RESUMEN
SPR720 is a phosphate ester prodrug that is converted rapidly in vivo to SPR719, the active moiety, which exhibits potent in vitro activity against clinically relevant mycobacterial species including Mycobacterium avium complex (MAC) and Mycobacterium abscessus. SPR720 is in clinical development for the treatment of nontuberculous mycobacterial pulmonary disease (NTM-PD) due to MAC. This study evaluated the safety and the intrapulmonary pharmacokinetics of SPR719 in healthy volunteers. A total of 30 subjects received oral SPR720 1,000 mg once daily for 7 days followed by bronchoscopy and bronchoalveolar lavage, with blood samples collected for plasma pharmacokinetic assessments. Mean SPR719 area under the concentration-time curve from time 0 to 24 hours (AUC0-24) and maximum concentration (Cmax) for plasma, epithelial lining fluid (ELF), and alveolar macrophages (AM) were 52,418 ng·h/mL and 4,315 ng/mL, 59,880 ng·h/mL and 5,429 ng/mL, and 128,105 ng·h/mL and 13,033 ng/mL, respectively. The ratios of ELF to total plasma concentrations of SPR719 based on AUC0-24 and Cmax were 1.14 and 1.26, and the ratios of AM to total plasma concentrations of SPR719 based on AUC0-24 and Cmax were 2.44 and 3.02, respectively. When corrected for protein binding, the ratios of ELF to unbound plasma concentrations of SPR719 for AUC0-24 and Cmax were 19.87 and 21.88, and the ratios of AM to unbound plasma concentrations of SPR719 for AUC0-24 and Cmax were 42.50 and 52.53, respectively. No unexpected safety findings were observed. Results from this study of the intrapulmonary disposition of SPR719 support further investigation of SPR720 as a potential oral agent for the treatment of patients with NTM-PD. CLINICAL TRIALS: This study is registered with ClinicalTrials.gov as NCT05955586.
RESUMEN
Amikacin is an FDA-approved aminoglycoside antibiotic that is commonly used. However, validated dosage regimens that achieve clinically relevant exposure profiles in mice are lacking. We aimed to design and validate humanized dosage regimens for amikacin in immune-competent murine bloodstream and lung infection models of Acinetobacter baumannii. Plasma and lung epithelial lining fluid (ELF) concentrations after single subcutaneous doses of 1.37, 13.7, and 137 mg/kg of body weight were simultaneously modeled via population pharmacokinetics. Then, humanized amikacin dosage regimens in mice were designed and prospectively validated to match the peak, area, trough, and range of plasma concentration profiles in critically ill patients (clinical dose: 25-30 mg/kg of body weight). The pharmacokinetics of amikacin were linear, with a clearance of 9.93 mL/h in both infection models after a single dose. However, the volume of distribution differed between models, resulting in an elimination half-life of 48 min for the bloodstream and 36 min for the lung model. The drug exposure in ELF was 72.7% compared to that in plasma. After multiple q6h dosing, clearance decreased by ~80% from the first (7.35 mL/h) to the last two dosing intervals (~1.50 mL/h) in the bloodstream model. Likewise, clearance decreased by 41% from 7.44 to 4.39 mL/h in the lung model. The humanized dosage regimens were 117 mg/kg of body weight/day in mice [administered in four fractions 6 h apart (q6h): 61.9%, 18.6%, 11.3%, and 8.21% of total dose] for the bloodstream and 96.7 mg/kg of body weight/day (given q6h as 65.1%, 16.9%, 10.5%, and 7.41%) for the lung model. These validated humanized dosage regimens and population pharmacokinetic models support translational studies with clinically relevant amikacin exposure profiles.
Asunto(s)
Amicacina , Neumonía , Humanos , Animales , Ratones , Amicacina/farmacocinética , Antibacterianos/farmacocinética , Pulmón , Neumonía/tratamiento farmacológico , Peso CorporalRESUMEN
Aminoglycosides are important treatment options for serious lung infections, but modeling analyses to quantify their human lung epithelial lining fluid (ELF) penetration are lacking. We estimated the extent and rate of penetration for five aminoglycosides via population pharmacokinetics from eight published studies. The area under the curve in ELF vs plasma ranged from 50% to 100% and equilibration half-lives from 0.61 to 5.80 h, indicating extensive system hysteresis. Aminoglycoside ELF peak concentrations were blunted, but overall exposures were moderately high.
Asunto(s)
Aminoglicósidos , Antibacterianos , Humanos , Antibacterianos/farmacocinética , Pulmón , AmicacinaRESUMEN
BACKGROUND: In this study, the concentrations of inflammatory cytokines were measured in the bronchial epithelial lining fluid (ELF) and plasma in patients with acute hypoxemic respiratory failure (AHRF) secondary to severe coronavirus disease 2019 (COVID-19). METHODS: We comprehensively analyzed the concentrations of 25 cytokines in the ELF and plasma of 27 COVID-19 AHRF patients. ELF was collected using the bronchial microsampling method through an endotracheal tube just after patients were intubated for mechanical ventilation. RESULTS: Compared with those in healthy volunteers, the concentrations of interleukin (IL)-6 (median 27.6 pmol/L), IL-8 (1045.1 pmol/L), IL-17A (0.8 pmol/L), IL-25 (1.5 pmol/L), and IL-31 (42.3 pmol/L) were significantly greater in the ELF of COVID-19 patients than in that of volunteers. The concentrations of MCP-1 and MIP-1ß were significantly greater in the plasma of COVID-19 patients than in that of volunteers. The ELF/plasma ratio of IL-8 was the highest among the 25 cytokines, with a median of 737, and the ELF/plasma ratio of IL-6 (median: 218), IL-1ß (202), IL-31 (169), MCP-1 (81), MIP-1ß (55), and TNF-α (47) were lower. CONCLUSIONS: The ELF concentrations of IL-6, IL-8, IL-17A, IL-25, and IL-31 were significantly increased in COVID-19 patients. Although high levels of MIP-1 and MIP-1ß were also detected in the blood samples collected simultaneously with the ELF samples, the results indicated that lung inflammation was highly compartmentalized. Our study demonstrated that a comprehensive analysis of cytokines in the ELF is a feasible approach for understanding lung inflammation and systemic interactions in patients with severe pneumonia.
Asunto(s)
COVID-19 , Citocinas , Insuficiencia Respiratoria , Humanos , COVID-19/sangre , COVID-19/complicaciones , COVID-19/inmunología , Citocinas/sangre , Citocinas/análisis , Masculino , Femenino , Persona de Mediana Edad , Anciano , Insuficiencia Respiratoria/terapia , Insuficiencia Respiratoria/sangre , Adulto , Bronquios , Líquido del Lavado Bronquioalveolar/químicaRESUMEN
BACKGROUND: Nebulisation of antibiotics is a promising treatment for ventilator-associated pneumonia (VAP) caused by multidrug-resistant organisms. Ensuring effective antibiotic concentrations at the site of infection in the interstitial space fluid is crucial for clinical outcomes. Current assessment methods, such as epithelial lining fluid and tissue homogenates, have limitations in providing longitudinal pharmacokinetic data. MAIN BODY: Lung microdialysis, an invasive research technique predominantly used in animals, involves inserting probes into lung parenchyma to measure antibiotic concentrations in interstitial space fluid. Lung microdialysis offers unique advantages, such as continuous sampling, regional assessment of antibiotic lung concentrations and avoidance of bronchial contamination. However, it also has inherent limitations including the cost of probes and assay development, the need for probe calibration and limited applicability to certain antibiotics. As a research tool in VAP, lung microdialysis necessitates specialist techniques and resource-intensive experimental designs involving large animals undergoing prolonged mechanical ventilation. However, its potential impact on advancing our understanding of nebulised antibiotics for VAP is substantial. The technique may enable the investigation of various factors influencing antibiotic lung pharmacokinetics, including drug types, delivery devices, ventilator settings, interfaces and disease conditions. Combining in vivo pharmacokinetics with in vitro pharmacodynamic simulations can become feasible, providing insights to inform nebulised antibiotic dose optimisation regimens. Specifically, it may aid in understanding and optimising the nebulisation of polymyxins, effective against multidrug-resistant Gram-negative bacteria. Furthermore, lung microdialysis holds promise in exploring novel nebulisation therapies, including repurposed antibiotic formulations, bacteriophages and immunomodulators. The technique's potential to monitor dynamic biochemical changes in pneumonia, such as cytokines, metabolites and inflammation/infection markers, opens avenues for developing theranostic tools tailored to critically ill patients with VAP. CONCLUSION: In summary, lung microdialysis can be a potential transformative tool, offering real-time insights into nebulised antibiotic pharmacokinetics. Its potential to inform optimal dosing regimen development based on precise target site concentrations and contribute to development of theranostic tools positions it as key player in advancing treatment strategies for VAP caused by multidrug-resistant organisms. The establishment of international research networks, exemplified by LUMINA (lung microdialysis applied to nebulised antibiotics), signifies a proactive step towards addressing complexities and promoting multicentre experimental studies in the future.
Asunto(s)
Antibacterianos , Neumonía Asociada al Ventilador , Animales , Humanos , Microdiálisis , Neumonía Asociada al Ventilador/tratamiento farmacológico , Neumonía Asociada al Ventilador/microbiología , Pulmón/metabolismo , Respiración ArtificialRESUMEN
BACKGROUND: Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE: We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls. METHODS: Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes. RESULTS: Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION: We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.
Asunto(s)
Asma , Esputo , Humanos , Esputo/metabolismo , Lipidómica , Proteómica/métodos , Estudios Transversales , Estudios Prospectivos , LípidosRESUMEN
SPR206 is a next-generation polymyxin being developed for the treatment of multidrug-resistant (MDR) Gram-negative infections. This Phase 1 bronchoalveolar lavage (BAL) study was conducted to evaluate SPR206's safety and pharmacokinetics in plasma, pulmonary epithelial lining fluid (ELF), and alveolar macrophages (AM) in healthy volunteers. Subjects received a 100 mg intravenous (IV) dose of SPR206 infused over 1 h every 8 h for 3 consecutive doses. Each subject underwent 1 bronchoscopy with BAL at 2, 3, 4, 6, or 8 h after the start of the third IV infusion. SPR206 concentrations in plasma, BAL, and cell pellet were measured with a validated LC-MS/MS assay. Thirty-four subjects completed the study and 30 completed bronchoscopies. Mean SPR206 peak concentrations (Cmax) in plasma, ELF, and AM were 4395.0, 735.5, and 860.6 ng/mL, respectively. Mean area under the concentration-time curve (AUC0-8) for SPR206 in plasma, ELF, and AM was 20120.7, 4859.8, and 6026.4â¯ng*h/mL, respectively. The mean ELF to unbound plasma concentration ratio was 0.264, and mean AM to unbound plasma concentration ratio was 0.328. Mean SPR206 concentrations in ELF achieved lung exposures above the MIC for target Gram-negative pathogens for the entire 8-h dosing interval. Overall, SPR206 was well tolerated; 22 subjects (64.7%) reported at least 1 treatment-emergent adverse event (TEAE). Of the 40 reported TEAEs, 34 (85.0%) were reported as mild in severity. The most frequent TEAEs were oral paresthesia (10 subjects [29.4%]) and nausea (2 subjects [5.9%]). This study demonstrates pulmonary penetration of SPR206 and supports further development of SPR206 for the treatment of patients with serious infections caused by MDR Gram-negative pathogens.
Asunto(s)
Antibacterianos , Macrófagos Alveolares , Humanos , Adulto , Voluntarios Sanos , Cromatografía Liquida , Líquido del Lavado Bronquioalveolar , Espectrometría de Masas en Tándem , Pulmón , Administración IntravenosaRESUMEN
Polymyxin B is a "last-line-of-defense" antibiotic approved in the 1960s. However, the population pharmacokinetics (PK) of its four main components has not been reported in infected mice. We aimed to determine the PK of polymyxin B1, B1-Ile, B2, and B3 in a murine bloodstream and lung infection model of Acinetobacter baumannii and develop humanized dosage regimens. A linear 1-compartment model, plus an epithelial lining fluid (ELF) compartment for the lung model, best described the PK. Clearance and volume of distribution were similar among the four components. The bioavailability fractions were 72.6% for polymyxin B1, 12.0% for B1-Ile, 11.5% for B2, and 3.81% for B3 for the lung model and were similar for the bloodstream model. While the volume of distribution was comparable between both models (17.3 mL for the lung and ~27 mL for the bloodstream model), clearance was considerably smaller for the lung (2.85 mL/h) compared to that of the bloodstream model (5.59 mL/h). The total drug exposure (AUC) in ELF was high due to the saturable binding of polymyxin B presumably to bacterial lipopolysaccharides. However, the modeled unbound AUC in ELF was ~16.7% compared to the total drug AUC in plasma. The long elimination half-life (~4 h) of polymyxin B enabled humanized dosage regimens with every 12 h dosing in mice. Daily doses that optimally matched the range of drug concentrations observed in patients were 21 mg/kg for the bloodstream and 13 mg/kg for the lung model. These dosage regimens and population PK models support translational studies for polymyxin B at clinically relevant drug exposures.
Asunto(s)
Antibacterianos , Polimixina B , Ratones , Animales , Polimixina B/farmacocinética , Antibacterianos/farmacocinética , Pulmón/microbiología , Disponibilidad Biológica , PlasmaRESUMEN
BACKGROUND: Alpha-1-antitrypsin deficient (AATD) individuals are prone to develop early age of onset chronic obstructive pulmonary disease (COPD) more severe than non-genetic COPD. Here, we investigated the characteristics of lower respiratory tract of AATD individuals prior to the onset of clinically significant COPD. METHODS: Bronchoalveolar lavage was performed on 22 AATD with normal lung function and 14 healthy individuals. Cell counts and concentrations of proteases, alpha-1-antitrypsin and proinflammatory mediators were determined in the bronchoalveolar lavage fluid from study subjects. In order to determine the airway inflammation, we also analyzed immune cell components of the large airways from bronchial biopsies using immunohistochemistry in both study subjects. Finally, we made comparisons between airway inflammation and lung function rate of decline using four repeated lung function tests over one year in AATD individuals. RESULTS: AATD individuals with normal lung function had 3 folds higher neutrophil counts, 2 folds increase in the proteases levels, and 2-4 folds higher levels of IL-8, IL-6, IL-1ß, and leukotriene B4 in their epithelial lining fluid compared to controls. Neutrophil elastase levels showed a positive correlation with the levels of IL-8 and neutrophils in AATD epithelial lining fluid. AATD individuals also showed a negative correlation of baseline FEV1 with neutrophil count, neutrophil elastase, and cytokine levels in epithelial lining fluid (p < 0.05). In addition, we observed twofold increase in the number of lymphocytes, macrophages, neutrophils, and mast cells of AATD epithelial lining fluid as compared to controls. CONCLUSION: Mild inflammation is present in the lower respiratory tract and airways of AATD individuals despite having normal lung function. A declining trend was also noticed in the lung function of AATD individuals which was correlated with pro-inflammatory phenotype of their lower respiratory tract. This results suggest the presence of proinflammatory phenotype in AATD lungs. Therefore, early anti-inflammatory therapies may be a potential strategy to prevent progression of lung disease in AATD individuals.
Asunto(s)
Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Deficiencia de alfa 1-Antitripsina , Humanos , Deficiencia de alfa 1-Antitripsina/diagnóstico , Deficiencia de alfa 1-Antitripsina/epidemiología , Deficiencia de alfa 1-Antitripsina/genética , Elastasa de Leucocito , Interleucina-8 , alfa 1-Antitripsina/genética , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Pulmón , Inflamación/diagnósticoRESUMEN
The use of unbound drug concentrations is crucial for the prediction of efficacious doses. Hence, dose predictions for antibiotics targeting respiratory pathogens should be based on free, rather than the currently used, total drug concentrations in epithelial lining fluid (ELF). In this work, we describe an assay to estimate the percent unbound of drugs in ELF using simulated epithelial lining fluid (sELF) containing the most abundant components of ELF in healthy humans. A diverse set of 85 compounds showed a broad range of unbound values ranging from <0.01 to 100%. Binding in sELF was influenced by ionization, with basic compounds typically resulting in a stronger binding than neutral and acidic compounds (median percent unbound values 17, 50, and 62%, respectively). A permanent positive charge further increased binding (median percent unbound 11%), while zwitterions showed a lower binding (median percent unbound 69%). In lipid-free sELF, the binding of basic compounds was less pronounced, while compounds of other ionization classes were less impacted, indicating that lipids are involved in the binding of bases. A reasonable correlation was found between binding in sELF and human plasma (R2 = 0.75); however, plasma binding poorly predicted sELF binding for basic compounds (R2 = 0.50). Bases are an important compound class for antibacterial drug development since positive charges affect permeability into Gram-negative bacteria, which are important in terms of bacterial pneumonia. To evaluate in vivo activity, we selected two bases, for which strong sELF binding was observed (percent unbound <1 and 7%) and conducted an analysis of antibacterial efficacy in the neutropenic murine lung efficacy model and total vs free ELF drug concentrations. In both cases, the total ELF resulted in an overprediction of expected efficacy, while the corrected free ELF explained the observed in vivo efficacy. This supports that free, and not total, ELF concentrations should be used for the efficacious dose prediction for pneumonia and highlights the importance of determining binding in this matrix.
Asunto(s)
Antibacterianos , Neumonía , Humanos , Ratones , Animales , Antibacterianos/metabolismo , Líquido del Lavado Bronquioalveolar/química , Pulmón/metabolismo , Neumonía/metabolismo , PermeabilidadRESUMEN
Exposure to ambient air pollution is a major risk factor for human health. Inhalation of air pollutants can enhance the formation of reactive species in the epithelial lining fluid (ELF) of the respiratory tract and can lead to oxidative stress and oxidative damage. Here, we investigate the chemical modification of proteins by reactive species from air pollution and endogenous biological sources using an extended version of the multiphase chemical kinetic model KM-SUB-ELF 2.0 with a detailed mechanism of protein modification. Fine particulate matter (PM2.5) and nitrogen dioxide (â¢NO2) act synergistically and increase the formation of nitrotyrosine (Ntyr), a common biomarker of oxidative stress. Ozone (O3) is found to be a burden on the antioxidant defense system but without substantial influence on the Ntyr concentration. In simulations with low levels of air pollution, the Ntyr concentration in the ELF is consistent with the range of literature values for bronchoalveolar lavage fluid from healthy individuals. With high levels of air pollution, however, we obtain strongly elevated Ntyr concentrations. Our model analysis shows how chemical reactions of air pollutants can modify proteins and thus their functionality in the human body, elucidating a molecular pathway that may explain air pollutant effects on human health.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Tirosina , Estrés OxidativoRESUMEN
Hydroxychloroquine (HCQ) was repurposed for COVID-19 treatment. Subtherapeutic HCQ lung levels and cardiac toxicity of oral HCQ were overcome by intratracheal (IT) administration of lower HCQ doses. The crosslinker-free supercritical fluid technology (SFT) produces aerogels and impregnates them with drugs in their amorphous form with efficient controlled release. Mechanistic physiologically based pharmacokinetic (PBPK) modeling can predict the lung's epithelial lining fluid (ELF) drug levels. This study aimed to develop a novel HCQ SFT formulation for IT administration to achieve maximal ELF levels and minimal cardiac toxicity. HCQ SFT formulation was prepared and evaluated for physicochemical, in vitro release, pharmacokinetics, and cardiac toxicity. Finally, the rat HCQ ELF concentrations were predicted using PBPK modeling. HCQ was amorphous after loading into the chitosan-alginate nanoporous microparticles (22.7±7.6 µm). The formulation showed a zero-order release, with only 40% released over 30 min compared to 94% for raw HCQ. The formulation had a tapped density of 0.28 g/cm3 and a loading efficiency of 35.3±1.3%. The IT administration of SFT HCQ at 1 mg/kg resulted in 23.7-fold higher bioavailability, fourfold longer MRT, and eightfold faster absorption but lower CK-MB and LDH levels than oral raw HCQ at 4 mg/kg. The PBPK model predicted 6 h of therapeutic ELF levels for IT SFT HCQ and a 100-fold higher ELF-to-heart concentration ratio than oral HCQ. Our findings support the feasibility of lung-targeted and more effective SFT HCQ IT administration for COVID-19 compared to oral HCQ with less cardiac toxicity. Graphical abstract.
Asunto(s)
COVID-19 , Hidroxicloroquina , Humanos , Ratas , Animales , Hidroxicloroquina/farmacocinética , Hidroxicloroquina/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Cardiotoxicidad , PulmónRESUMEN
Antibody-based therapeutics have recently gained keen attention for the treatment of pulmonary indications. However, systemically administered antibody exposure in the lungs needs to be better understood and remains a topic of interest. In this study, we evaluated the exposure of two different uPAR (urokinase-type plasminogen activator receptor) targeting full-length monoclonal IgGs in plasma and lung epithelial lining fluid (ELF) of mice after IP and IV administration. Antibody AK17 exhibited linear pharmacokinetics (PK) in plasma and ELF at 3 and 30 mg/kg single IV dose. The average plasma and ELF half-lives for AK17 and AK21 ranged between ~321-411 h and ~230-345 h, respectively, indicating sustained systemic and lung exposure of antibodies. The average ELF to the plasma concentration ratio of antibodies was ~0.01 and ~0.03 with IP and IV dosing, respectively, over 2 weeks post single dose. We simultaneously characterized plasma and ELF PK of antibody in mice by developing a minimal lung PBPK model for antibody. This model reasonably captured the plasma and ELF PK data while estimating three parameters. The model accounts for the convective transport of antibody into the tissues via blood and lymph flow. FcRn-mediated transcytosis was incorporated into the model for antibody distribution across the lung epithelial barrier. This model serves as a platform to predict the pulmonary PK of systemically administered antibodies and to support optimal dose selection for desired exposure in the lungs as the site of action.
Asunto(s)
Pulmón , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Ratones , Animales , Anticuerpos Monoclonales , AntibacterianosRESUMEN
Tebipenem pivoxil hydrobromide (TBP-PI-HBr) is an oral carbapenem prodrug being developed for the treatment of serious bacterial infections. The active moiety, tebipenem, has broad-spectrum activity against common Enterobacterales pathogens, including extended-spectrum-ß-lactamase (ESBL)-producing multidrug-resistant strains. This study evaluated the intrapulmonary pharmacokinetics (PK) and epithelial lining fluid (ELF) and alveolar macrophage (AM) concentrations of tebipenem relative to plasma levels in nonsmoking, healthy adult subjects. Thirty subjects received oral TBP-PI-HBr at 600 mg every 8 h for five doses. Serial blood samples were collected following the last dose. Each subject underwent one standardized bronchoscopy with bronchoalveolar lavage (BAL) 1, 2, 4, 6, or 8 h after the fifth dose of TBP-PI-HBr. The tebipenem area under the concentration-time curve for the 8-h dosing interval (AUC0-8) values in plasma, ELF, and AMs were calculated using the mean concentration at each BAL sampling time. Ratios of AUC0-8 values for total ELF and AMs to those for unbound plasma were determined, using a plasma protein binding value of 42%. Mean values ± standard deviations (SD) of tebipenem maximum (Cmax) and minimum (Cmin) total plasma concentrations were 11.37 ± 3.87 mg/L and 0.043 ± 0.039 mg/L, respectively. Peak tebipenem concentrations in plasma, ELF, and AMs occurred at 1 h and then decreased over 8 h. Ratios of tebipenem AUC0-8 values for ELF and AMs to those for unbound plasma were 0.191 and 0.047, respectively. Four (13.3%) subjects experienced adverse events (diarrhea, fatigue, papule, and coronavirus disease 2019 [COVID-19]); all resolved, and none were severe or serious. Tebipenem is distributed into the lungs of healthy adults, which supports the further evaluation of TBP-PI-HBr for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens. (This study has been registered at ClinicalTrials.gov under identifier NCT04710407.).
Asunto(s)
Antibacterianos , COVID-19 , Administración Oral , Adulto , Antibacterianos/farmacocinética , Líquido del Lavado Bronquioalveolar , Carbapenémicos/metabolismo , Humanos , Pulmón/metabolismo , Monobactamas/metabolismoRESUMEN
The objective of this article is to describe the population pharmacokinetics (PK) of temocillin administered via continuous infusion (CI) versus intermittent infusion (II) in critically ill patients with pneumonia. Secondary objectives included characterization of epithelial lining fluid (ELF)/plasma penetration ratios and determination of the probability of target attainment (PTA) for a range of MICs. Thirty-two mechanically ventilated patients who were treated for pneumonia with 6 g of temocillin daily for in vitro sensitive pathogens were assigned to either the II (2 g every 8 h over 0.5 h) or the CI (6 g over 24 h after a loading dose of 2 g) group. A population pharmacokinetic model was developed using unbound plasma, and total ELF concentrations of temocillin and related Monte Carlo simulations were performed to assess PTAs. The area under the concentration-time curve from 0 to 24 h (AUC0-24) ELF/plasma penetration ratio was 0.73, at steady state, for both modes of infusion and whatever the level of creatinine clearance. Monte Carlo simulations showed that for the minimal pharmacodynamic (PD) targets of 50% T > 1× MIC (II group) and 100% T > 1× MIC (CI group), PK/PD breakpoints were 4 mg/L in plasma and 2 mg/L in ELF and 4 mg/L in plasma and ELF, respectively. The breakpoint was 8 mg/L in ELF for both modes of infusion in patients with creatinine clearance (CLCR) < 60 mL/min/1.73 m2. While CI provides better PKPD indexes, the latter remain below available recommendations for systemic infections, except in the case of moderate renal impairment, thereby warranting future clinical studies in order to determine the efficacy of temocillin in severe pneumonia.
Asunto(s)
Antibacterianos , Neumonía , Antibacterianos/farmacocinética , Humanos , Pruebas de Sensibilidad Microbiana , Método de Montecarlo , Penicilinas/uso terapéutico , Neumonía/tratamiento farmacológicoRESUMEN
BACKGROUND: The kallikrein-kinin system is assumed to have a multifunctional role in health and disease, but its in vivo role in humans currently remains unclear owing to the divergence of plasma kinin level data published ranging from the low picomolar to high nanomolar range, even in healthy volunteers. Moreover, existing data are often restricted on reporting levels of single kinins, thus neglecting the distinct effects of active kinins on bradykinin (BK) receptors considering diverse metabolic pathways. A well-characterized and comprehensively evaluated healthy cohort is imperative for a better understanding of the biological variability of kinin profiles to enable reliable differentiation concerning disease-specific kinin profiles. METHODS: To study biological levels and variability of kinin profiles comprehensively, 28 healthy adult volunteers were enrolled. Nasal lavage fluid and plasma were sampled in customized protease inhibitor prespiked tubes using standardized protocols, proven to limit inter-day and interindividual variability significantly. Nine kinins were quantitatively assessed using validated LC-MS/MS platforms: kallidin (KD), Hyp4-KD, KD1-9, BK, Hyp3-BK, BK1-8, BK1-7, BK1-5, and BK2-9. Kinin concentrations in nasal epithelial lining fluid were estimated by correlation using urea. RESULTS: Circulating plasma kinin levels were confirmed in the very low picomolar range with levels below 4.2 pM for BK and even lower levels for the other kinins. Endogenous kinin levels in nasal epithelial lining fluids were substantially higher, including median levels of 80.0 pM for KD and 139.1 pM for BK. Hydroxylated BK levels were higher than mean BK concentrations (Hyp3-BK/BK = 1.6), but hydroxylated KD levels were substantially lower than KD (Hyp4-KD/KD = 0.37). No gender-specific differences on endogenous kinin levels were found. CONCLUSIONS: This well-characterized healthy cohort enables investigation of the potential of kinins as biomarkers and would provide a valid control group to study alterations of kinin profiles in diseases, such as angioedema, sepsis, stroke, Alzheimer's disease, and COVID-19.
Asunto(s)
Cininas , Cromatografía Liquida , Humanos , Cininas/análisis , Receptores de Bradiquinina/metabolismo , Espectrometría de Masas en TándemRESUMEN
Oxidative stress mediated by reactive oxygen species (ROS) is a key process for adverse aerosol health effects. Secondary organic aerosols (SOA) account for a major fraction of fine particulate matter, and their inhalation and deposition into the respiratory tract causes the formation of ROS by chemical and cellular processes, but their relative contributions are hardly quantified and their link to oxidative stress remains uncertain. Here, we quantified cellular and chemical superoxide generation by 9,10-phenanthrenequinone (PQN) and isoprene SOA using a chemiluminescence assay combined with electron paramagnetic resonance spectroscopy as well as kinetic modeling. We also applied cellular imaging techniques to study the cellular mechanism of superoxide release and oxidative damage on cell membranes. We show that PQN and isoprene SOA activate NADPH oxidase in macrophages to release massive amounts of superoxide, overwhelming the superoxide formation by aqueous chemical reactions in the epithelial lining fluid. The activation dose for PQN is 2 orders of magnitude lower than that of isoprene SOA, suggesting that quinones are more toxic. While higher exposures trigger cellular antioxidant response elements, the released ROS induce oxidative damage to the cell membrane through lipid peroxidation. Such mechanistic and quantitative understandings provide a basis for further elucidation of adverse health effects and oxidative stress by fine particulate matter.
Asunto(s)
Contaminantes Atmosféricos , Superóxidos , Especies Reactivas de Oxígeno/metabolismo , Quinonas , NADPH Oxidasas/metabolismo , NADPH Oxidasas/farmacología , Contaminantes Atmosféricos/análisis , Aerosoles , Material Particulado/toxicidad , Material Particulado/análisis , Estrés Oxidativo , MacrófagosRESUMEN
Lung related disorders like COPD and Asthma, as well as various infectious diseases, form a major therapeutic area which would benefit from a predictive and adaptable mathematical model for describing pulmonary disposition of biological modalities. In this study we fill that gap by extending the cross-species two-pore physiologically-based pharmacokinetic (PBPK) platform with more detailed respiratory tract that includes the airways and alveolar space with epithelial lining fluid. We parameterize the paracellular and FcRn-facilitated exchange pathways between the epithelial lining fluid and lung interstitial space by building a mechanistic model for the exchange between the two. The optimized two-pore PBPK model described pulmonary exposure of several systemically dosed mAbs for which data is available and is also in agreement with the observed levels of endogenous IgG and albumin. The proposed framework can be used to assess pharmacokinetics of new lung-targeting biologic therapies and guide their dosing to achieve desired exposure at the pulmonary site-of-action.
Asunto(s)
Anticuerpos Monoclonales , Modelos Biológicos , Humanos , Anticuerpos Monoclonales/farmacocinética , Albúminas , PulmónRESUMEN
Pneumonia is one of the most common infections in intensive care patients, and it is often treated with beta-lactam antibiotics. Even if therapeutic drug monitoring in blood is available, it is unclear whether sufficient concentrations are reached at the target site: the lung. The present study was initiated to fill this knowledge gap. Various compartments from 10 patients' explanted lungs were subjected to laboratory analysis. Meropenem was quantified in serum, bronchoalveolar lavage (BAL) fluid, microdialysate, and homogenized lung tissue with isotope dilution liquid chromatography tandem mass spectrometry (ID-LC-MS/MS). BAL fluid represents diluted epithelial lining fluid (ELF), and microdialysate represents interstitial fluid (IF). Differences between target site and blood concentrations were investigated. The median meropenem concentration in blood, ELF, IF, and tissue were 26.8, 18.0, 12.1, and 9.1 mg/liter, respectively. A total of 37.5% of the target site ELF and IF meropenem concentrations were below the clinical EUCAST breakpoint of 8 mg/liter. The median ELF/serum quotient was 61.8% (interquartile range [IQR], 24.8% to 87.6%), the median IF/serum quotient was 35.4% (IQR, 23.8% to 54.3%), and the median tissue/serum quotient was 34.2% (IQR, 28.3% to 38.2%). We observed a substantial interindividual variability between the blood and the compartments (ELF and IF), whereas the intraindividual variability was relatively low. Target site measurement in different lung compartments was feasible and successfully applied in a clinical setting. A relevant amount of 37.5% of the target site concentrations were below the clinical EUCAST breakpoint, indicating subtherapeutic dosing in high-risk patients receiving perioperative antibiotic prophylaxis in lung transplantation. (This study has been registered at ClinicalTrials.gov under identifier NCT03970265.).
Asunto(s)
Pulmón , Espectrometría de Masas en Tándem , Antibacterianos/uso terapéutico , Lavado Broncoalveolar , Líquido del Lavado Bronquioalveolar , Cromatografía Liquida , Humanos , Meropenem , MicrodiálisisRESUMEN
Although large advances have recently been made mapping out the cellular composition of lung tissue using single cell sequencing, the composition and distribution of the cellular elements within the lining fluid of the lung has not been extensively studied. Here, we assessed the cellular composition of the lung lining fluid by performing a differential cell analysis on bronchoalveolar lavage fluid (BALF) and epithelial lining fluid (ELF) at four different locations within the lung in post-lung transplantation patients. The percentage of neutrophils and lymphocytes is reduced in more distal regions of the lungs, while the percentage of macrophages increases in these more distal regions. These data provide valuable information to determine which lung lining fluid sampling technique and location is best to use for measuring specific factors and biomarkers, and to increase the understanding of different cell populations in specific lung regions.