Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.316
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(9): e2316580121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377204

RESUMEN

Achieving high-performance materials with superior mechanical properties and electrical conductivity, especially in large-sized bulk forms, has always been the goal. However, it remains a grand challenge due to the inherent trade-off between these properties. Herein, by employing nanodiamonds as precursors, centimeter-sized diamond/graphene composites were synthesized under moderate pressure and temperature conditions (12 GPa and 1,300 to 1,500 °C), and the composites consisted of ultrafine diamond grains and few-layer graphene domains interconnected through covalently bonded interfaces. The composites exhibit a remarkable electrical conductivity of 2.0 × 104 S m-1 at room temperature, a Vickers hardness of up to ~55.8 GPa, and a toughness of 10.8 to 19.8 MPa m1/2. Theoretical calculations indicate that the transformation energy barrier for the graphitization of diamond surface is lower than that for diamond growth directly from conventional sp2 carbon materials, allowing the synthesis of such diamond composites under mild conditions. The above results pave the way for realizing large-sized diamond-based materials with ultrahigh electrical conductivity and superior mechanical properties simultaneously under moderate synthesis conditions, which will facilitate their large-scale applications in a variety of fields.

2.
Proc Natl Acad Sci U S A ; 121(34): e2403000121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39136982

RESUMEN

Electron transport in complex fluids, biology, and soft matter is a valuable characteristic in processes ranging from redox reactions to electrochemical energy storage. These processes often employ conductor-insulator composites in which electron transport properties are fundamentally linked to the microstructure and dynamics of the conductive phase. While microstructure and dynamics are well recognized as key determinants of the electrical properties, a unified description of their effect has yet to be determined, especially under flowing conditions. In this work, the conductivity and shear viscosity are measured for conductive colloidal suspensions to build a unified description by exploiting both recent quantification of the effect of flow-induced dynamics on electron transport and well-established relationships between electrical properties, microstructure, and flow. These model suspensions consist of conductive carbon black (CB) particles dispersed in fluids of varying viscosities and dielectric constants. In a stable, well-characterized shear rate regime where all suspensions undergo self-similar agglomerate breakup, competing relationships between conductivity and shear rate were observed. To account for the role of variable agglomerate size, equivalent microstructural states were identified using a dimensionless fluid Mason number, [Formula: see text], which allowed for isolation of the role of dynamics on the flow-induced electron transport rate. At equivalent microstructural states, shear-enhanced particle-particle collisions are found to dominate the electron transport rate. This work rationalizes seemingly contradictory experimental observations in literature concerning the shear-dependent electrical properties of CB suspensions and can be extended to other flowing composite systems.

3.
Circ Res ; 133(8): 658-673, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37681314

RESUMEN

BACKGROUND: Cardiac conduction is understood to occur through gap junctions. Recent evidence supports ephaptic coupling as another mechanism of electrical communication in the heart. Conduction via gap junctions predicts a direct relationship between conduction velocity (CV) and bulk extracellular resistance. By contrast, ephaptic theory is premised on the existence of a biphasic relationship between CV and the volume of specialized extracellular clefts within intercalated discs such as the perinexus. Our objective was to determine the relationship between ventricular CV and structural changes to micro- and nanoscale extracellular spaces. METHODS: Conduction and Cx43 (connexin43) protein expression were quantified from optically mapped guinea pig whole-heart preparations perfused with the osmotic agents albumin, mannitol, dextran 70 kDa, or dextran 2 MDa. Peak sodium current was quantified in isolated guinea pig ventricular myocytes. Extracellular resistance was quantified by impedance spectroscopy. Intercellular communication was assessed in a heterologous expression system with fluorescence recovery after photobleaching. Perinexal width was quantified from transmission electron micrographs. RESULTS: CV primarily in the transverse direction of propagation was significantly reduced by mannitol and increased by albumin and both dextrans. The combination of albumin and dextran 70 kDa decreased CV relative to albumin alone. Extracellular resistance was reduced by mannitol, unchanged by albumin, and increased by both dextrans. Cx43 expression and conductance and peak sodium currents were not significantly altered by the osmotic agents. In response to osmotic agents, perinexal width, in order of narrowest to widest, was albumin with dextran 70 kDa; albumin or dextran 2 MDa; dextran 70 kDa or no osmotic agent, and mannitol. When compared in the same order, CV was biphasically related to perinexal width. CONCLUSIONS: Cardiac conduction does not correlate with extracellular resistance but is biphasically related to perinexal separation, providing evidence that the relationship between CV and extracellular volume is determined by ephaptic mechanisms under conditions of normal gap junctional coupling.


Asunto(s)
Conexina 43 , Dextranos , Animales , Cobayas , Dextranos/metabolismo , Conexina 43/metabolismo , Miocitos Cardíacos/metabolismo , Sodio/metabolismo , Uniones Comunicantes/metabolismo , Albúminas/metabolismo , Manitol/farmacología , Manitol/metabolismo , Potenciales de Acción
4.
BMC Plant Biol ; 24(1): 59, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38247007

RESUMEN

Applying cold discharge plasma can potentially alter plants' germination characteristics by triggering their physiological activities. As a main crop in many countries, soybean was examined in the present study using cultivars such as Arian, Katoul, Saba, Sari, and Williams in a cold argon plasma. This study has been motivated by the importance of plant production worldwide, considering climate change and the increasing needs of human populations for food. This study was performed to inspect the effect of cold plasma treatment on seed germination and the impact of argon plasma on microbial decontamination was investigated on soybeans. Also, the employed cultivars have not been studied until now the radicals generated from argon were detected by optical emission spectrometry (OES), and a collisional radiative model was used to describe electron density. The germination properties, including final germination percentage (FGP), mean germination time (MGT), root length, and electrical conductivity of biomolecules released from the seeds, were investigated after the plasma treatments for 30, 60, 180, 300, and 420 s. The decontamination effect of the plasma on Aspergillus flavus (A.flavus) and Fusarium solani (F.solani) was also examined. The plasma for 60 s induced a maximum FGP change of 23.12 ± 0.34% and a lowest MGT value of 1.40 ± 0.007 days. Moreover, the ultimate root length was 56.12 ± 2.89%, in the seeds treated for 60 s. The plasma exposure, however, failed to yield a significant enhancement in electrical conductivity, even when the discharge duration was extended to 180 s or longer. Therefore, the plasma duration of 180 s was selected for the blotter technique. Both fungi showed successful sterilization; their infectivity inhibition was 67 ± 4 and 65 ± 3.1%, respectively. In general, the cold plasma used for soybeans in the present study preserved their healthy qualities and reduced the degree of fungal contamination.


Asunto(s)
Glycine max , Gases em Plasma , Humanos , Argón , Descontaminación , Germinación , Gases em Plasma/farmacología
5.
Small ; : e2403241, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984726

RESUMEN

Improving the electrical performance of copper, the most widely used electrical conductor in the world is of vital importance to the progress of key technologies, including electric vehicles, portable devices, renewable energy, and power grids. Copper-graphene composite (CGC) stands out as the most promising candidate for high-performance electrical conductor applications. This can be attributed to the superior properties of graphene fillers embedded in CGC, including excellent electrical and thermal conductivity, corrosion resistance, and high mechanical strength. This review highlights the recent progress of CGC conductors, including their fabrication processes, electrical performances, mechanisms of copper-graphene interplay, and potential applications.

6.
Small ; : e2406701, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308274

RESUMEN

The development of electrically conductive membranes is essential for advancing future technologies like electronic devices, supercapacitors, and batteries. Newly synthesized doubly interpenetrated 3D-Cd-MOF (Metal-Organic-Framework) containing angular tetra-carboxylate is found to display very poor electrical conductivity (10-11 S cm-1). However, it exhibits an exceptional ability to adsorb I2 (I2@Cd-MOF) which shows increased electrical conductivity of the order of 10-8 S cm-1. Following these results, the Cd-MOF is integrated into the PVDF-PVP (Polyvinylidene fluoride-Polyvinylpyrrolidone) polymeric mixed matrix membrane (MMM) and explores their I2 adsorption capabilities and electrical conductivities before and after I2 adsorption. Four polymeric MMMs with the loading of Cd-MOF 0, 20, 40, and 50% are tested for their I2 adsorption ability and their respective electrical conductivities. The 50% Cd-MOF-loaded MMM is found to exhibit higher adsorption of I2 (685 mg g-1) and significant enhancement in conductivity from 10-11 to 10-4 S cm-1. The raise in the electrical conductivity by 10 million times is attributed to the synergistic interactions between I2, Cd-MOF, PVDF, and PVP polymers as well as the increase in the concentration of charge carriers (holes) within the frameworks. This work serves as blueprint for controlling charge transfer in MMM to tune their electrical conductivity which opens a large window for advanced device applications.

7.
Small ; : e2403149, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308290

RESUMEN

MXene-based films have garnered significant attention for their remarkable electrical and mechanical properties. Nevertheless, the practical application of MXene is impeded by its intrinsic instability caused by spontaneous oxidation. The traditional anti-oxidative strategies frequently lead to a compromise in stability, electrical conductivity, and mechanical properties. In this study, a novel approach is proposed involving metal nano-armoring, wherein a copper layer with nano thickness is deposited onto MXene film surfaces to establish a uniform and seamless heterogeneous interface (MXene@Cu). The precise tunability and uniformity of this heterostructure are consistently demonstrated through both theoretical calculations and experimental results. The MXene@Cu films exhibit exceptional electrical conductivity of 1.17 × 106 S m-1, electromagnetic interference shielding effectiveness of 77.1 dB, and tensile strength of 43.4 MPa. More importantly, this heterostructure significantly improves MXene's stability against oxidation. After exposure to air for 30 days, the resultant MXene@Cu films exhibit a remarkable conductivity retention of 72.0%, significantly exceeding that of pristine MXene films (44.3%). This scalable synthesis approach holds significant promise for electronic device applications, particularly in electromagnetic shielding and thermal management.

8.
Small ; : e2404609, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194586

RESUMEN

The intrinsic limitation of low electrical conductivity of MoSe2 resulted in inferior dielectric properties, which restricts its electromagnetic wave absorption (EMWA) performances. Herein, a bimetallic selenide of MoSe2/CoSe2@N-doped carbon (NC) composites with hollow core-branch nanostructures are synthesized via the selenization treatment of MoO3 nanorods coated with ZIF-67. By adjusting the mass ratio of ZIF-67 to MoO3, the electromagnetic parameters and morphologies of composites are finely tuned, further ameliorating the impedance matching and EMWA performances. The involvement of NC improves the electronic conductivity of the composites. The synchronously formed heterostructure not only facilitates charge transfer but also leads to the accumulation and uneven distribution of charges, thus enhancing the conductive loss and polarization loss. The hollow core-branch nanostructure provides abundant conductive networks, heterointerfaces, and voids, significantly enhancing the EMWA property. Density functional theory implies that the heterostructures effectively boost charge transport and change charge distribution, which heightens the conductive loss and polarization loss. As a result, the composites demonstrate a minimum reflection loss value of -53.53 dB at 9.04 GHz, alongside a maximum effective absorption bandwidth of 6.32 GHz. This work offers invaluable insights into novel structural designs for future research and applications.

9.
Small ; : e2403108, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037401

RESUMEN

Interfacial electron transport in multicomponent systems plays a crucial role in controlling electrical conductivity. Organic-inorganic heterostructures electronic devices where all the entities are covalently bonded to each other can reduce interfacial electrical resistance, thus suitable for low-power consumption electronic operations. Programmed heterostructures of covalently bonded interfaces between ITO-ethynylbenzene (EB) and EB-zinc ferrite (ZF) nanoparticles, a programmed structure showing 67 978-fold enhancement of electrical current as compared to pristine NPs-based two terminal devices are created. An electrochemical approach is adopted to prepare nearly π-conjugated EB oligomer films of thickness ≈26 nm on ITO-electrode on which ZF NPs are chemically attached. A "flip-chip" method is employed to combine two EB-ZnFe2O4 NPs-ITO to probe electrical conductivity and charge conduction mechanism. The EB-ZnFe2O4 NPs exhibit strong electronic coupling at ITO-EB and EB-NPs with an energy barrier of 0.13 eV between the ITO Fermi level and the LUMO of EB-ZF NPs for efficient charge transport. Both the DC and AC-based electrical measurements manifest a low resistance at ITO-EB and EB-ZF NPs, revealing enhanced electrical current at ± 1.5 V. The programmed heterostructure devices can meet a strategy to create well-controlled molecular layers for electronic applications toward miniaturized components that shorten charge carrier distance, and interfacial resistance.

10.
Small ; 20(5): e2305501, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37752688

RESUMEN

Recent progress in synthesizing and integrating surface-supported metal-organic frameworks (SURMOFs) has highlighted their potential in developing hybrid electronic devices with exceptional mechanical flexibility, film processability, and cost-effectiveness. However, the low electrical conductivity of SURMOFs has limited their use in devices. To address this, researchers have utilized the porosity of SURMOFs to enhance electrical conductivity by incorporating conductive materials. This study introduces a method to improve the electrical conductivity of HKUST-1 templates by in situ polymerization of conductive polypyrrole (PPy) chains within the SURMOF pores (named as PPy@HKUST-1). Nanomembrane-origami technology is employed for integration, allowing a rolled-up metallic nanomembrane to contact the HKUST-1 films without causing damage. After a 24 h loading period, the electrical conductivity at room temperature reaches approximately 5.10-6 S m-1 . The nanomembrane-based contact enables reliable electrical characterization even at low temperatures. Key parameters of PPy@HKUST-1 films, such as trap barrier height, dielectric constant, and tunneling barrier height, are determined using established conduction mechanisms. These findings represent a significant advancement in real-time control of SURMOF conductivity, opening pathways for innovative electronic-optoelectronic device development. This study demonstrates the potential of SURMOFs to revolutionize hybrid electronic devices by enhancing electrical conductivity through intelligent integration strategies.

11.
Small ; : e2404876, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39072882

RESUMEN

Electromagnetic pollution presents growing challenges due to the rapid expansion of portable electronic and communication systems, necessitating lightweight materials with superior shielding capabilities. While prior studies focused on enhancing electromagnetic interference (EMI) shielding effectiveness (SE), less attention is given to absorption-dominant shielding mechanisms, which mitigate secondary pollution. By leveraging material science and engineering design, a layered structure is developed comprising rGOnR/MXene-PDMS nanocomposite and a MXene film, demonstrating exceptional EMI shielding and ultra-high electromagnetic wave absorption. The 3D interconnected network of the nanocomposite, with lower conductivity (10-3-10-2 S/cm), facilitates a tuned impedance matching layer with effective dielectric permittivity, and high attenuation capability through conduction loss, polarization loss at heterogeneous interfaces, and multiple scattering and reflections. Additionally, the higher conductivity MXene layer exhibits superior SE, reflecting passed electromagnetic waves back to the nanocomposite for further attenuation due to a π/2 phase shift between incident and back-surface reflected electromagnetic waves. The synergistic effect of the layered structures markedly enhances total SE to 54.1 dB over the Ku-band at a 2.5 mm thickness. Furthermore, the study investigates the impact of hybridized layered structure on reducing the minimum required thickness to achieve a peak absorption (A) power of 0.88 at a 2.5 mm thickness.

12.
Magn Reson Med ; 91(6): 2374-2390, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38225861

RESUMEN

PURPOSE: To evaluate the performance of various MR electrical properties tomography (MR-EPT) methods at 3 T in terms of absolute quantification and spatial resolution limit for electrical conductivity. METHODS: Absolute quantification as well as spatial resolution performance were evaluated on homogeneous phantoms and a phantom with holes of different sizes, respectively. Ground-truth conductivities were measured with an open-ended coaxial probe connected to a vector network analyzer (VNA). Four widely used MR-EPT reconstruction methods were investigated: phase-based Helmholtz (PB), phase-based convection-reaction (PB-cr), image-based (IB), and generalized-image-based (GIB). These methods were compared using the same complex images from a 1 mm-isotropic UTE sequence. Alternative transceive phase acquisition sequences were also compared in PB and PB-cr. RESULTS: In large homogeneous phantoms, all methods showed a strong correlation with ground truth conductivities (r > 0.99); however, GIB was the best in terms of accuracy, spatial uniformity, and robustness to boundary artifacts. In the resolution phantom, the normalized root-mean-squared error of all methods grew rapidly (>0.40) when the hole size was below 10 mm, with simplified methods (PB and IB), or below 5 mm, with generalized methods (PB-cr and GIB). CONCLUSION: VNA measurements are essential to assess the accuracy of MR-EPT. In this study, all tested MR-EPT methods correlated strongly with the VNA measurements. The UTE sequence is recommended for MR-EPT, with the GIB method providing good accuracy for structures down to 5 mm. Structures below 5 mm may still be detected in the conductivity maps, but with significantly lower accuracy.


Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Imagen por Resonancia Magnética/métodos , Conductividad Eléctrica , Fantasmas de Imagen , Tomografía/métodos
13.
NMR Biomed ; 37(1): e5039, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37714527

RESUMEN

In this study, we aimed to develop a fast and robust high-resolution technique for clinically feasible electrical properties tomography based on water content maps (wEPT) using Quantitative Transient-state Imaging (QTI), a multiparametric transient state-based method that is similar to MR fingerprinting. Compared with the original wEPT implementation based on standard spin-echo acquisition, QTI provides robust electrical properties quantification towards B1 + inhomogeneities and full quantitative relaxometry data. To validate the proposed approach, 3D QTI data of 12 healthy volunteers were acquired on a 1.5 T scanner. QTI-provided T1 maps were used to compute water content maps of the tissues using an empirical relationship based on literature ex-vivo measurements. Assuming that electrical properties are modulated mainly by tissue water content, the water content maps were used to derive electrical conductivity and relative permittivity maps. The proposed technique was compared with a conventional phase-only Helmholtz EPT (HH-EPT) acquisition both within whole white matter, gray matter, and cerebrospinal fluid masks, and within different white and gray matter subregions. In addition, QTI-based wEPT was retrospectively applied to four multiple sclerosis adolescent and adult patients, compared with conventional contrast-weighted imaging in terms of lesion delineation, and quantitatively assessed by measuring the variation of electrical properties in lesions. Results obtained with the proposed approach agreed well with theoretical predictions and previous in vivo findings in both white and gray matter. The reconstructed maps showed greater anatomical detail and lower variability compared with standard phase-only HH-EPT. The technique can potentially improve delineation of pathology when compared with conventional contrast-weighted imaging and was able to detect significant variations in lesions with respect to normal-appearing tissues. In conclusion, QTI can reliably measure conductivity and relative permittivity of brain tissues within a short scan time, opening the way to the study of electric properties in clinical settings.


Asunto(s)
Imagen por Resonancia Magnética , Agua , Adulto , Humanos , Adolescente , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Tomografía , Tomografía Computarizada por Rayos X , Conductividad Eléctrica , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo
14.
Chem Rec ; 24(1): e202300141, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37724006

RESUMEN

Electrical conductivity is very important property of nanomaterials for using wide range of applications especially energy applications. Metal-organic frameworks (MOFs) are notorious for their low electrical conductivity and less considered for usage in pristine forms. However, the advantages of high surface area, porosity and confined catalytic active sites motivated researchers to improve the conductivity of MOFs. Therefore, 2D electrical conductive MOFs (ECMOF) have been widely synthesized by developing the effective synthetic strategies. In this article, we have summarized the recent trends in developing the 2D ECMOFs, following the summary of potential applications in the various fields with future perspectives.

15.
Nanotechnology ; 35(29)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38569481

RESUMEN

Conductive Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been extensively used as non-metallic electrodes. However, the relatively low electrical conductivity of pristine PEDOT:PSS film restricts its further application. Although doping high content conductive filler or increasing the film thickness are effective for enhancing the electrical property, the transparency is sacrificed, which limits the application of PEDOT:PSS films. In this study, preparing PEDOT:PSS composite film with highly conductive and transparent property was the primary purpose. To achieve this goal, single-walled carbon nanotubes (SWCNTs) and dimethyl sulfoxide (DMSO) was chosen to composite with PEDOT:PSS. The spin-coated SWCNT/PEDOT:PSS composite film exhibited excellent electrical conductivity and transparency. The electrical conductivity of composite film with desired transmittance property (78%) reached the highest value (1060.96 S cm-1) at the SWCNTs content was 6 wt%. Under the modification process applied in this work, the non-conductive PSS was partially removed by incorporated DMSO and SWCNTs. Then, the molecular chains of PEDOT stretched and adsorbed onto the surface of SWCNTs, forming a highly efficient three-dimensional conductive structure, which contributed to the enhancement of electrical conductivity and transparency. Additionally, the spin-coating process allowed for the reduction of film thickness, ensuring better transparency. This research contributed to expanding the further applications of PEDOT:PSS films in high-performance transparent film electrodes.

16.
Nanotechnology ; 35(45)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39053495

RESUMEN

Scalable production of reduced graphene oxide (rGO) films with high mechanical-electrical properties is desirable as these films are candidates for wearable electronics devices and energy storage applications. Removing structural incompleteness such as wrinkles or voids in the graphene films, which are generated from the assembly process, would greatly optimize their mechanical properties. However, the densely stacked graphene sheets in the films degrade their ionic kinetics and thus limit their development. Here, a horizontal-longitudinal-structure modulating strategy is demonstrated to produce enhanced mechanical, conductive, and capacitive graphene films. Typically, two-dimensional large graphene sheets (LGS) induce regular stacking of graphene oxide (GO) during the assembly process to reduce wrinkles, while one-dimensional single-walled carbon nanotubes (SWCNT) bridge with graphene sheets to strengthen the multidirectional intercalation and reduce GO layer restacking. The simultaneous incorporation of LGS and SWCNT synergistically creates a fine microstructure by improving the alignment of graphene sheets, increasing continuous conductive pathways to facilitate electron transport, and enlarging interlayer spacing to promote electrolyte ion diffusion. As a result, the obtained graphene films are flat and exhibit signally reinforced mechanical properties, electrical conductivity (38727 S m-1), as well as specific capacitance (232 F g-1) as supercapacitor electrodes compared to those of original rGO films. Moreover, owing to the comprehensive improved properties, a flexible gel supercapacitor assembled by the graphene film-based electrodes shows high energy density, good flexibility, and excellent cycling stability (93.8% capacitance retention after 10 000 cycles). This work provides a general strategy to manufacture robust graphene structural materials for energy storage applications in flexible and wearable electronics.

17.
Nanotechnology ; 35(33)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38763132

RESUMEN

Novel nanocomposites of poly (ether-ketone) (PEK) reinforced with carbon-coated Nickel nanoparticles (CCNi) were synthesized through a sequential process involving cost-effective ball milling and hot compaction. Scanning electron microscopy revealed an excellent dispersion and a three-dimensional network of CCNi nanoparticles in the matrix, causing a significant improvement in the electrical conductivity and electromagnetic interference shielding effectiveness (SE). Carbon coating of about 5 nm thick over Ni nanoparticle probably helps in uniform dispersion, avoids its oxidation and reduces its agglomeration in the matrix. An exceptionally low percolation threshold of 2.1 vol.% CCNi was found, and eight-orders of magnitude enhancement in the dc-electrical conductivity was achieved. The highest dc- and ac-electrical conductivities achieved were more than 0.01 S cm-1at 5.89 vol.% CCNi nanoparticles content which were the highest values amongst reported Ni-filled polymer composites and comparable with those of carbon nanotubes filled PEK nanocomposites. Electromagnetic interference SE of the CCNi/PEK nanocomposites was measured in the X-band, and a total SE (SET) of 17.52 dB was obtained for 5.89 vol.% CCNi reinforced PEK nanocomposite.

18.
Nanotechnology ; 35(26)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38527361

RESUMEN

Conjugated polymer-based organic/inorganic hybrid materials become the current research frontier and show great potential to integrate flexible polymers and rigid solid materials, which have been widely used in the field of various flexible electronics and optical devices. In this study, based on the multiple vapor phase infiltration (VPI) process, various precursor molecules (diethylzinc DEZ, trimethylaluminum TMA, H2O) are applied for thein situmodification of PBTTT-C14 films. The conductivity of the PBTTT-C14/Al2O3:ZnO (AZO) film is significantly enhanced, and the maximum value of conductivity is 1.16 S cm-1, which is eight orders of magnitude higher than the undoped PBTTT-C14 thin film. Here, the change of morphologies and crystalline states are analyzed via SEM, AFM, and XRD. And the chemical changes during the VPI process of PBTTT-C14 are characterized through Raman, XPS, and UV-vis. During the AZO VPI process, the formation of new ZnS matrix in the polymer subsurface can generate new additional electron conduction pathways through the crosslinking of polymer chains with inorganic materials, and the addition of Al2O3can bring about the increase of average grain size of ZnO crystals, which is also benefit to the conductivity increase of PBTTT-C14 thin film. Generally, the synergistic effect between the inorganic and polymer constituents results in the significantly enhancement of the conductivity of PBTTT-C14/AZO thin films.

19.
J Dairy Sci ; 107(1): 508-515, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37709038

RESUMEN

In the buffalo dairy sector, a huge effort is still needed to improve mastitis prevention, detection, and management. Electrical conductivity (EC) and total somatic cell count (SCC) are well-known indirect indicators of mastitis. Differential somatic cell count (DSCC), which represents the proportion of neutrophils and lymphocytes on the total SCC, is instead a novel phenotype collected in the dairy cattle sector in the last lustrum. As little is known about this novel trait in dairy buffalo, in the present study we explored the nongenetic factors affecting DSCC, as well as EC and total somatic cell score (SCS), in the Italian Mediterranean buffalo. The data set used for the analysis included 14,571 test-day (TD) records of 1,501 animals from 6 herds, and climatic information of the sampling locations. The original data were filtered to exclude animals with less than 3 TD per lactation and, for the investigated traits, outliers beyond 4 standard deviations. In the statistical model we included the fixed effects of herd (6 classes), days in milk (DIM; 10 classes of 30 d, with the last being an open class until 360 d), parity (6 classes, from 1 to 6+), year-season of calving (11 classes, from summer 2019 to winter 2021/2022), year-season of sampling (9 classes, from spring 2020 to spring 2022), production level (4 classes based on quartiles of average milk yield by herd), and temperature-humidity index (THI; 4 classes based on quartiles, calculated using the average temperature and relative humidity of the 5 d before sampling). Average EC, SCS, and DSCC vary across herds. Considering DIM, greater EC values were observed at the beginning and the end of lactation; SCS was slightly lower, but DSCC was greater around the lactation peak. Increased EC, SCS, and DSCC levels with increasing parity were reported. Year-season calving and year-season sampling only slightly affected the variation of the investigated traits. Milk of high-producing buffaloes was characterized by lower EC and SCS mean values, nevertheless it had slightly greater DSCC percentages. Buffaloes grouped in the highest THI classes (classes 3 and 4) showed, on average, greater EC, SCS, and DSCC in comparison to the lower classes, especially to class 2. Results of the present study represent a preliminary as well as necessary step for the possible future inclusion of EC, SCS, or DSCC in breeding programs aimed to improve mastitis resistance in dairy buffaloes.


Asunto(s)
Enfermedades de los Bovinos , Mastitis Bovina , Embarazo , Femenino , Bovinos , Animales , Búfalos , Leche , Lactancia/genética , Recuento de Células/veterinaria , Recuento de Células/métodos , Italia , Mastitis Bovina/diagnóstico
20.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38475157

RESUMEN

Precision agriculture (PA) intends to validate technological tools that capture soil and crop spatial variability, which constitute the basis for the establishment of differentiated management zones (MZs). Soil apparent electrical conductivity (ECa) sensors are commonly used to survey soil spatial variability. It is essential for surveys to have temporal stability to ensure correct medium- and long-term decisions. The aim of this study was to assess the temporal stability of MZ patterns using different types of ECa sensors, namely an ECa contact-type sensor (Veris 2000 XA, Veris Technologies, Salina, KS, USA) and an electromagnetic induction sensor (EM-38, Geonics Ltd., Mississauga, ON, Canada). These sensors were used in four fields of dryland pastures in the Alentejo region of Portugal. The first survey was carried out in October 2018, and the second was carried out in September 2020. Data processing involved synchronizing the geographic coordinates obtained using the two types of sensors in each location and establishing MZs based on a geostatistical analysis of elevation and ECa data. Although the basic technologies have different principles (contact versus non-contact sensors), the surveys were carried out at different soil moisture conditions and were temporarily separated (about 2 years); the ECa measurements showed statistically significant correlations in all experimental fields (correlation coefficients between 0.449 and 0.618), which were reflected in the spatially stable patterns of the MZ maps (averaging 52% of the total area across the four experimental fields). These results provide perspectives for future developments, which will need to occur in the creation of algorithms that allow the spatial variability and temporal stability of ECa to be validated through smart soil sampling and analysis to generate recommendations for sustained soil amendment or fertilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA