RESUMEN
BACKGROUND AND AIMS: Sexual polymorphisms of flowers have traditionally been interpreted as devices that promote cross-pollination, but they may also represent adaptations for exploiting particular pollination niches in local environments. The cross-pollination function of enantiostyly, characterized by flowers having either left- or right-deflected styles, has been uncertain in some lineages, such as the Haemodoraceae, because the positioning of stamens and styles is not always completely reciprocal among morphs. METHODS: We examined the floral biology of populations of the poorly known species Barberetta aurea (Haemodoraceae) across its native range in South Africa to establish the general features of its enanatiostylous reproductive system and the agents and mechanism of pollen transfer. RESULTS: We confirmed that B. aurea has a system of dimorphic enantiostyly. Style morph ratios varied among populations sampled, but with an overall tendency to being equal. Crossing experiments demonstrated that B. aurea is fully self-compatible, that intra- and inter-morph crosses are equally fertile and that it is wholly dependent on pollinator visits for seed production. Pollination is mainly by syrphid flies that transfer the sticky pollen via their wings, which contact the anthers and stigma precisely as they hover during approach and feeding. The majority of syrphid fly visitors feed on a film of highly concentrated nectar situated at the base of ultraviolet-absorbent 'nectar guides'. Because one of the three stamens is deflected in the same direction as the style, we predicted a high likelihood of intra-morph pollination, and this was corroborated by patterns of transfer of coloured dye particles in cage experiments involving syrphid flies. CONCLUSIONS: Barbaretta aurea exhibits dimorphic enantiostyly and, in contrast to most enantiostylous species, which are pollinated by bees, its flowers are specialized for pollination by syrphid flies. The lack of complete reciprocity of the enantiostylous arrangement of sexual organs facilitates both inter- and intra-morph pollen transfer on the wings of these flies.
Asunto(s)
Dípteros , Polinización , Abejas , Animales , Néctar de las Plantas , Dípteros/genética , Flores/genética , Semillas , ReproducciónRESUMEN
Mirror-image flowers (enantiostyly) involve a form of sexual asymmetry in which a flower's style is deflected either to the left or right side, with a pollinating anther orientated in the opposite direction. This curious floral polymorphism, which was known but not studied by Charles Darwin, occurs in at least 11 unrelated angiosperm families and represents a striking example of adaptive convergence in form and function associated with cross-pollination by insects. In several lineages, dimorphic enantiostyly (one stylar orientation per plant, both forms occurring within populations) has evolved from monomorphic enantiostyly, in which all plants can produce both style orientations. We use a modelling approach to investigate the emergence of dimorphic enantiostyly from monomorphic enantiostyly under gradual evolution. We show using adaptive dynamics that depending on the balance between inbreeding depression following geitonogamy, pollination efficiency and plant density, dimorphism can evolve from an ancestral monomorphic population. In general, the newly emergent dimorphic population is stable against invasion of a monomorphic mutant. However, our model predicts that under certain ecological conditions, e.g., a decline of pollinators, dimorphic enantiostyly may revert to a monomorphic state. We demonstrate using population genetics simulations that the observed evolutionary transitions are possible assuming a plausible genetic architecture.
RESUMEN
BACKGROUND AND AIMS: Reciprocal herkogamy, including enantiostyly and heterostyly, involves reciprocity in the relative positions of the sexual elements within the flower. Such systems result in morphologically and, since pollen is deposited on and captured from different parts of the pollinator, functionally distinct floral forms. Deviations from the basic pattern may modify the functionality of these mechanisms. For heterostylous species, such deviations are generally related to environmental disturbances, pollination services and/or reduced numbers of one floral morph. Deviations for enantiostylous species have not yet been reported. This study aims to investigate enantiostyly in Chamaecrista flexuosa, in particular the presence of deviations from the standard form, in an area of coastal vegetation in north-east Brazil. METHODS: Observations and investigations of floral biology, the reproductive system, pollinator behaviour, floral morphology and morphometry were performed. KEY RESULTS: In C. flexuosa flowers, anthers of different size but similar function are grouped. The flowers were self-compatible and set fruits after every treatment, except in the spontaneous self-pollination experiment, thereby indicating their dependence on pollen vectors. The flowers were pollinated by bees, especially Xylocopa cearensis and X. grisencens. Pollen is deposited and captured from the ventral portion of the pollinator's body. Variations in the spatial arrangement of floral elements allowed for the identification of floral morphs based on both morphological and functional criteria. Using morphological criteria, morphologically right (MR) and morphologically left (ML) floral morphs were identified. Three floral morphs were identified using functional criteria: functionally right (FR), functionally central (FC) and functionally left (FL). Combinations of morphologically and functionally defined morphs did not occur in equal proportions. There was a reduced frequency of the MR-FR combination. CONCLUSIONS: The results indicate the occurrence of an atypical enantiostyly in C. flexuosa. This seems to improve reproductive success by increasing the efficiency of pollen deposition and capture.
Asunto(s)
Abejas/fisiología , Chamaecrista/anatomía & histología , Flores/anatomía & histología , Animales , Conducta Animal , Brasil , Cruzamiento , Chamaecrista/fisiología , Flores/fisiología , Polen/anatomía & histología , Polen/fisiología , Polinización/fisiología , ReproducciónRESUMEN
Darwin devoted an entire book to style and stamen polymorphisms, exemplifying the importance of pollen movement efficiency as a selective agent on floral form.1 However, after its publication, his interest was piqued by a description of floral handedness2 or enantiostyly.3 Todd2 described how left- and right-handed Solanum rostratum flowers have styles deflected to the left and right, respectively. Darwin4 wrote to Todd for seeds so that he could " have the pleasure of seeing the flowers and experimenting on them," but he died just days later on 19 April 1882. More than a century elapsed before the first experiments demonstrated that handedness leads to high rates of outcrossing.5,6 By attaching quantum dots to pollen grains, we tracked pollen movement in Wachendorfia paniculata, which has one stamen on the same side of the style and two deflected in the opposite direction. We found that handedness leads to outcrossing because left- and right-handed morphs place most of their pollen on different sides of the pollinators. However, the partial separation of stamens and style also results in two-dimensional pollen quality mosaics on each side of carpenter bee pollinators, generating hotspots and coldspots of outcrossed pollen. Similar mosaics were not found on honeybee pollinators. Outcrossed pollen receipt was much higher than expected because stigmatic positions are fine-tuned to match the outcross pollen hotspots on carpenter bees. Exploitation of these pollen mosaics enables plants to increase the probability of between-morph (i.e., disassortative), outcross pollen movement beyond the expectations of enantiostyly.
Asunto(s)
Abejas , Flores/anatomía & histología , Polen , Polinización , Solanum , Animales , ReproducciónRESUMEN
Species of the subtribe Cassiinae present a wide diversity of floral types. Until recently it was considered that this diversity did not extend to their reproductive mechanisms. However, studies have recorded some variations in the enantiostylous pattern in this plant group. This study aims to investigate the morphological and functional variations of enantiostyly in species of the subtribe Cassiinae. Additionally, it proposes the recognition of enantiostylous types (ET) based on pollen deposition and capture mode. Morphological data were collected in fresh and fixed (alcohol 70%) buds and flowers, and also using photos and rehydrated material from herbarium sheets, for a total of 59 species. The parameters used to establish the ETs were pollination type, nature of pollen deposition on the pollinator body, deposition type, number of petals involved in pollen deposition, and pollen pathway. Morpho-functional features allowed the recognition of seven enantiostylous types (Flexuosa, Cana, Macranthera, Martiana, Amiciella, Repens and Ramosa) that present several levels of complexity. The type Ramosa was the most common and the Cana type was the least common. The types Repens, Martiana and Flexuosa do not have reciprocal pollen deposition, thus species with these types may be considered atypical. The groups resulting from similarity analysis partially coincide with the clades proposed in phylogenetic studies of Cassiinae. The recognition of functional ETs is important for understanding the evolution of reproductive strategies of Cassiinae species, and indicates an interesting line of investigation of enantiostyly in other plant groups.
Asunto(s)
Evolución Biológica , Fabaceae/anatomía & histología , Flores/anatomía & histología , Fenotipo , Filogenia , Polinización , Fabaceae/genética , Polen , ReproducciónRESUMEN
Traditionally, annual colonising species are expected to have high rates of self-fertilisation, although recent theoretical and empirical studies have shown that cross-fertilisation can be selected for under heterogeneous pollination environments. Solanum rostratum is a self-compatible annual herb that colonises disturbed habitats. Despite the lack of physiological mechanisms to prevent self-fertilisation, pollen transfer between individuals is expected to be favoured because of its complex floral morphology. In previous studies of S. rostratum it has been shown that anther dimorphism within flowers results in precise pollen placement on the pollinator's body, and the presence of mirror-image floral morphs within plants promotes outcrossing in experimental arrays. However, the mating system of natural populations of S. rostratum has never been assessed, and thus whether it is predominantly selfing or outcrossing remains unknown. We hypothesise that floral and inflorescence morphology of S. rostratum should facilitate cross-fertilisation, making it a predominantly outcrossing despite its lack of a self-incompatibility system. To test this hypothesis, we estimated outcrossing rates by genotyping 700 individuals at 13 microsatellite loci, sampled from four populations across a 690-km transect in the species' native range. We found that populations had mean outcrossing rates of 0.70 ± 0.03, with multiple sires contributing to paternity of each progeny array (average effective number of sires = 8.97 ± 0.57). This indicates that natural populations S. rostratum have relatively high levels of outcrossing, probably facilitated by its floral and inflorescence morphology. We speculate that partial selfing in this species may be an unavoidable consequence of displaying multiple flowers at the same time (geitonogamy), as well as the result of self-pollen transfer by illegitimate visitors.
Asunto(s)
Flores/fisiología , Solanum/fisiología , Cruzamientos Genéticos , ADN de Plantas/genética , Flores/anatomía & histología , Flores/genética , Variación Genética , Genotipo , México , Repeticiones de Microsatélite/genética , Polinización , Reproducción , Plantones/anatomía & histología , Plantones/genética , Plantones/fisiología , Semillas/anatomía & histología , Semillas/genética , Semillas/fisiología , Autofecundación , Solanum/anatomía & histología , Solanum/genéticaRESUMEN
We reconstructed the phylogenetic history of Pontederiaceae using chloroplast DNA restriction-site variation from approximately two-thirds of the species in this family of aquatic monocotyledons. The molecular phylogeny was used to evaluate hypotheses concerning the evolution of reproductive characters associated with the breeding system. The family has four main genera, two of which (Eichhornia and Pontederia) have tristylous, predominantly outcrossing species, while two (Monochoria and Heteranthera) have enantiostylous taxa. Self-incompatibility is restricted to some but not all tristylous species. In Eichhornia and Pontederia, predominantly selfing species with small monomorphic flowers (homostyly) have been hypothesized to result from the multiple breakdown of tristyly. Restriction-site variation provided a well supported phylogeny of ingroup taxa, enabling the mapping of reproductive characters onto trees. Two contrasting optimization schemes were assessed, differing in the relative weights assigned to shifts in character states. The reconstructed sequence of floral character-state change was used to assess competing hypotheses concerning the origin and breakdown of tristyly, and the relationships between tristylous and enantiostylous syndromes. Our results indicate that the class of optimization scheme used was the most critical factor in reconstructing character evolution. Despite some topological uncertainties and difficulty in reconstructing the primitive floral form in the family, several broad conclusions were possible when an unordered, unequally-weighted optimization scheme was used: (1) tristyly originated either once or twice, while the occurrence of enantiostyly in Monochoria and Heteranthera was always found to have independent origins; (2) tristyly has repeatedly broken down leading to selfing, homostylous taxa; and (3) self-incompatibility probably arose after the origin of floral trimorphism, a sequence of events that conflicts with some evolutionary models.