Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(12): e2118675119, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35286210

RESUMEN

SignificanceBased on the analysis of three thermodynamic parameters of various M-S systems (solubility of metal sulfides [MxSy] in aqueous solution, volume change of the metal-sulfur [M-S] battery system, and the potential of S/MxSy cathode redox couple), an aqueous Pb-S battery operated by synergistic dual conversion reactions (cathode: S⇄PbS, anode: Pb2+⇄PbO2) has been officially reported. Benefitting from the inherent insolubility of PbS and a conversion-type counter electrode, the aqueous Pb-S battery exhibited two advantages: it is shuttle effect free and has a dendrite-free nature. Moreover, the practical value of the Pb-S battery was further certified by the prototype S|Pb(NO3)2ǁZn(NO3)2|Zn hybrid cell, which afforded an energy density of 930.9 Wh kg-1sulfur.

2.
Small ; 20(26): e2310475, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38229534

RESUMEN

Zinc-iodine batteries (Zn-I2) are extremely attractive as the safe and cost-effective scalable energy storage system in the stationary applications. However, the inefficient redox kinetics and "shuttling effect" of iodine species result in unsatisfactory energy efficiency and short cycle life, hindering their commercialization. In this work, Ni single atoms highly dispersed on carbon fibers is designed and synthesized as iodine anchoring sites and dual catalysts for Zn-I2 batteries, and successfully inhibit the iodine species shuttling and boost dual reaction kinetics. Theoretical calculations indicate that the reinforced d-p orbital hybridization and charge interaction between Ni single-atoms and iodine species effectively enhance the confinement of iodine species. Ni single-atoms also accelerate the iodine conversion reactions with tailored bonding structure of I─I bonds and reduced energy barrier for the dual conversion of iodine species. Consequently, the high-rate performance (180 mAh g-1 at 3 A g-1), cycling stability (capacity retention of 74% after 5900 cycles) and high energy efficiency (90% at 3 A g-1) are achieved. The work provides an effective strategy for the development of iodine hosts with high catalytic activity for Zn-I2 batteries.

3.
Glob Chall ; 3(5): 1800077, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31565374

RESUMEN

Materials for simultaneous photoelectric and thermo-electric dual conversions and modulations, where photon can modulate the thermoelectric conversion, and temperature can modulate the photoelectric conversion, may find potential applications where light (including a laser) can remotely turn on, turn off, or modulate a thermoelectric generator, a cooler, or a temperature sensor, and vice versa, temperature (heating/cooling) can turn on, turn off, or modulate a photoelectric device such as a photo detector or a solar cell. Here, it is demonstrated that such simultaneous dual conversion or modulation can be achieved via a ternary composite, e.g., a poly-3-hexyl-thiophene thin-film doped with both phenyl-C61-butyric acid methyl ester and iodine. This finding may result in the development of lightweight, flexible shape, cost-effective, renewable, environmentally friendly, biocompatible, and scalable materials, devices, and systems for clean energy harvestings (such as solar and waste heat dual energy harvesting) as well as light/heat dual-sensing sensors, modulators, and controllers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA