RESUMEN
Deployment of new, more portable, and less costly neuroimaging technologies such as portable magnetoencephalography, electroencephalography, positron emission tomography, functional near-infrared spectroscopy, high-density diffuse optical tomography, and magnetic resonance imaging is advancing rapidly. Given this trajectory toward increasing use of neuroimaging outside the hospital, we sought to identify ethical, legal, and societal implications (ELSI) of these new technologies by understanding the perspectives of those scientists and engineers developing and implementing portable neuroimaging technologies in the United States, Europe, and Asia. Based on a literature review, we identified and contacted 19 potential interviewees and then conducted 11 semi-structured interviews in English by Zoom. Analysis of the interviews revealed key themes and ELSI issues. Developers reported that without proper ELSI guidance, portable and accessible neuroimaging technology could be misused, fail to comply with applicable regulation and policy, and ultimately fall short in its mission to provide neuroimaging for the world. Our interviews suggested that ELSI guidance should address differences between imaging modalities because they vary in capability, limitations, and likelihood of generating incidental findings.
RESUMEN
In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.
Asunto(s)
Bacteriófagos , Microbiología de Alimentos , Bacteriófagos/fisiología , Inocuidad de los Alimentos , Manipulación de Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Industria de Procesamiento de Alimentos , Humanos , Conservación de Alimentos/métodos , Industria de AlimentosRESUMEN
Bacterial biofilm has brought a lot of intractable problems in food and biomedicine areas. Conventional biofilm control mainly focuses on inactivation and removal of biofilm. However, with robust construction and enhanced resistance, the established biofilm is extremely difficult to eradicate. According to the mechanism of biofilm development, biofilm formation can be modulated by intervening in the key factors and regulatory systems. Therefore, regulation of biofilm formation has been proposed as an alternative way for effective biofilm control. This review aims to provide insights into the regulation of biofilm formation in food and biomedicine. The underlying mechanisms for early-stage biofilm establishment are summarized based on the key factors and correlated regulatory networks. Recent developments and applications of novel regulatory strategies such as anti/pro-biofilm agents, nanomaterials, functionalized surface materials and physical strategies are also discussed. The current review indicates that these innovative methods have contributed to effective biofilm control in a smart, safe and eco-friendly way. However, standard methodology for regulating biofilm formation in practical use is still missing. As biofilm formation in real-world systems could be far more complicated, further studies and interdisciplinary collaboration are still needed for simulation and experiments in the industry and other open systems.
RESUMEN
OBJECTIVES: Metabolomics aims for comprehensive characterization and measurement of small molecule metabolites (<1700â¯Da) in complex biological matrices. This study sought to assess the current understanding and usage of metabolomics in laboratory medicine globally and evaluate the perception of its promise and future implementation. METHODS: A survey was conducted by the IFCC metabolomics working group that queried 400 professionals from 79 countries. Participants provided insights into their experience levels, knowledge, and usage of metabolomics approaches, along with detailing the applications and methodologies employed. RESULTS: Findings revealed a varying level of experience among respondents, with varying degrees of familiarity and utilization of metabolomics techniques. Targeted approaches dominated the field, particularly liquid chromatography coupled to a triple quadrupole mass spectrometer, with untargeted methods also receiving significant usage. Applications spanned clinical research, epidemiological studies, clinical diagnostics, patient monitoring, and prognostics across various medical domains, including metabolic diseases, endocrinology, oncology, cardiometabolic risk, neurodegeneration and clinical toxicology. CONCLUSIONS: Despite optimism for the future of clinical metabolomics, challenges such as technical complexity, standardization issues, and financial constraints remain significant hurdles. The study underscores the promising yet intricate landscape of metabolomics in clinical practice, emphasizing the need for continued efforts to overcome barriers and realize its full potential in patient care and precision medicine.
Asunto(s)
Metabolómica , Metabolómica/métodos , Humanos , Encuestas y Cuestionarios , Cromatografía LiquidaRESUMEN
This study aimed to assess the impact of adaptation of ten strains of O157:H7 and non-O157 Escherichia coli to low pH (acid shock or slow acidification) and the effects of this exposure or not on the resistance of E. coli strains to UV radiation in orange juice (pH 3.5). The acid-shocked cells were obtained through culture in tryptic soy broth (TSB) with a final pH of 4.8, which was adjusted by hydrochloric, lactic, or citric acid and subsequently inoculated in orange juice at 4 °C for 30 days. No significant differences (p > 0.05) in survival in orange juice were observed between the serotypes O157:H7 and non-O157:H7 for acid-shocked experiments. After slow acidification, where the cells were cultured in TSB supplemented with glucose 1% (TSB + G), a significant increase (p < 0.05) in survival was observed for all strains evaluated. The D-values (radiation dose (J/cm2) necessary to decrease the microbial population by 90%) were determined as the inverse of the slopes of the regressions (k) obtained by plotting log (N/N0). The results show that among the strains tested, E. coli O157:H7 (303/00) and O26:H11 were the most resistant and sensitive strains, respectively. According to our results, the method of acid adaptation contributes to increasing the UV resistance for most of the strains tested.
Asunto(s)
Adaptación Fisiológica , Citrus sinensis , Escherichia coli O157 , Jugos de Frutas y Vegetales , Rayos Ultravioleta , Escherichia coli O157/efectos de la radiación , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/efectos de los fármacos , Jugos de Frutas y Vegetales/microbiología , Jugos de Frutas y Vegetales/análisis , Citrus sinensis/microbiología , Citrus sinensis/química , Concentración de Iones de Hidrógeno , Escherichia coli/efectos de la radiación , Escherichia coli/efectos de los fármacos , Ácidos/farmacología , Recuento de Colonia Microbiana , Microbiología de Alimentos , Viabilidad Microbiana/efectos de la radiación , Viabilidad Microbiana/efectos de los fármacos , Irradiación de AlimentosRESUMEN
Emerging technologies of artificial intelligence (AI) and automated decision-making (ADM) promise to advance many industries. Healthcare is a key locus for new developments, where operational improvements are magnified by the bigger-picture promise of improved care and outcomes for patients. Forming the zeitgeist of contemporary sociotechnical innovation in healthcare, media portrayals of these technologies can shape how they are implemented, experienced and understood across healthcare systems. This article identifies current applications of AI and ADM within Australian healthcare contexts and analyses how these technologies are being portrayed within news and industry media. It offers a categorisation of leading applications of AI and ADM: monitoring and tracking, data management and analysis, cloud computing, and robotics. Discussing how AI and ADM are depicted in relation to health and care practices, it examines the sense of promise that is enlivened in these representations. The article concludes by considering the implications of promissory discourses for how technologies are understood and integrated into practices and sites of healthcare.
RESUMEN
The flavour, tenderness and juiciness of the beef are all impacted by the composition of the intramuscular fat (IMF), which is a key determinant of beef quality. Thus, enhancing the IMF composition of beef cattle has become a major area of research. Consequently, the aim of this paper was to provide insight and synthesis into the emerging technologies, nutritional practices and management strategies to improve IMF composition in beef cattle. This review paper examined the current knowledge of management techniques and nutritional approaches relevant to cattle farming in the beef industry. It includes a thorough investigation of animal handling, weaning age, castration, breed selection, sex determination, environmental factors, grazing methods, slaughter weight and age. Additionally, it rigorously explored dietary energy levels and optimization of fatty acid profiles, as well as the use of feed additives and hormone implant techniques with their associated regulations. The paper also delved into emerging technologies that are shaping future beef production, such as genomic selection methods, genome editing techniques, epigenomic analyses, microbiome manipulation strategies, transcriptomic profiling approaches and metabolomics analyses. In conclusion, a holistic approach combining genomic, nutritional and management strategies is imperative for achieving targeted IMF content and ensuring high-quality beef production.
Asunto(s)
Carne Roja , Animales , Bovinos/fisiología , Carne Roja/análisis , Crianza de Animales Domésticos/métodos , Músculo Esquelético , Tejido Adiposo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los AnimalesRESUMEN
Compared to traditional lower-limb prostheses (LLPs), intelligent LLPs are more versatile devices with emerging technologies, such as microcontrollers and user-controlled interfaces (UCIs). As emerging technologies allow a higher level of automation and more involvement from wearers in the LLP setting adjustments, the previous framework established to study human factors elements that affect wearer-LLP interaction may not be sufficient to understand the new elements (e.g., transparency) and dynamics in this interaction. In addition, the increased complexity of interaction amplifies the limitations of the traditional evaluation approaches of wearer-LLP interaction. Therefore, to ensure wearer acceptance and adoption, from a human factors perspective, we propose a new framework to introduce elements and usability requirements for the wearer-LLP interaction. This paper organizes human factors elements that appear with the development of intelligent LLP technologies into three aspects: wearer, device, and task by using a classic model of the human-machine systems. By adopting Nielsen's five usability requirements, we introduce learnability, efficiency, memorability, use error, and satisfaction into the evaluation of wearer-LLP interaction. We identify two types of wearer-LLP interaction. The first type, direct interaction, occurs when the wearer continuously interacts with the intelligent LLP (primarily when the LLP is in action); the second type, indirect interaction, occurs when the wearer initiates communication with the LLP usually through a UCI to address the current or foreseeable challenges. For each type of interaction, we highlight new elements, such as device transparency and prior knowledge of the wearer with the UCI. In addition, we redefine the usability goals of two types of wearer-LLP interaction with Nelson's five usability requirements and review methods to evaluate the interaction. Researchers and designers for intelligent LLPs should consider the new device elements that may additionally influence wearers' acceptance and the need to interpret findings within the constraints of the specific wearer and task characteristics. The proposed framework can also be used to organize literature and identify gaps for future directions. By adopting the holistic usability requirements, findings across empirical studies can be more comparable. At the end of this paper, we discuss research trends and future directions in the human factors design of intelligent LLPs.
Asunto(s)
Miembros Artificiales , Humanos , Extremidad Inferior/fisiología , Interfaz Usuario-Computador , Diseño de Prótesis , Sistemas Hombre-Máquina , Ergonomía , Inteligencia ArtificialRESUMEN
Society faces a growing set of risks from advanced emerging technologies. While there has been discussion on some of these risks, a comprehensive overview does not exist, and it is not clear what methods are suited to identify future risks. This scoping review aimed to synthesise current knowledge regarding the risks associated with emerging technologies. The findings show that a diverse set of technologies and risks have been considered, with ten risk themes identified: risks to human health and wellbeing, sub-standard technology risks, legal and ethical risks, privacy and security risks, socioeconomic impacts, ecological and environmental risks, malicious use risks, geopolitical risks, technological unemployment risks, and existential threats. It is concluded that there is a need to expand the focus of prospective risk assessments to consider the organisational, sociotechnical and societal systems in which emerging technologies will be deployed. The development of a future technology risks classification scheme is also recommended. PRACTITIONER STATEMENT: This scoping review provides practitioners with a comprehensive overview of the risks associated with future advanced technologies. This will support the proactive development of suitable controls, with the findings also signposting ergonomics methods that can be used to support future risk assessments.
RESUMEN
Spatial biology is a rapidly developing field which enables the visualization of protein and transcriptomic data while preserving tissue context and architecture. Initially used in discovery, there is growing promise for translational and diagnostic assay developments. Immediate applications are in precision medicine, such as being able to match patients to optimal therapies through better understanding the tumor microenvironment. However, it also has ramifications for many other disciplines (e.g. immunology, cancer, infectious disease and digital pathology). With increasingly massive data sets being generated, data storage, curation, analysis and sharing require more computational approaches and artificial intelligence-powered tools to fully utilize spatial tools. Here, we discuss spatial biology as an important convergent science approach to tackling complex global challenges in areas such as health.
Asunto(s)
Inteligencia Artificial , Genómica , Humanos , Proteómica , Perfilación de la Expresión Génica , Biología ComputacionalRESUMEN
The first report of trans-acting RNA-based regulation in bacterial cells dates back to 1984. Subsequent studies in diverse bacteria unraveled shared properties of trans-acting small regulatory RNAs, forming a clear definition of these molecules. These shared characteristics have been used extensively to identify new small RNAs (sRNAs) and their interactomes. Recently however, emerging technologies able to resolve RNA-RNA interactions have identified new types of regulatory RNAs. In this review, we present a broader definition of trans-acting sRNA regulators and discuss their newly discovered intrinsic characteristics.
Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismoRESUMEN
Infrared (IR) radiation is part of an electromagnetic spectrum between the ultraviolet and microwave regions. IR radiation impacts the surface of the food, generating heat that can be used as an efficient drying technique. Apart from drying, IR heating is an emerging food processing technology with applications in baking, roasting, microbial inactivation, insect control, extraction for antioxidant recovery, peeling, and blanching. Physicochemical properties such as texture, color, hardness, total phenols, and antioxidants capability of foods are essential quality attributes that affect the food quality. In this regard, the main objective of this review study was to highlight and discuss the effects of IR heating on food quality to expand its food applications and commercial adoption. The fundamental mechanisms, type of emitters, and IR processing parameters are discussed in this review to explore their impacts on food quality. Infrared heating has been shown that the appropriate operating conditions (distance, exposure time, IR power, and temperature) with high heat transfer, thus leading to a shorter drying time. Besides, IR heating used in food processing to improve food-surface color and flavor, it also enhances hardness, firmness, shrinkage, crispiness, and viscosity. Meanwhile, antioxidant activity is enhanced, and some nutrients are retained.
Asunto(s)
Alimentos , Calefacción , Manipulación de Alimentos/métodos , Calidad de los Alimentos , Antioxidantes/análisisRESUMEN
Nanobubble (NB) technologies have received considerable attention for various applications due to their low cost, eco-friendliness, scale-up potential, process control, and unique physical characteristics. NB stands for nanoscopic gaseous cavities, typically <1 µm in diameter. NBs can exist on surfaces (surface or interfacial NBs) and be dispersed in a bulk liquid phase (bulk NBs). Compared to the microbubbles, NBs exhibit high specific surface area, negative surface charge, and better adsorption. Bulk NBs can be generated by hydrodynamic/acoustic cavitation, electrolysis, water-solvent mixing, nano-membrane filtration, and so on. NBs exhibit extraordinary longevity compared to microbubbles, prompting the interest of the scientific community aiming for potential applications including medicine, agriculture, food, wastewater treatment, surface cleaning, and so on. Based on the limited amount of research work available regarding the influence of NBs on food matrices, further research, however, needs to be done to provide more insights into its applications in food industries. This review provides an overview of the generation methods for NBs, techniques to evaluate them, and a discussion of their stability and several applications in various fields of science were discussed. However, recent studies have revealed that, despite the many benefits of NB technologies, several NB generating approaches are still limited in their application in specific agro-food industries. Further study should focus on process optimization, integrating various NB generation techniques/combining with other emerging technologies in order to achieve rapid technical progress and industrialization of NB-based technologies.HighlightsNanobubbles (NBs) are stable spherical entities of gas within liquid and are operationally defined as having diameters less than 1 µm.Currently, various reported theories still lack the ability to explain the evidence and stability of NBs in water, numerous NB applications have emerged due to the unique properties of NBs.NB technologies can be applied to various food and dairy products (e.g. yogurt and ice cream) and other potential applications, including agriculture (e.g. seed germination and plant growth), wastewater treatment, surface cleaning, and so on.
Asunto(s)
Gases , AguaRESUMEN
The worldwide challenges related to food sustainability are presently more critical than ever before due to the severe consequences of climate change, outbreak of epidemics, and wars. Many consumers are shifting their dietary habits toward consuming more plant-based foods, such as plant milk analogs (PMA) for health, sustainability, and well-being reasons. The PMA market is anticipated to reach US$38 billion within 2024, making them the largest segment in plant-based foods. Nevertheless, using plant matrices to produce PMA has numerous limitations, including, among others, low stability and short shelf life. This review addresses the main obstacles facing quality and safety of PMA formula. Moreover, this literature overview discusses the emerging approaches, e.g., pulsed electric field (PEF), cold atmospheric plasma (CAP), ultrasound (US), ultra-high-pressure homogenization (UHPH), ultraviolet C (UVC) irradiation, ozone (O3), and hurdle technology used in PMA formulations to overcome their common challenges. These emerging technologies have a vast potential at the lab scale to improve physicochemical characteristics, increase stability and extend the shelf-life, decrease food additives, increase nutritional and organoleptic qualities of the end product. Although the PMA fabrication on a large scale using these technologies can be expected in the near future to formulate novel food products that can offer green alternatives to conventional dairy products, further development is still needed for wider commercial applications.
RESUMEN
Apple waste (APW) is the residual product after apple processing, including apple peel, apple core, apple seed, and other components. A large quantity of APW produced is abandoned annually, leading to serious resource waste and environmental pollution. APW is rich in natural active compounds, such as pectin, polyphenols, fatty acids, and dietary fiber, which has a good use value. This paper reviewed the current research on recovering active components from APW. The traditional extraction methods (acid, alkali, physical, enzyme, etc.) and the novel extraction methods (SWE, UAE, MAE, RFAE, etc.) for the recovery of pectin, polyphenols, apple seed oil, apple seed protein, and dietary fiber from APW were systematically summarized. The basic principles, advantages, and disadvantages of different extraction methods were introduced. The requirements of different extraction methods on extraction conditions and the effects of different extraction methods on the yield, quality, and functional activity of extracted products were analyzed. The challenges and future study direction of APW extraction have prospected. This paper aims to provide a reference for other researchers interested in APW extraction, improve the utilization rate of APW and extend the value chain of the apple industry.
RESUMEN
Laser food processing has the breath-taking potential to revolutionize the industry in many aspects. Among the different laser configurations, CO2 laser has received special attention due to its relative high efficiency in power generation, its high-power output and its laser beam wavelength, infrared, which is strongly absorbed by water, the main component of food materials. Over the last 50 years, different uses of CO2 laser for processing foods have been proposed so far, including cooking, broiling and browning, selective laser sintering, marking, microperforation for improving downstream mass transfer operations (e.g. infusion, diffusion, marinating, salting, drying, extraction), cutting and peeling, and microbial surface decontamination. The present work is a review of the state of the art of the use of CO2 laser for food processing that covers the main characteristics and mechanisms of this technology, as well as the most important published results regarding its applications in the agri-food sector, highlighting the main challenges to bring out its full potential in the coming years.
RESUMEN
The effects of ultrasound (US) on probiotics, as health-promoting microbes, have attracted the attention of researchers in fermentation and healthy food production. This paper aims to review recent advances in the application of the US for enhancing probiotic cells' activity, elaborate on the mechanisms involved, explain how probiotic-related industries can benefit from this emerging food processing technology, and discuss the perspective of this innovative approach. Data showed that US could enhance fermentation, which is increasingly used to enrich agri-food products with probiotics. Among the probiotics, recent studies focused on Lactiplantibacillus plantarum, Lactobacillus brevis, Lactococcus lactis, Lactobacillus casei, Leuconostoc mesenteroides, Bifidobacteria. These bacteria proliferated in the log phase when treated with US at relatively low-intensities. Also, this non-thermal technology increased extracellular enzymes, mainly ß-galactosidase, and effectively extracted antioxidants and bioactive compounds such as phenolics, flavonoids, and anthocyanins. Accordingly, better functional and physicochemical properties of prebiotic-based foods (e.g., fermented dairy products) can be expected after ultrasonication at appropriate conditions. Besides, the US improved fermentation efficiency by reducing the production time, making probiotics more viable with lower lactose content, more oligosaccharide, and reduced unpleasant taste. Also, US can enhance the rheological characteristics of probiotic-based food by altering the acidity. Optimizing US settings is suggested to preserve probiotics viability to achieve high-quality food production and contribute to food nutrition improvement and sustainable food manufacturing.
Ultrasound affects probiotics during fermentation to produce healthy foodsUltrasound could enhance the activity of probiotic cells through various mechanismsLactobacillus plantarum, L. brevis, and Leuconostoc mesenteroides are most studied probioticsSonication could increase extracellular enzyme and antioxidant activity of fermented foods.
RESUMEN
Animal-derived foods are susceptible to microbial spoilage due to their superior nutritional composition and high moisture content. Among the various options, edible packaging is a relatively nascent area and can effectively control microbial growth without substantially affecting the sensory and techno-functional properties. Numerous studies have evaluated the effect of edible packaging systems on the microbial quality of animal-derived foods, however, a review that specifically covers the effect of edible packaging on animal foods and summarizes the findings of these studies is missing in the literature. To fill this gap, the present review analyses the findings of the studies on animal foods published during the last five years. Studies have reported edible-packaging systems for improving microbial stability of animal foods using different biopolymers (proteins, polysaccharides, lipids, and their derivatives) and bioactive ingredients (phytochemicals, peptides, plant extracts, essential oils, and their nanoparticles, nanoemulsions or coarse emulsions). In general, nanoparticles and nanoemulsions are more effective in controlling microbial spoilage in animal foods compared to the direct addition of bioactive agents to the film matrices. Studies have reported the use of non-thermal and emerging technologies in combination with edible packaging systems for improved food safety or their use for enhancing functionality, bioactivity and characteristics of the packaging systems. Future studies should focus on developing sustainable packaging systems using widely available biopolymers and bioactive ingredients and should also consider the economic feasibility at the commercial scale.
RESUMEN
The world's growing population and evolving food habits have created a need for alternative plant protein sources, with pulses playing a crucial role as healthy staple foods. Dry beans are high-protein pulses rich in essential amino acids like lysine and bioactive peptides. They have gathered attention for their nutritional quality and potential health benefits concerning metabolic syndrome. This review highlights dry bean proteins' nutritional quality, health benefits, and limitations, focusing on recent eco-friendly emerging technologies for their obtaining and functionalization. Antinutritional factors (ANFs) in bean proteins can affect their in vitro protein digestibility (IVPD), and lectins have been identified as potential allergens. Recently, eco-friendly emerging technologies such as ultrasound, microwaves, subcritical fluids, high-hydrostatic pressure, enzyme technology, and dry fractionation methods have been explored for extracting and functionalizing dry bean proteins. These technologies have shown promise in reducing ANFs, improving IVPD, and modifying allergen epitopes. Additionally, they enhance the techno-functional properties of bean proteins, making them more soluble, emulsifying, foaming, and gel-forming, with enhanced water and oil-holding capacities. By utilizing emerging innovative technologies, protein recovery from dry beans and the development of protein isolates can meet the demand for alternative protein sources while being eco-friendly, safe, and efficient.
Dry beans are a source of lysine-rich proteins and high-quality AA for the diet.Physical treatments can reduce the ANFs of beans and increase protein digestibility.Eco-friendly technologies can treat, modify, extract, and separate bean proteins.Conformational changes with protein unfolding improve WHC, EA, and solubility.The combined use of emerging technologies allows for conveying advantages of each one.
RESUMEN
BACKGROUND: In 2019, an estimated 409,000 people died of malaria and most of them were young children in sub-Saharan Africa. In a bid to combat malaria epidemics, several technological innovations that have contributed significantly to malaria response have been developed across the world. This paper presents a systematized review and identifies key technological innovations that have been developed worldwide targeting different areas of the malaria response, which include surveillance, microplanning, prevention, diagnosis and management. METHODS: A systematized literature review which involved a structured search of the malaria technological innovations followed by a quantitative and narrative description and synthesis of the innovations was carried out. The malaria technological innovations were electronically retrieved from scientific databases that include PubMed, Google Scholar, Scopus, IEEE and Science Direct. Additional innovations were found across grey sources such as the Google Play Store, Apple App Store and cooperate websites. This was done using keywords pertaining to different malaria response areas combined with the words "innovation or technology" in a search query. The search was conducted between July 2021 and December 2021. Drugs, vaccines, social programmes, and apps in non-English were excluded. The quality of technological innovations included was based on reported impact and an exclusion criterion set by the authors. RESULTS: Out of over 1000 malaria innovations and programmes, only 650 key malaria technological innovations were considered for further review. There were web-based innovations (34%), mobile-based applications (28%), diagnostic tools and devices (25%), and drone-based technologies (13%. DISCUSSION AND CONCLUSION: This study was undertaken to unveil impactful and contextually relevant malaria innovations that can be adapted in Africa. This was in response to the existing knowledge gap about the comprehensive technological landscape for malaria response. The paper provides information that countries and key malaria control stakeholders can leverage with regards to adopting some of these technologies as part of the malaria response in their respective countries. The paper has also highlighted key drivers including infrastructural requirements to foster development and scaling up of innovations. In order to stimulate development of innovations in Africa, countries should prioritize investment in infrastructure for information and communication technologies and also drone technologies. These should be accompanied by the right policies and incentive frameworks.