RESUMEN
A recent advance in the study of emergent magnetic monopoles was the discovery that monopole motion is restricted to dynamical fractal trajectories [J. N. Hallén et al., Science 378, 1218 (2022)], thus explaining the characteristics of magnetic monopole noise spectra [R. Dusad et al., Nature 571, 234 (2019); A. M. Samarakoon et al., Proc. Natl. Acad. Sci. U.S.A. 119, e2117453119 (2022)]. Here, we apply this novel theory to explore the dynamics of field-driven monopole currents, finding them composed of two quite distinct transport processes: initially swift fractal rearrangements of local monopole configurations followed by conventional monopole diffusion. This theory also predicts a characteristic frequency dependence of the dissipative loss angle for AC field-driven currents. To explore these novel perspectives on monopole transport, we introduce simultaneous monopole current control and measurement techniques using SQUID-based monopole current sensors. For the canonical material Dy2Ti2O7, we measure [Formula: see text], the time dependence of magnetic flux threading the sample when a net monopole current [Formula: see text] is generated by applying an external magnetic field [Formula: see text] These experiments find a sharp dichotomy of monopole currents, separated by their distinct relaxation time constants before and after t ~[Formula: see text] from monopole current initiation. Application of sinusoidal magnetic fields [Formula: see text] generates oscillating monopole currents whose loss angle [Formula: see text] exhibits a characteristic transition at frequency [Formula: see text] over the same temperature range. Finally, the magnetic noise power is also dichotomic, diminishing sharply after t ~[Formula: see text]. This complex phenomenology represents an unprecedented form of dynamical heterogeneity generated by the interplay of fractionalization and local spin configurational symmetry.
RESUMEN
Dysprosium-modified tungsten oxide/carbon nanofibers (Dy-WO3/PCNFs) are fabricated via electrospinning combined with high-temperature calcination to synthesize a flexible, self-supporting electrode material that does not require a conductive agent or binder. XRD and TEM analyses showed that introducing dysprosium promoted the preferential growth of WO3 crystals along the preponderance crystal planes involved in the electrochemical reaction, enhancing the exposure of the (002) and (200) crystal planes. Furthermore, DFT calculations demonstrated that the incorporation of Dy resulted in enhanced adsorption of Dy-WO3 by PCNFs, with an adsorption energy of -1.21 eV. The Bader charge results indicate a transfer of 1.70 |e| from PCNFs to Dy-WO3. DFT calculations demonstrate that strong adsorption facilitates charge adsorption/desorption, which contributes to charge transfer and enhances storage capacity. The prepared Dy-WO3/PCNFs exhibited a high specific capacitance (557.28 F g-1 at 0.5 A g-1). Supercapacitors assembled with Dy-WO3/PCNFs as the positive electrode and CNFs as the negative electrode have high energy density (29.8 Wh kg-1 at a power density of 363.48 W kg-1). This study demonstrates the successful synthesis of Dy-WO3/PCNFs with exceptional electrochemical properties and offers significant insights into the design and application of flexible electrodes by incorporating dysprosium to modulate the crystal surface of WO3.
RESUMEN
We report the synthesis, structures and magnetic behaviour of two isostructural dinuclear Dy3+ complexes where the metal ions of a previously reported monomeric building block are connected by a peroxide (O22-) or a pair of fluoride (2 x F-) bridges. The nature of the bridge determines the distance between the metal ion dipoles leading to a dipolar coupling in the peroxido bridged compound of only ca. 70% of that in the bis-fluorido bridged dimer. The sign of the overall coupling between the metals is antiferromagnetic for the peroxido bridged compound and ferromagnetic for the bis-fluorido bridged complex. This in turn influences the magnetisation dynamics. We compare the relaxation characteristics of the dimers with those of the previously reported monomeric building block. The relaxation dynamics for the bis-fluorido system are very fast. On the other hand, comparing the properties of the monomer, the peroxido bridged sample and the corresponding Y-doped sample show that the relaxation properties via a Raman process have very similar parameters. We show that a second dysprosium is important for either tuning or detuning the Single Molecule Magnet (SMM) properties of a system.
RESUMEN
We have prepared and characterized three coordination polymers formulated as [Dy2(C6O4Cl2)3(fma)6] â 4.5fma (1) and [Dy2(C6O4X2)3(fma)6] â 4fma â 2H2O with X=Br (2) and Cl (3), where fma=formamide and C6O4X2 2-=3,6-disubstituted-2,5-dihydroxy-1,4-benzoquinone dianion with X=Cl (chloranilato) and Br (bromanilato). Compounds 1 and 3 are solvates obtained with slow and fast precipitation methods, respectively. Compounds 2 and 3 are isostructural and only differ in the X group of the anilato ligand. The three compounds present (6,3)-gon two-dimensional hexagonal honey-comb structures. Magnetic measurements indicate that the three compounds show slow relaxation of the magnetization at low temperatures when a continuous magnetic field is applied, although with different relaxation times and energy barriers depending on X and the crystallisation molecules. Compounds 1-3 represent the first examples of anilato-based lattices with formamide and field-induced slow relaxation of the magnetization.
RESUMEN
The present paper reports synthesis of five Dy(III) complexes with bidentate ligand (3-benzylidene-2,4-pentanedione) and auxiliary ligands i.e. 2,2'-bipyridyl (bipy), 4,4'-dimethyl-2,2'-bipyridyl (dmbipy), neocuproine (neo) and 1,10-phenanthroline (phen). The structural and photometric parameters of the complexes were investigated through 1H NMR, energy dispersive X-ray analysis, Fourier transform infrared, photoluminescence and ultra-violet visible spectroscopy. The optical energy gap values validated their role in semiconducting devices. These complexes exhibit suitable thermal stability revealing their utility in fabrication of white OLEDs. The emission profile of Dy(III) complexes displayed peaks at 575 nm (yellow emission) and 484 nm (blue emission) accredited to 4F9/2â4H13/2,15/2 transitions of dysprosium ion. The decay curve exhibit monoexponential behaviour suggesting the existence of one luminescent centre in dysprosium complexes. Moreover, their CCT and CIE coordinates value authenticate them as cool white light emitting complexes.
RESUMEN
Hexaazamacrocyclic Schiff bases have been extensively combined with lanthanoid (Ln) ions to obtain complexes with a highly axial geometry. However, the use of flexible hexaazatetraamine macrocycles containing two pyridines and acyclic spacers is rather uncommon. Accordingly, we obtained [DyL(OAc)2]OAc·7H2O·EtOH and [DyLMe2(Cl)2]Cl·2H2O, where L and LMe2 are the 18-membered macrocycles 3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane and 3,10-dimethyl-3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane, respectively, which contain ethylene and methylethylene spacers between their N3 moieties. [DyL(OAc)2]OAc·7H2O·EtOH represents the first crystallographically characterized lanthanoid complex of L, while [DyLMe2(Cl)2]Cl·2H2O contributes to increasing the scarce number of LnIII compounds containing LMe2. Furthermore, the crystal structure of L·12H2O was solved, and it was compared with those of other related macrocycles previously published. Likewise, the crystal structures of the DyIII complexes were compared with those of the lanthanoid and d-metal complexes of other 18-membered N6 donor macrocycles. This comparison showed some effect of the spacers employed, as well as the influence of the size of the ancillary ligands and the metal ion. Additionally, the distinct folding behaviors of these macrocycles influenced their coordination geometries. Moreover, the luminescent properties of [DyL(OAc)2]OAc·7H2O·EtOH and [DyLMe2(Cl)2]Cl·2H2O were also investigated, showing that both complexes are fluorescent, with the emission being sensitized by the ligands.
Asunto(s)
Complejos de Coordinación , Compuestos Macrocíclicos , Compuestos Macrocíclicos/química , Ligandos , Complejos de Coordinación/química , Elementos de la Serie de los Lantanoides/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura MolecularRESUMEN
A Dy(III) coordination polymer (CP), [Dy(spasds)(H2O)2]n (1) (Na2Hspasds = 5-(4-sulfophenylazo)salicylic disodium salt), has been synthesized using a hydrothermal method and characterized. 1 features a 2D layered structure, where the spasda3- anions act as pentadentate ligands, adopting carboxylate, sulfonate and phenolate groups to bridge with four Dy centers in η3-µ1: µ2, η2-µ1: µ1, and monodentate coordination modes, respectively. It possesses a unique (4,4)-connected net with a Schläfli symbol of {44·62}{4}2. The luminescence study revealed that 1 exhibited a broad fluorescent emission band at 392 nm. Moreover, the visual blue color has been confirmed by the CIE plot. 1 can serve as a dual-functional luminescent sensor toward Fe3+ and MnO4- through the luminescence quenching effect, with limits of detection (LODs) of 9.30 × 10-7 and 1.19 × 10-6 M, respectively. The LODs are relatively low in comparison with those of the reported CP-based sensors for Fe3+ and MnO4-. In addition, 1 also has high selectivity and remarkable anti-interference ability, as well as good recyclability for at least five cycles. Furthermore, the potential application of the sensor for the detection of Fe3+ and MnO4- was studied through simulated wastewater samples with different concentrations. The possible sensing mechanisms were investigated using Ultraviolet-Visible (UV-Vis) absorption spectroscopy and density functional theory (DFT) calculations. The results revealed that the luminescence turn-off effects toward Fe3+ and MnO4- were caused by competitive absorption and photoinduced electron transfer (PET), and competitive absorption and inner filter effect (IFE), respectively.
RESUMEN
1H-NMR spectroscopy of lanthanide complexes is a powerful tool for deriving spectral-structural correlations, which provide a clear link between the symmetry of the coordination environment of paramagnetic metal centers and their magnetic properties. In this work, we have first synthesized a series of homo- (M = M* = Dy) and heteronuclear (M ≠ M* = Dy/Y and Dy/Tb) triple-decker complexes [(BuO)8Pc]M[(BuO)8Pc]M*[(15C5)4Pc], where BuO- and 15C5- are, respectively, butoxy and 15-crown-5 substituents on phthalocyanine (Pc) ligands. We provide an algorithmic approach to assigning the 1H-NMR spectra of these complexes and extracting the axial component of the magnetic susceptibility tensor, χax. We show how this term is related to the nature of the lanthanide ion and the shape of its coordination polyhedron, providing an experimental basis for further theoretical interpretation of the revealed correlations.
RESUMEN
A new rare-earth reduction system is described in which trivalent yttrium and dysprosium react as though present in their unstable divalent oxidation state. This masked divalent reactivity is achieved using the isocarbonyl-bridged dimers [(Cpttt2M)(µ-Fp)]2 (M = Y, 1Y; M = Dy, 1Dy; Cpttt = 1,2,4-C5tBu3H2; Fp = CpFe(CO)2), where the reducing electrons originate from the bridging [Fp]- ligands. The reactivity of 1Y and 1Dy is showcased by reducing the N-heterocycles 2,2'-bipyridyl (bipy), phenazine (phnz) and hexaazatrinaphthylene (HAN) to give corresponding mono-, di- and tri-metallic rare-earth complexes, respectively, with the heterocyclic ligands present in their singly, doubly and triply reduced forms, respectively. The dynamic magnetic properties of the dysprosium compounds are described. Compound 1Dy is a single-molecule magnet (SMM) with an appreciable energy barrier of 449(17) cm-1, whereas [(Cpttt2Dy)2(m-phnz)] (3Dy) is not an SMM because of a strong, competing equatorial crystal field. Surprisingly, [(Cpttt2Dy)3(HAN)] (4Dy) is also not an SMM, the origins of which are traced to the impact of the tert-butyl substituents on the dysprosium centre and its interaction with the radical [HAN]3- ligand.
RESUMEN
The extreme sensitivity of trivalent lanthanide ions to crystal field variations led to the emergence of single-molecule magnetic switching under various stimuli. The use of pressure as an external stimulus instead of classic light irradiation, oxidation or any chemical reactions allows a fine tuning of the magnetic modulation. Here the well-known pure isotopically enriched [162 Dy(tta)3 (L)]â C6 H14 (162 Dy) Single-Molecule Magnet (SMM) (tta- =2-2-thenoyltrifluoroacetonate and L=4,5-bis(propylthio)-tetrathiafulvalene-2-(2-pyridyl)benzimidazole-methyl-2-pyridine) was experimentally investigated by single-crystal diffraction and squid magnetometry under high applied pressures. Both reversible piezochromic properties and pressure modulation of the slow magnetic relaxation behavior were demonstrated and supported by ab initio calculations. The magnetic study of the diluted sample [162 Dy0.05 Y0.95 (tta)3 (L)]â C6 H14 (162 Dy@Y) indicated that variations in the electronic structure have mainly intermolecular origin with weak intramolecular contribution. Quantitative magnetic interpretation concludes to a deterioration of the Orbach process for the benefit of both Raman and QTM mechanisms under applied pressure.
Asunto(s)
Compuestos Heterocíclicos , Imanes , Disprosio , Fenómenos MagnéticosRESUMEN
Using a novel tricompartmental hydrazone ligand, a set of trinuclear Dy3 complexes has been isolated and structurally characterized. Complexes Dy3 â Cl, Dy3 â Br, and Dy3 â ClO4 feature a similar overall topology but different anions (Cl- , Br- , or ClO4 - ) in combination with exogenous OH- and solvent co-ligands, which is found to translate into very different magnetic properties. Complex Dy3 â Cl shows a double relaxation process with fast quantum tunneling of the magnetization, probably related to the structural disorder of µ2 -OH- and µ2 -Cl- co-ligands. Relaxation of the magnetization is slowed down for Dy3 â Br and Dy3 â ClO4 , which do not show any structural disorder. In particular, fast quantum tunneling is suppressed in case of Dy3 â ClO4 , resulting in an energy barrier of 341â K and magnetic hysteresis up to 3.5â K; this makes Dy3 â ClO4 one of the most robust air-stable trinuclear SMMs. Magneto-structural relationships of the three complexes are analyzed and rationalized with the help of CASSCF/RASSI-SO calculations.
RESUMEN
Tuning the bridging fashion of anilato ligand in dinuclear DyIII complexes, reveals a sizable effect on the slow relaxation of magnetization. Combined experimental and theoretical studies divulge that the geometry with high order axial symmetry (pseudo square antiprism) reduces the transverse crystal fields corresponding to QTM (quantum tunneling of magnetization) resulting in a significant increase in energy barrier (Ueff =518â cm-1 ) through the Orbach relaxation process whereas the geometry with lower symmetry (triangular dodecahedron, pseudo D2d ) enhances the transverse crystal fields that accelerate the ground state QTM process. Notably, the value 518â cm-1 represents the highest energy barrier among anilato ligand based SMMs.
RESUMEN
Two dichloride-bridged dinuclear dysprosium(III) complexes based on salen ligands, namely, [Dy(L1 )(µ-Cl)(thf)]2 (1; H2 L1 =N,N'-bis(3,5-di-tert-butylsalicylidene)phenylenediamine) and [Dy2 (L2 )2 (µ-Cl)2 (thf)2 ]2 (2; H2 L2 =N,N'-bis(3,5-di-tert-butylsalicylidene)ethylenediamine) are reported. These two complexes have two short Dy-O(PhO) bonds that exhibit angles of â¼90° for 1 and â¼143° for 2, leading to clear slow relaxation of the magnetization for 2 and not for 1. Compound 2 has a near-identical core to the recently reported compound [Dy2 (L3 )2 (µ-Cl)2 (thf)2 ] (3; H2 L3 =N-(2-pyridylmethyl)-N,N-bis(2'-hydroxy-3',5'-di-tert-butylbenzyl)amine). The only substantial difference is the relative angle of the two O(PhO) -Dy-O(PhO) vectors, which is collinear in 2 owing to inversion symmetry and â¼68° in 3 due to a molecular C2 axis. It is shown that this subtle structural difference leads to large differences in the dipolar ground states, giving rise to open magnetic hysteresis for 3 and not for 2.
RESUMEN
Cyano-bridged 4d-4f molecular nanomagnets have re-called increasing research interests in molecular magnetism since they offer more possibilities in achieving novel nanomagnets with versatile structures and magnetic interactions. In this work, four ß-diketone ligands bearing different substitution N-sites were designed and synthesized, namely 1-(2-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL1 ), 1,3-Bis (3-pyridyl)-1,3-propanedione (HL2 ), 1-(4-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL3 ), and 1,3-Bis (4-pyridyl)-1,3-propanedione (HL4 ), to tune the magnetic relaxation behaviors of cyano-bridged {DyIII MoV } systems. By reacting with DyCl3 â 6H2 O and K4 Mo(CN)8 â 2H2 O, four cyano-bridged complexes, namely {[Dy[MoV (CN)8 ](HL1 )2 (H2 O)3 ]} â 6H2 O (1), {[Dy[MoV (CN)8 ](HL2 )(H2 O)3 (CH3 OH)]}2 â 2CH3 OH â 3H2 O (2), {[Dy[MoV (CN)8 ](HL3 )(H2 O)2 (CH3 OH)] â H2 O}n (3), and {[Dy[MoV (CN)8 ](HL4 )2 (H2 O)3 ]} â 2H2 Oâ CH3 OH (4) were obtained. Structural analyses revealed that 1 and 4 are binuclear complexes, 2 has a tetragonal structure, and 3 exhibits a stair-like polymer chain structure. The DyIII ions in all complexes have eight-coordinated configurations with the coordination spheres DyO7 N1 for 1 and 4, DyO6 N2 for 2, and DyO5 N3 for 3. Magnetic measurements indicate that 1 is a zero-field single-molecule magnet (SMM) and complexes 2-4 are field-induced SMMs, with complex 4 featuring a two-step relaxation process. The magnetic characterizations and ab initio calculations revealed that changing the N-sites in the ß-diketone ligands can effectively alter the structures and magnetic properties of cyano-bridged 4d-4f nanomagnets by adjusting the coordination environments of the DyIII centers.
RESUMEN
Some key low-carbon technologies, ranging from wind turbines to electric vehicles, are underpinned by the strong rare-earth-based permanent magnets of the Nd, Pr (Dy)-Fe-Nb type (NdFeB). These NdFeB magnets, which are sensitive to demagnetization with temperature elevation (the Curie point), require the addition of variable amounts of dysprosium (Dy), where an elevation of the Curie point is needed to meet operational conditions. Given that China is the world's largest REE supplier with abundant REE reserves, the impact of an ambitious 1.5 °C climate target on China's Dy supply chain has sparked widespread concern. Here, we explore future trends and innovation strategies associated with the linkage between Dy and NdFeBs under various climate scenarios in China. We find China alone is expected to exhaust the global present Dy reserve within the next 2-3 decades to facilitate the 1.5 °C climate target. By implementing global available innovation strategies, such as material substitution, reduction, and recycling, it is possible to avoid 48%-68% of China's cumulative demand for Dy. Nevertheless, ongoing efforts in REE exploration and production are still required to meet China's growing Dy demand, which will face competition from the United States, European Union, and other countries with ambitious climate targets. Thus, our analysis urges China and those nations to form wider cooperation in REE supply chains as well as in NdFeB innovation for the realization of a global climate-safe future.
Asunto(s)
Disprosio , Metales de Tierras Raras , Clima , Imanes , ChinaRESUMEN
Dysprosium (Dy) is increasingly being adopted in various clean energy products around the world, intriguing many nations' interests in its availability. However, since data are inaccessible, crucial information about Dy supplies and demands across products and countries remains incomplete. To fill these knowledge gaps, we performed a dynamic bottom-up material flow analysis of Dy, taking the United States (1987-2018) as a case. The results show that the United States (US) domestic demands experienced a growing trend (by 45-fold) with fluctuation and several shifts among applications, primarily owing to technological advancement. A large imbalance (80 times) exists between domestic mineral supplies and market demands, resulting in significant import dependency, with the net import reliance of alloys, chemicals, finished products, and concentrates being 97, 44, 40, and 31%, respectively. Dy is mainly imported as finished products (55.7%) and alloys (43.2%), with concentrates (0.4%) and chemicals (0.7%) accounting for less than 2%. This import dependency may result from fragmentation of the US supply chains because of the stricter environmental regulations on upstream industries and reshoring of the downstream industries. These findings suggest that rare-earth mineral production in the US is about to restart, and it is important for industries to seek international collaboration to boost product competition.
Asunto(s)
Disprosio , Metales de Tierras Raras , Estados Unidos , Industrias , Aleaciones , MineralesRESUMEN
The interest for chiral tris(ß-diketonato)lanthanide complexes in coordination chemistry is huge due to its Lewis acid character, optical activity, and the control of the final compound architecture. The reaction of equimolar quantities of [Dy((-)/(+)hfc)3 (H2 O)] (hfc- = 3-(heptafluoropropylhydroxymethylene)-(+/-)-camphorate) and L led to the formation of a pair of enantiomers for dinuclear complexes [Dy((-)/(+)hfc)3 (L)]2 â C7 H16 ([(-)/(+)1]â C7 H16 ) (L = 4'-(4'''-pyridyl-N-oxide)-1,2':6'1''-bis-(pyrazolyl)pyridine]). Starting from the previous experimental protocol with the addition of bulky BArF anions, a partial dissociation of the chiral [Dy((-)/(+)hfc)3 (H2 O)] was observed leading to the isolation of a mono-dimensional cationic chiral polymer {[Dy((-)/(+)hfc)2 (L)][BarF]}n â nCH3 NO2 ([(-)/(+)2]n â nCH3 NO2 ). Natural circular dichroism (NCD) highlighted an exciton CD couplet for [(-)/(+)2]n but not for (-)/(+)1. The latter behaves as a single-molecule magnet (SMM) with a blocking temperature up to 4 K, whereas [(-)/(+)2]n is a 1D assembly of field-induced SMMs with a magnetic relaxation occurring through a Raman process only.
RESUMEN
Using the melt quenching technique, a lithium zinc borate glass (LZB) system with trivalent dysprosium ions (Dy3+ ) was synthesized, and the luminescence and lasing properties of these materials were examined for the generation of white light. Structural investigation through X-ray diffraction revealed that the prepared glass had an amorphous nature. The optimized glass containing 0.5 Dy3+ had a direct optical band gap of 2.782 eV and an indirect optical band gap of 3.110 eV. A strong excitation band at 386 nm (6 H15/2 â4 I13/2 ) was recognized in the ultraviolet (UV) light region of its excitation spectrum. Emission bands could be seen in the photoluminescence spectrum at 659, 573, and 480 nm under the 386 nm excitation. These transitions of emission resembled electronic transitions such as (4 F9/2 â6 H11/2 ), (4 F9/2 â6 H13/2 ), and (4 F9/2 â6 H15/2 ). In a pristine glass matrix, the higher intensity ratio of yellow to blue can result in the production of white light. The optimized Dy3+ ion concentration was observed to be 0.5 mol%. In addition, an analysis of lifetime decay was conducted for all synthesized glasses, and their decay trends were systematically investigated. Noticeably, we assessed the photometric parameters and found that they were close to the white light standard. Furthermore, a cytotoxicity study was carried out using lung fibroblast (WI-38) cell lines for the optimized 0.5Dy3+ -doped LZB glass and it appeared to be noncytotoxic. It is clear from the results that the noncytotoxic LZB glass doped with 0.5 Dy3+ ions could be a suggestive choice for the manufacture of white light-emitting diodes and lasers using near-UVs.
Asunto(s)
Luz , Luminiscencia , Rayos Ultravioleta , Mediciones Luminiscentes , IonesRESUMEN
The current study focuses on the synthesis via combustion of dysprosium-doped cobalt ferrites that were subsequently physicochemically analyzed in terms of morphological and magnetic properties. Three types of doped nanoparticles were prepared containing different Dy substitutions and coated with HPGCD for higher dispersion properties and biocompatibility, and were later submitted to biological tests in order to reveal their potential anticancer utility. Experimental data obtained through FTIR, XRD, SEM and TEM confirmed the inclusion of Dy3+ ions in the nanoparticles' structure. The size of the newly formed nanoparticles ranged between 20 and 50 nm revealing an inverse proportional relationship with the Dy content. Magnetic studies conducted by VSM indicated a decrease in remanent and saturation mass magnetization, respectively, in Dy-doped nanoparticles in a direct proportionality with the Dy content; the decrease was further amplified by cyclodextrin complexation. Biological assessment in the presence/absence of red light revealed a significant cytotoxic activity in melanoma (A375) and breast (MCF-7) cancer cells, while healthy keratinocytes (HaCaT) remained generally unaffected, thus revealing adequate selectivity. The investigation of the underlying cytotoxic molecular mechanism revealed an apoptotic process as indicated by nuclear fragmentation and shrinkage, as well as by Western blot analysis of caspase 9, p53 and cyclin D1 proteins. The anticancer activity for all doped Co ferrites varied was in a direct correlation to their Dy content but without being affected by the red light irradiation.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Melanoma , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Células MCF-7 , Nanopartículas/química , Luz , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Melanoma/tratamiento farmacológicoRESUMEN
In the present work, superparamagnetic adsorbents based on 3-aminopropyltrimethoxy silane (APTMS)-coated maghemite (γFe2O3@SiO2-NH2) and cobalt ferrite (CoFe2O4@SiO2-NH2) nanoparticles were prepared and characterized using transmission-electron microscopy (TEM/HRTEM/EDXS), Fourier-transform infrared spectroscopy (FTIR), specific surface-area measurements (BET), zeta potential (ζ) measurements, thermogravimetric analysis (TGA), and magnetometry (VSM). The adsorption of Dy3+, Tb3+, and Hg2+ ions onto adsorbent surfaces in model salt solutions was tested. The adsorption was evaluated in terms of adsorption efficiency (%), adsorption capacity (mg/g), and desorption efficiency (%) based on the results of inductively coupled plasma optical emission spectrometry (ICP-OES). Both adsorbents, γFe2O3@SiO2-NH2 and CoFe2O4@SiO2-NH2, showed high adsorption efficiency toward Dy3+, Tb3+, and Hg2+ ions, ranging from 83% to 98%, while the adsorption capacity reached the following values of Dy3+, Tb3+, and Hg2+, in descending order: Tb (4.7 mg/g) > Dy (4.0 mg/g) > Hg (2.1 mg/g) for γFe2O3@SiO2-NH2; and Tb (6.2 mg/g) > Dy (4.7 mg/g) > Hg (1.2 mg/g) for CoFe2O4@SiO2-NH2. The results of the desorption with 100% of the desorbed Dy3+, Tb3+, and Hg2+ ions in an acidic medium indicated the reusability of both adsorbents. A cytotoxicity assessment of the adsorbents on human-skeletal-muscle derived cells (SKMDCs), human fibroblasts, murine macrophage cells (RAW264.7), and human-umbilical-vein endothelial cells (HUVECs) was conducted. The survival, mortality, and hatching percentages of zebrafish embryos were monitored. All the nanoparticles showed no toxicity in the zebrafish embryos until 96 hpf, even at a high concentration of 500 mg/L.