. Stepwise logistic regression analysis with Akaike's information criterion using the ADC histogram profiles with p values < 0.01 and age at diagnosis was used to identify independent variables for predicting the Mol-4 group. RESULTS: The 90th percentile (p < 0.001), median (p < 0.001), mean (p < 0.001), 10th percentile (p = 0.014), and entropy (p < 0.001) of normalized ADC were lower, and kurtosis (p < 0.001) and skewness (p = 0.046) were higher in the Mol-4 group than in the Mol-2/3 group. Multivariate logistic regression analysis revealed that the entropy of normalized ADC and age at diagnosis were independent predictive parameters for the Mol-4 group with an area under the curve of 0.92. CONCLUSION: ADC histogram profiles may be promising preoperative imaging biomarkers to predict molecular grade 4 among histologically lower-grade adult diffuse gliomas. CLINICAL RELEVANCE STATEMENT: This study highlighted the diagnostic usefulness of ADC histogram profiles to differentiate histologically lower grade adult diffuse gliomas with the presence of molecular grade 4 features and those without. KEY POINTS: • ADC histogram profiles to predict molecular CNS WHO grade 4 status among histologically lower-grade adult diffuse gliomas were evaluated. • Entropy of ADC and age were independent predictive parameters for molecular grade 4 status. • ADC histogram analysis is useful for predicting molecular grade 4 among histologically lower-grade gliomas.


Asunto(s)
Glioma , Humanos , Adulto , Persona de Mediana Edad , Curva ROC , Glioma/diagnóstico por imagen , Glioma/patología , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética/métodos , Estudios Retrospectivos , Organización Mundial de la Salud
17.
Eur Radiol ; 34(2): 1349-1357, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37581664

RESUMEN

OBJECTIVES: To investigate the association between spinal cord perfusion and microstructural damage in CSM patients who underwent cervical laminoplasty using MR dynamic susceptibility contrast (DSC), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) techniques. METHODS: A follow-up cohort study was conducted with 53 consecutively recruited CSM patients who had undergone cervical laminoplasty 12-14 months after the surgery from April 2016 to December 2016. Twenty-one aged-matched healthy volunteers were recruited as controls. For each patient, decompressed spinal cord levels were imaged on a 3.0-T MRI scanner by diffusion and DSC sequences to quantify the degrees of microstructural damage and perfusion conditions, respectively. The diffusion data were analyzed by DTI and NODDI models to produce diffusion metrics. Classic indicator dilution model was used to quantify the DSC metrics. Mann-Whitney U test was performed for comparison of diffusion metrics between patients and healthy controls. Pearson correlation was used to explore the associations between the metrics of spinal cord perfusion and microstructural damage. RESULTS: DTI metrics, neurite density, and isotropic volume fraction had significant differences between postoperative patients and healthy controls. Pearson correlation test showed that SCBV was significantly positively correlated with RD, MD, and ODI, and negatively correlated with FA and NDI. SCBF was found to be significantly positively correlated with RD and MD, and negatively correlated with FA. CONCLUSIONS: Increased spinal cord perfusion quantified by DSC is associated with microstructural damage assessed by diffusion MRI in CSM patients who underwent cervical laminoplasty. CLINICAL RELEVANCE STATEMENT: This study found that the spinal cord perfusion is associated with microstructural damage in postoperative cervical spondylotic myelopathy patients, indicating that high perfusion may play a role in the pathophysiological process of cervical spondylotic myelopathy and deserves more attention. KEY POINTS: • Spinal cord microstructural damage can be persistent despite the compression had been relieved 12-14 months after the cervical laminoplasty in cervical spondylotic myelopathy (CSM) patients. • Spinal cord perfusion is associated with microstructural damage in CSM patients after the cervical laminoplasty. • Inflammation in the decompressed spinal cord may be a cause of increased perfusion and is associated with microstructural damage during the recovery period of CSM.


Asunto(s)
Laminoplastia , Enfermedades de la Médula Espinal , Espondilosis , Humanos , Anciano , Imagen de Difusión Tensora/métodos , Estudios de Seguimiento , Laminoplastia/efectos adversos , Espondilosis/complicaciones , Espondilosis/diagnóstico por imagen , Espondilosis/cirugía , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , Enfermedades de la Médula Espinal/complicaciones , Médula Espinal , Vértebras Cervicales/cirugía , Perfusión
18.
Eur Radiol ; 34(2): 1146-1154, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37615760

RESUMEN

OBJECTIVES: To investigate whether baseline 18F-sodium fluoride (NaF) and 18F-choline PET activity is associated with metastatic castration-resistant prostate cancer (mCRPC) global and individual bone metastases' DWI MR imaging response to radium-223 treatment. METHODS: Thirty-six bone-only mCRPC patients were prospectively recruited from three centers. Whole-body (WB)-MRI with DWI and 18F-NaF and 18F-choline PET/CT were performed at therapy baseline and 8-week intervals. In each patient, bone disease median global (g)ADC change between baseline and follow-up was calculated. Additionally, up to five bone target lesions per patient were delineated and individual median ADC change recorded. An ADC increase > 30% defined response per-patient and per-lesion. For the same targets, baseline 18F-NaF and 18F-choline PET SUVmax were recorded. Mean SUVmax across patient targets was correlated with gADC change and lesion SUVmax with per-lesion ADC change. RESULTS: A total of 133 lesions in 36 patients (14 responders) were analyzed. 18F-NaF PET per-patient mean SUVmax was significantly higher in responders (median = 56.0 versus 38.7 in non-responders; p = 0.008), with positive correlation between SUVmax and gADC increase (rho = 0.42; p = 0.015). A 48.7 SUVmax threshold identified responders with 77% sensitivity and 75% specificity. Baseline 18F-NaF PET per-lesion SUVmax was higher in responding metastases (median = 51.6 versus 31.8 in non-responding metastases; p = 0.001), with positive correlation between baseline lesion SUVmax and ADC increase (rho = 0.39; p < 0.001). A 36.8 SUVmax threshold yielded 72% sensitivity and 63% specificity. No significant association was found between baseline 18F-choline PET SUVmax and ADC response on a per-patient (p = 0.164) or per-lesion basis (p = 0.921). CONCLUSION: 18F-NaF PET baseline SUVmax of target mCRPC bone disease showed significant association with response to radium-223 defined by ADC change. CLINICAL RELEVANCE STATEMENT: 18F-sodium fluoride PET/CT baseline maximum SUV of castration-resistant prostate cancer bone metastases could be used as a predictive biomarker for response to radium-223 therapy. KEY POINTS: • 18F-sodium fluoride PET baseline SUVmax of castration-resistant prostate cancer bone metastases showed significant association with response to radium-223. • Baseline 18F-sodium fluoride PET can improve patient selection for radium-223 therapy. • Change in whole-body DWI parameters can be used for response correlation with baseline 18F-sodium fluoride PET SUVmax in castration-resistant prostate cancer bone metastases.


Asunto(s)
Neoplasias Óseas , Colina/análogos & derivados , Neoplasias de la Próstata Resistentes a la Castración , Radio (Elemento) , Humanos , Masculino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluoruro de Sodio/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Radioisótopos de Flúor , Neoplasias Óseas/tratamiento farmacológico
19.
Eur Radiol ; 34(1): 165-178, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37555959

RESUMEN

OBJECTIVE: The aim of this study was to assess the diffusion-weighted whole-body-MRI (WBMRI) in the initial staging of breast cancer at high risk of metastases in comparison with positron emission tomography (PET)-CT. METHODS: Forty-five women were prospectively enrolled. The inclusion criteria were female gender, age >18, invasive breast cancer, an initial PET-CT, and a performance status of 0-2. The exclusion criteria were contraindication to WB-MRI and breast cancer recurrence. The primary outcome was the concordance of WB-MRI and PET-CT in the diagnosis of distant metastases, whereas secondary outcomes included their concordance for the primary tumor and regional lymph nodes (LN), as well as the agreement of WB-MRI interpretation between two radiologists. RESULTS: The mean age was 51.2 years with a median size of the primary tumor of 30 mm. Concordance between the two modalities was almost perfect for metastases staging, all sites included (k = 0.862), with excellent interobserver agreement. The accuracy of WB-MRI for detecting regional LN, distant LN, lung, liver, or bone metastases ranged from 91 to 96%. In 2 patients, WB-MRI detected bone metastases that were overlooked by PET-CT. WB-MRI showed a substantial agreement with PET-CT for staging the primary tumor, regional LN status, and stage (k = 0.766, k = 0.756, and k = 0.785, respectively) with a high interobserver agreement. CONCLUSION: WB-MRI including DWI could be a reliable and reproducible examination in the initial staging of breast cancer patients at high risk of metastases, especially for bone metastases and therefore could be used as a surrogate to PET-CT. CLINICAL RELEVANCE STATEMENT: Whole-body-MRI including DWI is a promising technique for detecting metastases in the initial staging of breast cancer at high risk of metastases. KEY POINTS: Whole-body-MRI (WB-MRI) was effective for detecting metastases in the initial staging of 45 breast cancer patients at high risk of metastases in comparison with PET-CT. Concordance between WB-MRI and PET-CT was almost perfect for metastases staging, all sites included, with excellent interobserver agreement. The accuracy of WB-MRI for detecting bone metastases was 92%.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Humanos , Femenino , Persona de Mediana Edad , Masculino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias de la Mama/diagnóstico por imagen , Estudios Prospectivos , Estadificación de Neoplasias , Recurrencia Local de Neoplasia , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Neoplasias Óseas/diagnóstico por imagen , Imagen de Cuerpo Entero/métodos , Fluorodesoxiglucosa F18
20.
Eur Radiol ; 34(1): 90-102, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37552258

RESUMEN

OBJECTIVES: To explore the potential of radiomics features to predict the histologic grade of nonfunctioning pancreatic neuroendocrine tumor (NF-PNET) patients using non-contrast sequence based on MRI. METHODS: Two hundred twenty-eight patients with NF-PNETs undergoing MRI at 5 centers were retrospectively analyzed. Data from center 1 (n = 115) constituted the training cohort, and data from centers 2-5 (n = 113) constituted the testing cohort. Radiomics features were extracted from T2-weighted images and the apparent diffusion coefficient. The least absolute shrinkage and selection operator was applied to select the most important features and to develop radiomics signatures. The area under receiver operating characteristic curve (AUC) was performed to assess models. RESULTS: Tumor boundary, enhancement homogeneity, and vascular invasion were used to construct the radiological model to stratify NF-PNET patients into grade 1 and 2/3 groups, which yielded AUC of 0.884 and 0.684 in the training and testing groups. A radiomics model including 4 features was constructed, with an AUC of 0.941 and 0.871 in the training and testing cohorts. The fusion model combining the radiomics signature and radiological characteristics showed good performance in the training set (AUC = 0.956) and in the testing set (AUC = 0.864), respectively. CONCLUSION: The developed model that integrates radiomics features with radiological characteristics could be used as a non-invasive, dependable, and accurate tool for the preoperative prediction of grade in NF-PNETs. CLINICAL RELEVANCE STATEMENT: Our study revealed that the fusion model based on a non-contrast MR sequence can be used to predict the histologic grade before operation. The radiomics model may be a new and effective biological marker in NF-PNETs. KEY POINTS: The diagnostic performance of the radiomics model and fusion model was better than that of the model based on clinical information and radiological features in predicting grade 1 and 2/3 of nonfunctioning pancreatic neuroendocrine tumors (NF-PNETs). Good performance of the model in the four external testing cohorts indicated that the radiomics model and fusion model for predicting the grades of NF-PNETs were robust and reliable, indicating the two models could be used in the clinical setting and facilitate the surgeons' decision on risk stratification. The radiomics features were selected from non-contrast T2-weighted images (T2WI) and diffusion-weighted imaging (DWI) sequence, which means that the administration of contrast agent was not needed in grading the NF-PNETs.


Asunto(s)
Tumores Neuroectodérmicos Primitivos , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Clasificación del Tumor , Tumores Neuroendocrinos/diagnóstico por imagen , Estudios Retrospectivos , Radiómica , Imagen por Resonancia Magnética/métodos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA