Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(11): 1009, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361044

RESUMEN

Eastern Thailand and Rayong province face perennial drought and water scarcity due to natural characteristics of climate and geology. Therefore, increasing water surface by man-made reservoirs is one of the priorities in the regional development plan to provide water adequately for industrial purposes, domestic consumption, and agriculture. The large reservoir constructions may induce land use, land cover changes (LULCC), yet it also is expected to alleviate the drought harshness in the region. By delineating Landsat satellite images and spatial analysis, this study revealed the LULCC in Rayong from 1990 to 2020. The most prominent LULCC was surface water expansion, about 10.9% per year, yet the increase was the most substantial in the first decade rather than the last two decades. Vegetation expansion was observed, contributing to an increase in forests/plantations and intensified agriculture by 39.19% and 25.54%, respectively. The LULCC corresponded to a 3.64% increase in ecosystem service values (ESV), implying positive benefits from the LULCC. Vegetation drought conditions monitored by the vegetation health index (VHI) exhibited an improvement trend, especially in the eastern basins. The development of artificial reservoirs was proven to stimulate the expansion of intensive agriculture and vegetation drought mitigation with spatial heterogeneity, spreading mainly across areas of the basins rather than remote areas. The research findings inform the efficiency of the reservoirs and irrigation systems regarding the beneficial effects on drought mitigation and water scarcity for agricultural cultivation. They also provide spatial information on areas still hindered by water problems that should be addressed in future strategies.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Sequías , Monitoreo del Ambiente , Tailandia , Agricultura/métodos , Conservación de los Recursos Naturales/métodos , Abastecimiento de Agua , Ecosistema , Bosques
2.
Environ Res ; 196: 110368, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33131712

RESUMEN

Climate change has significant impacts on the Pearl River Basin, and the regional ecological environment and human production may face severe challenges in the future due to changes in temperature and precipitation, as well as their derivative disasters (e.g., drought). Therefore, a full understanding of the possible impacts of climate change on Pearl River Basin is desired. In this study, the potential changes in temperature, precipitation, and drought conditions were projected through a stepwise clustering projection (SCP) model driven by multiple GCMs under two different RCPs. The developed model could facilitate specifying the inherently complex relationship between predictors and predictands, and its performance was proven to be great by comparing the observations and model simulations. A multi-level factorial analysis was employed to explore the major contributing factors to the variations in projecting drought conditions. The results suggested that the Pearl River Basin would suffer significant increasing trends in Tmean (i.e., 0.25-0.34 °C per decade under RCP4.5 and 0.42-0.60 °C per decade under RCP8.5), and the annual mean precipitation would increase under both RCPs. The drought events lasting for 1-2 months would be decreased by 7.7%, lasting for 3-4 months would be increased by 4.3%, and lasting for more than five months would be increased by 3.4% under RCP4.5, respectively. While they changed to 6.1%, 1.4%, and 4.7% under RCP8.5, respectively. More medium and long-term drought events with higher drought severity would occur. GCM has dominant influences on four different responses of drought duration, accounting for 50.20%, 52.61%, 56.71%, and 56.24% of total variabilities, respectively. Meanwhile, the effects explained by GCM*RCP interactions cannot be neglected, with an average contribution rate of 44.37%, 37.86%, 37.66%, and 35.83%, respectively.


Asunto(s)
Cambio Climático , Ríos , China , Análisis por Conglomerados , Sequías , Humanos
3.
Environ Monit Assess ; 193(6): 365, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34046747

RESUMEN

The world including South Africa is faced with unprecedented environmental changes, which can be linked to climate-related disasters such as drought and extreme heat. Several studies have indicated that these changes are likely to accelerate in the future and cause an adverse impact on the environment. The Eastern Cape Province of South Africa, especially Amathole District Municipality (ADM), has recorded a high number of climate change-related disasters including prolonged drought conditions witnessed during the winter season of 2008, 2009, 2014 and 2015 among others. Consequently, this study aimed at exploring remote sensing information to assess and document drought occurrences in the ADM from 2007 to 2017. To accomplish the aim, the Normalized Difference Vegetation Index, Land Surface Temperature and Precipitation were utilised to access drought spatiotemporal variations. For the analysis, a total of 396 satellite imageries (MODIS and TRMM) were used. The results revealed that different correlations exist between the three variables. The significance of correlations differed from one season to another. Furthermore, it was revealed that the drought conditions in the district differed in the spatial distribution. The study accurately identified the drought episodes that occurred in the ADM in the years 2008, 2009, 2014, 2015 and 2016. The chosen methodology and variables proved to be suitable for analysing drought conditions offering space and temporal variation dimension, which is vital in monitoring drought events.


Asunto(s)
Sequías , Monitoreo del Ambiente , Cambio Climático , Imágenes Satelitales , Estaciones del Año , Sudáfrica
4.
Front Plant Sci ; 13: 838536, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251108

RESUMEN

Rainfall and temperature are unpredictable factors in Mediterranean environments that result in irregular environmental conditions for crop growth, thus being a critical source of uncertainty for farmers. This study applied divergent single-plant selection for high and low yield within five barley varieties and two Tunisian landraces under semi-arid conditions at an ultra-low density of 1.2 plants/m2 for two consecutive years. Progeny evaluation under dense stands following farmers' practices was conducted in two semi-arid locations in Tunisia during one cropping season and in one location during a second season, totalling three environments. The results revealed significant genotypic effects for all recorded agronomic and physiological traits. No genotype × environment interaction was shown for biological yield, implying a biomass buffering capacity for selected lines under different environmental conditions. However, genotype × environment interaction was present in terms of grain yield since plasticity for biomass production under drought stress conditions was not translated directly to yield compensation for some of the lines. Nevertheless, several lines selected for high yield were identified to surpass their source material and best checks in each environment, while one line (IH4-4) outperformed consistently by 62.99% on average, in terms of grain yield, the best check across all environments. In addition, improved agronomic performance under drought conditions induced an indirect effect on some grain quality traits. Most of the lines selected for high yield maintained or even improved their grain protein content in comparison to their source material (average increase by 2.33%). On the other hand, most of the lines selected for low yield indicated a poor agronomic performance, further confirming the coherence between selection under ultra-low density and performance under dense stand.

5.
Front Genet ; 13: 874397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669192

RESUMEN

Calcium-dependent protein kinases (CDPKs) are a class of serine/threonine protein kinases encoded by several gene families that play key roles in stress response and plant growth and development. In this study, the BLAST method was used to search for protein sequences of the potato Calcium-dependent protein kinase gene family. The chromosome location, phylogeny, gene structures, gene duplication, cis-acting elements, protein-protein interaction, and expression profiles were analyzed. Twenty-five CDPK genes in the potato genome were identified based on RNA-seq data and were clustered into four groups (I-IV) based on their structural features and phylogenetic analysis. The result showed the composition of the promoter region of the StCDPKs gene, including light-responsive elements such as Box4, hormone-responsive elements such as ABRE, and stress-responsive elements such as MBS. Four pairs of segmental duplications were found in StCDPKs genes and the Ka/Ks ratios were below 1, indicating a purifying selection of the genes. The protein-protein interaction network revealed defense-related proteins such as; respiratory burst oxidase homologs (RBOHs) interacting with potato CDPKs. Transcript abundance was measured via RT-PCR between the two cultivars and their relative expression of CDPK genes was analyzed after 15, 20, and 25 days of drought. There were varied expression patterns of StCDPK3/13/21 and 23, between the two potato cultivars under mannitol induced-drought conditions. Correlation analysis showed that StCDPK21/22 and StCDPK3 may be the major differentially expressed genes involved in the regulation of malondialdehyde (MDA) and proline content in response to drought stress, opening a new research direction for genetic improvement of drought resistance in potato.

6.
Oecologia ; 77(3): 289-295, 1988 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28311939

RESUMEN

The response of leaf gas exchange to environmental variables were measured at different levels of drought stress for Agropyron desertorum, a naturalized perennial bunchgrass of the semiarid shrub steppes of western North America. Leaf conductance (stomatal plus boundary layer) was more sensitive to changes in water vapor gradient than to changes in leaf temperature. Assimilation was sensitive to both temperature and vapor gradient, and also appeared to be affected by conductance and high transpiration rates. The magnitudes of both assimilation and conductance decreased with increased drought conditions. Diurnal patterns of gas exchange were measured during 3 growing seasons. For a typical spring day with moderate leaf temperature and vapor gradient, diurnal patterns were similar for plants at different levels of soil water availability. Assimilation was relatively constant during most of the day, but conductance decreased during the afternoon. Total daily carbon gain was decreased to a lesser extent than daily water loss as soil water was depleted. Consequently, the ratio of daily carbon gain to daily water loss, i.e. daily water use efficiency, increased with decreased soil water content for diurnals under spring conditions. Diurnal patterns of assimilation for a typical summer day with high leaf temperature and vapor gradient differend from those for a spring day. An afternoon decrease in assimilation was typical during a summer day. Daily carbon gain, water use, and water use efficiency for summer diurnals decreased only under severe drought conditions. Almost complete recovery of assimilation and conductance occurred if leaf microclimate was ameliorated during the afternoon of either spring or summer diurnals. Thus, conditions responsible for a midday depression in assimilation during a single day did not have persistent effects on leaf gas exchange. Daily carbon gain of a typical summer day was restricted by leaf microclimate during the afternoon, but daily water use efficiency was not relatively increased by the amelioration of leaf microclimate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA