Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Biol Lett ; 20(5): 20230509, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38746982

RESUMEN

A central goal in biology is to understand which traits underlie adaptation to different environments. Yet, few studies have examined the relative contribution of competitive ability towards adaptive divergence among species occupying distinct environments. Here, we test the relative importance of competitive ability as an adaptation to relatively benign versus challenging environments, using previously published studies of closely related species pairs of primarily tidal plants subjected to reciprocal removal with transplant experiments in nature. Subordinate species typically occupy more challenging environments and showed consistent evidence for adaptation to challenging conditions, with no significant competitive effect on non-local, dominant species. In contrast, dominant species typically occupy relatively benign environments and performed significantly better than non-local, subordinate species that faced competition from the dominant species. Surprisingly, when the two species were not allowed to compete, the subordinate species performed as well as the dominant species in the benign environments where the subordinate species do not occur. These results suggest that competitive ability is the most important adaptation distinguishing the species that occupy relatively benign environments. The limited scope and number of suitable experimental studies encourage future work to test if these results are generalizable across taxa and environments.


Asunto(s)
Adaptación Fisiológica , Ecosistema , Especificidad de la Especie , Ambiente , Plantas/clasificación , Fenómenos Fisiológicos de las Plantas , Conducta Competitiva
2.
Biol Lett ; 20(1): 20230507, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38290550

RESUMEN

Population declines of organisms are widespread and severe, but some species' populations have remained stable, or even increased. The reasons some species are less vulnerable to population decline than others are not well understood. Species that tolerate urban environments often have a broader environmental tolerance, which, along with their ability to tolerate one of the most human-modified habitats (i.e. cities), might allow them to persist in the face of diverse anthropogenic challenges. Here, we examined the relationship between urban tolerance and annual population trajectories for 397 North American bird species. Surprisingly, we found that urban tolerance was unrelated to species' population trajectories. The lack of a relationship between urban tolerance and population trajectories may reflect other factors driving population declines independent of urban tolerance, challenges that are amplified in cities (e.g. climate warming, disease), and other human impacts (e.g. conservation efforts, broad-scale land-use changes) that have benefitted some urban-avoidant species. Overall, our results illustrate that urban tolerance does not protect species against population decline.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Animales , Clima , Aves , América del Norte , Dinámica Poblacional
3.
Macromol Rapid Commun ; 45(2): e2300457, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37831810

RESUMEN

Ionogels possess high conductivity, stretchability, and adhesion, making them promising as flexible sensors. However, it remains challenging to fabricate an ionogel which integrates excellent environment endurance, superior mechanical strength, high self-healing efficiency, and super adhesion. Herein, a supramolecular ionic liquid is synthesized using calcium chloride and 1-butyl-3-methylimidazolium chloride. An advanced ionogel based on this supramolecular ionic liquid is conveniently constructed by a one-pot method with acrylamide and acrylic acid as monomers. The supramolecular cross-linking network, formed by affluent coordination interactions, hydrogen bonds, and electrostatic interactions, provides the ionogel with ideal mechanical strength (tensile strength up to 1.7 MPa), high self-healing efficiency (up to 149%), super adhesion (up to 358 kPa on aluminum), excellent solvent tolerance (less than 10% weight increase, high mechanical and sensing performance retention after being soaked in organic solvents), and low-temperature endurance (breaking elongation can reach 87% at -30 °C). The supramolecular ionogels can function as multi-mode sensors, capable of monitoring strain and different amplitudes of human movements in real-time. Moreover, the sensing performance of ionogels remains unaffected even after being self-healed or exposure to organic solvents. It is expected that this study could offer valuable design ideas to construct advanced gel materials applicable in complicated environment.


Asunto(s)
Líquidos Iónicos , Humanos , Acrilamida , Frío , Conductividad Eléctrica , Enlace de Hidrógeno
4.
Environ Res ; 261: 119752, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117053

RESUMEN

The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has caused substantial declines in Bd-susceptible amphibian species worldwide. However, some populations of Bd-susceptible frogs have managed to survive at existing metal-polluted sites, giving rise to the hypothesis that frogs might persist in the presence of Bd if Bd is inhibited by metals at concentrations that frogs can tolerate. We tested this hypothesis by measuring the survival of Bd zoospores, the life stage that infects amphibians, and calculated the LC50 after exposure to environmentally-relevant elevated concentrations of copper (Cu), zinc (Zn), and their combination (Cu + Zn) in two repeated 4-day acute exposure runs. We also measured the chronic sensitivity of Bd to these metals over three generations by measuring the number of colonies and live zoospores and calculating EC50 concentrations after 42 days of exposure. We then compared acute and chronic sensitivity of Bd with amphibian sensitivities by constructing species sensitivity distributions (SSDs) using LC50 and EC50 data obtained from the literature. Acute sensitivity data showed that Bd zoospore survival decreased with increasing metal concentrations and exposure durations relative to the control, with the highest LC50 values for Cu and Zn being 2.5 µg/L and 250 µg/L, respectively. Chronic exposures to metals resulted in decreased numbers of Bd colonies and live zoospores after 42 days, with EC50 values of 0.75 µg/L and 1.19 µg/L for Cu and Zn, respectively. Bd zoospore survival was 10 and 8 times more sensitive to Cu and Zn, respectively in acute, and 2 and 5 times more sensitive to Cu and Zn in chronic exposure experiments than the most sensitive amphibian species recorded. Our findings are consistent with the hypothesis that metals in existing metal-polluted sites may have a greater impact on Bd relative to amphibians' performance, potentially enabling Bd-susceptible amphibians to persist with Bd at these sites.

5.
Am Nat ; 202(1): 1-17, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37384767

RESUMEN

AbstractClosely related, ecologically similar species often segregate their distributions along environmental gradients of time, space, and resources, but previous research suggests diverse underlying causes. Here, we review reciprocal removal studies in nature that experimentally test the role of interactions among species in determining their turnover along environmental gradients. We find consistent evidence for asymmetric exclusion coupled with differences in environmental tolerance causing the segregation of species pairs, where a dominant species excludes a subordinate from benign regions of the gradient but is unable to tolerate challenging regions to which the subordinate species is adapted. Subordinate species were consistently smaller and performed better in regions of the gradient typically occupied by the dominant species compared with their native distribution. These results extend previous ideas contrasting competitive ability with adaptation to abiotic stress to include a broader diversity of species interactions (intraguild predation, reproductive interference) and environmental gradients, including gradients of biotic challenge. Collectively, these findings suggest that adaptation to environmental challenge compromises performance in antagonistic interactions with ecologically similar species. The consistency of this pattern across diverse organisms, environments, and biomes suggests generalizable processes structuring the segregation of ecologically similar species along disparate environmental gradients, a phenomenon that we propose should be named the competitive exclusion-tolerance rule.


Asunto(s)
Aclimatación , Ecosistema , Animales , Conducta Predatoria , Reproducción
6.
Small ; 19(50): e2304353, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37620125

RESUMEN

Fiber-shaped conductors with high electrical conductivity, stretchability, and durability have attracted increasing attention due to their potential for integration into arbitrary wearable forms. However, these fiber conductors still suffer from low reliability and short life span, particularly in harsh environments. Herein, a conductive, environment-tolerant, stretchable, and healable fiber conductor (CESH), which consists of a self-healable and stretchable organohydrogel fiber core, a conductive and buckled silver nanowire coating, and a self-healable and waterproof protective sheath, is reported. Such a multilayer core-sheath design not only offers high stretchability (≈2400%), high electrical conductivity (1.0 × 106 S m-1 ), outstanding self-healing ability and durability, but also possesses unprecedented tolerance in harsh environments including wide working temperature (-60-20 °C), arid (≈10 % RH (RH: room humidity)), and underwater conditions. As proof-of-concept demonstrations, CESHs are integrated into various wearable formats as interconnectors to steadily perform the electric function under different mechanical deformations and harsh conditions. Such a new type of multifunctional fiber conductors can bridge the gap in stretchable and self-healing fiber technologies by providing ultrastable electrical conductance and excellent environmental tolerance, which can greatly expand the range of applications for fiber conductors.

7.
New Phytol ; 238(1): 405-421, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600403

RESUMEN

The timing of a developmental transition (phenology) can influence the environment experienced by subsequent life stages. When phenology causes an organism to occupy a particular habitat as a consequence of the developmental cues used, it can act as a form of habitat tracking. Evolutionary theory predicts that habitat tracking can alter the strength, direction, and mode of natural selection on subsequently expressed traits. To test whether germination phenology altered natural selection on postgermination traits, we manipulated germination time by planting seedlings in seven germination cohorts spanning 2 yr. We measured selection on postgermination traits relating to drought, freezing, and heat tolerance using a diverse combination of Arabidopsis thaliana mutants and naturally occurring ecotypes. Germination cohorts experienced variable selection: when dry, cold, and hot environments were experienced by seedlings, selection was intensified for drought, freezing, and heat tolerance, respectively. Reciprocally, postgermination traits modified the optimal germination time; genotypes had maximum fitness after germinating in environments that matched their physiological tolerances. Our results support the theoretical predictions of feedbacks between habitat tracking and traits expressed after habitat selection. In natural populations, whether phenological shifts alter selection on subsequently expressed traits will depend on the effectiveness of habitat tracking through phenology.


Asunto(s)
Germinación , Plantones , Germinación/genética , Fenotipo , Plantones/genética , Selección Genética , Genotipo , Estaciones del Año
8.
Glob Chang Biol ; 28(11): 3651-3664, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35231142

RESUMEN

Belowground plant traits play important roles in plant diversity loss driven by atmospheric nitrogen (N) deposition. However, the way N enrichment shapes plant microhabitats by patterning belowground traits and finally determines aboveground responses is poorly understood. Here, we investigated the rhizosheath trait of 74 plant species in seven N-addition simulation experiments across multiple grassland ecosystems in China. We found that rhizosheath formation differed among plant functional groups and contributed to changes in plant community composition induced by N enrichment. Compared with forb species, grass and sedge species exhibited distinct rhizosheaths; moreover, grasses and sedges expanded their rhizosheaths with increasing N-addition rate which allowed them to colonize belowground habitats. Grasses also shaped a different microenvironment around their roots compared with forbs by affecting the physicochemical, biological, and stress-avoiding properties of their rhizosphere soil. Rhizosheaths act as a "biofilm-like shield" by the accumulation of protective compounds, carboxylic anions and polysaccharides, determined by both plants and microorganisms. This enhanced the tolerance of grasses and sedges to stresses induced by N enrichment. Conversely, forbs lacked the protective rhizosheaths which renders their roots sensitive to stresses induced by N enrichment, thus contributing to their disappearance under N-enriched conditions. This study uncovers the processes by which belowground facilitation and trait matching affect aboveground responses under conditions of N enrichment, which advances our mechanistic understanding of the contribution of competitive exclusion and environmental tolerance to plant diversity loss caused by N deposition.


Asunto(s)
Pradera , Nitrógeno , Biomasa , Ecosistema , Plantas , Poaceae , Suelo/química
9.
Mar Drugs ; 20(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35049885

RESUMEN

Adaptive laboratory evolution (ALE) has been widely utilized as a tool for developing new biological and phenotypic functions to explore strain improvement for microalgal production. Specifically, ALE has been utilized to evolve strains to better adapt to defined conditions. It has become a new solution to improve the performance of strains in microalgae biotechnology. This review mainly summarizes the key results from recent microalgal ALE studies in industrial production. ALE designed for improving cell growth rate, product yield, environmental tolerance and wastewater treatment is discussed to exploit microalgae in various applications. Further development of ALE is proposed, to provide theoretical support for producing the high value-added products from microalgal production.


Asunto(s)
Microalgas/crecimiento & desarrollo , Animales , Acuicultura , Organismos Acuáticos , Biotecnología
10.
J Invertebr Pathol ; 174: 107436, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32619548

RESUMEN

Several isolates of Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Cordycipitacae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitacae) have been investigated as possible microbial control agents of key citrus pests in South Africa. Although laboratory results have been promising, field trials against foliar pests have shown limited success. These findings highlighted the need to investigate other biological attributes of these fungal isolates besides virulence in order to select candidates that may be better suited for the foliar environment. Thus, this study investigated the influence of temperature on the in vitro growth of seven indigenous local isolates and the humidity requirements necessary to promote successful infection, in comparison with two commercial isolates (B. bassiana PPRI 5339 and M. anisopliae ICIPE 69). All the fungal isolates grew across a range of temperatures (8-34 °C) and optimally between 26 and 28 °C. Similarly, fungal infection of Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) fifth instars occurred across a range of humidity levels (12%, 43%, 75%, 98%) regardless of fungal concentration, although external sporulation was restricted to treatments exposed to 98% relative humidity. It was concluded that neither temperature nor humidity, when considered alone, is likely to significantly influence the efficacy of any of the isolates in the field, given that they are active within temperature and humidity ranges experienced in South African citrus orchards.


Asunto(s)
Beauveria/fisiología , Humedad , Metarhizium/fisiología , Mariposas Nocturnas/microbiología , Control Biológico de Vectores , Temperatura , Animales , Beauveria/patogenicidad , Citrus/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/microbiología , Metarhizium/patogenicidad , Mariposas Nocturnas/crecimiento & desarrollo , Sudáfrica , Virulencia
11.
Am Nat ; 193(6): 798-813, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31094605

RESUMEN

While clines in environmental tolerance and phenotypic plasticity along a single species' range have been reported repeatedly and are of special interest in the context of adaptation to environmental changes, we know little about their evolution. Recent empirical findings in ectotherms suggest that processes underlying dynamic species' ranges can give rise to spatial differences in environmental tolerance and phenotypic plasticity within species. We used individual-based simulations to investigate how plasticity and tolerance evolve in the course of three scenarios of species' range shifts and range expansions on environmental gradients. We found that regions of a species' range that experienced a longer history or larger extent of environmental change generally exhibited increased plasticity or tolerance. Such regions may be at the trailing edge when a species is tracking its ecological niche in space (e.g., in a climate change scenario) or at the front edge when a species expands into a new habitat (e.g., in an expansion/invasion scenario). Elevated tolerance and plasticity in the distribution center was detected when asymmetric environmental change (e.g., polar amplification) led to a range expansion. However, tolerance and plasticity clines were transient and slowly flattened out after range dynamics because of genetic assimilation.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Ecosistema , Modelos Genéticos , Animales , Cambio Climático , Dinámica Poblacional , Análisis Espacial
12.
Appl Microbiol Biotechnol ; 102(6): 2645-2658, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29430584

RESUMEN

Lactic acid bacteria (LAB) are essential microbiota for the fermentation and flavor formation of Shanxi aged vinegar, a famous Chinese traditional cereal vinegar that is manufactured using open solid-state fermentation (SSF) technology. However, the dynamics of LAB in this SSF process and the underlying mechanism remain poorly understood. Here, the diversity of LAB and the potential driving factors of the entire process were analyzed by combining culture-independent and culture-dependent methods. Canonical correlation analysis indicated that ethanol, acetic acid, and temperature that result from the metabolism of microorganisms serve as potential driving factors for LAB succession. LAB strains were periodically isolated, and the characteristics of 57 isolates on environmental factor tolerance and substrate utilization were analyzed to understand the succession sequence. The environmental tolerance of LAB from different stages was in accordance with their fermentation conditions. Remarkable correlations were identified between LAB growth and environmental factors with 0.866 of ethanol (70 g/L), 0.756 of acetic acid (10 g/L), and 0.803 of temperature (47 °C). More gentle or harsh environments (less or more than 60 or 80 g/L of ethanol, 5 or 20 g/L of acetic acid, and 30 or 55 °C temperature) did not affect the LAB succession. The utilization capability evaluation of the 57 isolates for 95 compounds proved that strains from different fermentation stages exhibited different predilections on substrates to contribute to the fermentation at different stages. Results demonstrated that LAB succession in the SSF process was driven by the capabilities of environmental tolerance and substrate utilization.


Asunto(s)
Ácido Acético/metabolismo , Reactores Biológicos/microbiología , Biota , Medios de Cultivo/química , Lactobacillales/clasificación , Lactobacillales/crecimiento & desarrollo , Temperatura , Etanol/metabolismo , Fermentación , Lactobacillales/metabolismo
13.
Ecotoxicol Environ Saf ; 138: 9-15, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27987420

RESUMEN

Biotechnology is considered as a promising technology for the removal of polycyclic aromatic hydrocarbons from the environment. Free bacteria are often sensitive to some biotic and abiotic factors in the environment to the extent that their ability to effect biodegradation of organic pollutants, such as polycyclic aromatic hydrocarbons, is hampered. Consequently, it is imperative to carry out investigations into biological systems that will obviate or aid tolerance of bacteria to harsh environmental conditions. Chitosan/alginate bio-microcapsules produced using layer-by-layer (LBL) assembly method were tested for pyrene (PYR) biodegradation under harsh environmental conditions. Morphology observation indicated that the flake bio-microcapsules could be successfully prepared through LBL assembly method. Surface analysis showed that the bio-microcapsules had large fractions of mesopores. The results of the biodegradation experiments revealed that the 95% of 10mgL-1 PYR could be removed by the bacteria encapsulated chitosan/alginate bio-microcapsules in 3 days, which was higher than that of the free bacteria (59%). Compared to the free cells, the bacteria encapsulated chitosan/alginate bio-microcapsules produced 1-6 times higher PYR biodegradation rates at a high initial PYR concentration (50mgL-1) and extremely low pH values (pH =3) or temperatures (10°C or 40°C), as well as high salt stress. The results indicated that bacteria in microcapsules treatment gained a much higher tolerance to environmental stress and LBL bio-microcapsule could be promising candidate for remediating the organic pollutants.


Asunto(s)
Alginatos/farmacología , Quitosano/farmacología , Microesferas , Micobacterias no Tuberculosas/metabolismo , Pirenos , Contaminantes del Suelo , Biodegradación Ambiental , Cápsulas , Células Inmovilizadas , Ácido Glucurónico , Ácidos Hexurónicos , Temperatura
14.
J Anim Ecol ; 85(6): 1625-1635, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27392281

RESUMEN

Stressful environments affect life-history components of fitness through (i) instantaneous detrimental effects, (ii) historical (carry-over) effects and (iii) history-by-environment interactions, including acclimation effects. The relative contributions of these different responses to environmental stress are likely to change along life, but such ontogenic perspective is often overlooked in studies of tolerance curves, precluding a better understanding of the causes of costs of acclimation, and more generally of fitness in temporally fine-grained environments. We performed an experiment in the brine shrimp Artemia to disentangle these different contributions to environmental tolerance, and investigate how they unfold along life. We placed individuals from three clones of A. parthenogenetica over a range of salinities during a week, before transferring them to a (possibly) different salinity for the rest of their lives. We monitored individual survival at repeated intervals throughout life, instead of measuring survival or performance at a given point in time, as commonly done in acclimation experiments. We then designed a modified survival analysis model to estimate phase-specific hazard rates, accounting for the fact that individuals may share the same treatment for only part of their lives. Our approach allowed us to distinguish effects of salinity on (i) instantaneous mortality in each phase (habitat quality effects), (ii) mortality later in life (history effects) and (iii) their interaction. We showed clear effects of early salinity on late survival and interactions between effects of past and current environments on survival. Importantly, analysis of the ontogenetic dynamics of the tolerance curve reveals that acclimation affects different parts of the curve at different ages. Adopting a dynamical view of the ontogeny of tolerance curve should prove useful for understanding niche limits in temporally changing environments, where the full sequence of environments experienced by an individual determines its overall environmental tolerance, and how it changes throughout life.


Asunto(s)
Aclimatación , Artemia/fisiología , Ambiente , Salinidad , Adaptación Biológica , Animales , Artemia/crecimiento & desarrollo , Femenino , Modelos Biológicos , Estrés Fisiológico
15.
J Math Biol ; 72(1-2): 435-66, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25980476

RESUMEN

We introduce a novel model for continuous reversible phenotypic plasticity. The model includes a one-dimensional environmental gradient, and we describe performance of an organism as a function of the environmental state by a Gaussian tolerance curve. Organisms are assumed to adapt their tolerance curve after a change of the environmental state. We present a general framework for calculating the genotype fitness if such adaptations happen in a continuous manner and apply the model to a periodically changing environment. Significant differences of our model with previous models for plasticity are the continuity of adaptation, the presence of intermediate phenotypes, that the duration of transformations depends on their extent, fewer restrictions on the distribution of the environment, and a higher robustness with respect to assumptions about environmental fluctuations. Further, we show that continuous reversible plasticity is beneficial mainly when environmental changes occur slow enough so that fully developed phenotypes can be exhibited. Finally we discuss how the model framework can be generalized to a wide variety of biological scenarios from areas that include population dynamics, evolution of environmental tolerance and physiology.


Asunto(s)
Adaptación Fisiológica , Fenotipo , Animales , Ambiente , Aptitud Genética , Genotipo , Humanos , Conceptos Matemáticos , Modelos Biológicos , Estrés Fisiológico
16.
J Theor Biol ; 340: 60-72, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24041594

RESUMEN

Phenotypic plasticity is a widespread phenomenon, allowing organisms to better adapt to changing environments. Most empirical and theoretical studies are restricted to irreversible plasticity where the expression of a specific phenotype is mostly determined during development. However, reversible plasticity is not uncommon; here, organisms are able to switch back and forth between phenotypes. We present two optimization models for the fitness of (i) non-plastic, (ii) irreversibly plastic, and (iii) reversibly plastic genotypes in a fluctuating environment. In one model, the fitness values of an organism during different life phases act together multiplicatively (so as to consider traits that are related to survival). The other model additionally considers additive effects (corresponding to traits related to fecundity). Both models yield qualitatively similar results. If the only costs of reversible plasticity are due to temporal maladaptation while switching between phenotypes, reversibility is virtually always advantageous over irreversibility, especially for slow environmental fluctuations. If reversibility implies an overall decreased fitness, then irreversibility is advantageous if the environment fluctuates quickly or if stress events last relatively short. Our results are supported by observations from different types of organisms and have implications for many basic and applied research questions, e.g., on invasive alien species.


Asunto(s)
Adaptación Fisiológica/genética , Animales , Aves , Tipificación del Cuerpo , Boidae , Mariposas Diurnas , Daphnia , Ambiente , Vuelo Animal , Genotipo , Intestinos/fisiología , Especies Introducidas , Modelos Genéticos , Modelos Teóricos , Distribución Normal , Fenotipo , Selección Genética , Factores de Tiempo
17.
Protein Sci ; 33(9): e5135, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39150232

RESUMEN

Tardigrades are unique micro-organisms with a high tolerance to desiccation. The protection of their cells against desiccation involves tardigrade-specific proteins, which include the so-called cytoplasmic abundant heat soluble (CAHS) proteins. As a first step towards the design of peptides capable of mimicking the cytoprotective properties of CAHS proteins, we have synthesized several model peptides with sequences selected from conserved CAHS motifs and investigated to what extent they exhibit the desiccation-induced structural changes of the full-length proteins. Using circular dichroism spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations, we have found that the CAHS model peptides are mostly disordered, but adopt a more α $$ \alpha $$ -helical structure upon addition of 2,2,2-trifluoroethanol, which mimics desiccation. This structural behavior is similar to that of full-length CAHS proteins, which also adopt more ordered conformations upon desiccation. We also have investigated the surface activity of the peptides at the air/water interface, which also mimics partial desiccation. Interestingly, sum-frequency generation spectroscopy shows that all model peptides are surface active and adopt a helical structure at the air/water interface. Our results suggest that amino acids with high helix-forming propensities might contribute to the propensity of these peptides to adopt a helical structure when fully or partially dehydrated. Thus, the selected sequences retain part of the CAHS structural behavior upon desiccation, and might be used as a basis for the design of new synthetic peptide-based cryoprotective materials.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Tardigrada , Tardigrada/química , Animales , Péptidos/química , Estructura Secundaria de Proteína , Secuencia de Aminoácidos
18.
J Agric Food Chem ; 72(33): 18697-18707, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39165163

RESUMEN

Cronobacter sakazakii is a notorious foodborne opportunistic pathogen, particularly affecting vulnerable populations such as premature infants, and poses significant public health challenges. This study aimed to elucidate the role of the envZ/ompR genes in environmental tolerance, pathogenicity, and protein regulation of C. sakazakii. An envZ/ompR knockout mutant was constructed and assessed for its impact on bacterial growth, virulence, environmental tolerance, and protein regulation. Results demonstrate that deletion of envZ/ompR genes leads to reduced growth rate and attenuated virulence in animal models. Additionally, the knockout strain exhibited compromised environmental tolerance, particularly in desiccation and oxidative stress conditions, along with impaired adhesion and invasion abilities in epithelial cells. Proteomic analysis revealed significant alterations in protein expression and phosphorylation patterns, highlighting potential compensatory mechanisms triggered by gene deletion. Furthermore, investigation into protein deamidation and glucose metabolism uncovered a link between envZ/ompR deletion and energy metabolism dysregulation. Interestingly, the downregulation of MalK and GrxC proteins was identified as contributing factors to altered desiccation tolerance and disrupted redox homeostasis, respectively, providing mechanistic insights into the phenotypic changes observed. Overall, this study enhances understanding of the multifaceted roles of envZ/ompR in C. sakazakii physiology and pathogenesis, shedding light on potential targets for therapeutic intervention and food safety strategies.


Asunto(s)
Proteínas Bacterianas , Cronobacter sakazakii , Regulación Bacteriana de la Expresión Génica , Cronobacter sakazakii/genética , Cronobacter sakazakii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia , Humanos , Animales , Infecciones por Enterobacteriaceae/microbiología , Ratones , Estrés Oxidativo
19.
J Fungi (Basel) ; 10(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39057353

RESUMEN

Entomopathogenic fungi are valuable sources of biological pesticides, with conidial yield and quality being pivotal factors determining their broad applications. AzaR, a fungus-specific zinc-cluster transcription factor, is known to regulate the biosynthesis of polyketone secondary metabolites in Aspergillus niger; however, its role in pathogenic fungi remains unclear. This study investigated the role of MaAzaR in the growth, development, and environmental tolerance of Metarhizium acridum. MaAzaR deletion slowed down conidial germination rate, caused reduction in conidial yield, lowered fungal tolerance to UV radiation, did not affect fungal heat-shock tolerance, and increased fungal sensitivity to the cell-wall-destructive agent calcofluor white. Furthermore, MaAzaR deletion transformed microcycle conidiation to normal conidiation on the microcycle conidiation medium. Transcription profile analysis demonstrated that MaAzaR could regulate transformation of the conidiation pattern by controlling the expression of genes related to cell division, mycelium growth and development, and cell wall integrity. Thus, this study identified a new gene related to fungal conidiation and environmental tolerance, enriching our understanding of the molecular mechanism of microcycle conidiation and providing theoretical support and genetic resources for the development of high-yielding strains.

20.
ACS Appl Mater Interfaces ; 16(19): 25498-25510, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701230

RESUMEN

Clean, energy-free methods of cooling are an effective way to respond to the global energy crisis. To date, cooling materials using passive daytime radiative cooling (RC) technology have been applied in the fields of energy-efficient buildings, solar photovoltaic cooling, and insulating textiles. However, RC materials frequently suffer from comprehensive damage to their microstructure, resulting in the loss of their initial cooling effect in complex outdoor environments. Here, a superhydrophobic daytime passive RC porous film with environmental tolerance (SRCP film) was fabricated, which integrated strong solar reflectivity (approximately 90%), mid-infrared emissivity (approximately 0.97), and superhydrophobicity (water contact angle (WCA) of 160° and sliding angle of 3°). This study revealed that SRCP film had an average reflectivity of 14.3% higher than SiO2 particles in the 0.3-2.5 µm wavelength region, achieving a cooling effect of 13.2 °C in ambient conditions with a solar irradiance of 946 W·m-2 and a relative humidity of 74% due to the synergistic effect of effective solar reflection and thermal infrared emission. In addition, empirical results showed that the attained films possessed outstanding environmental tolerance, maintaining high WCA (156°), stable cooling effect (8.3 °C), and low SiO2 loss (less than 5.1%) after 30 consecutive days of UV irradiation and 14 days of corrosion with acidic and alkaline solutions. More importantly, this work could be flexibly prepared by various methods without the use of any fluorine-containing reagents, which greatly widens the practical application scope.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA