Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Biol ; 22(1): 161, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075553

RESUMEN

BACKGROUND: Snake venoms can exhibit remarkable inter- and intraspecific variation. While diverse ecological and environmental factors are theorised to explain this variation, only a handful of studies have attempted to unravel their precise roles. This knowledge gap not only impedes our understanding of venom evolution but may also have dire consequences on snakebite treatment. To address this shortcoming, we investigated the evolutionary ecology of venoms of Russell's viper (Daboia russelii) and spectacled cobra (Naja naja), India's two clinically most important snakes responsible for an alarming number of human deaths and disabilities. METHODOLOGY: Several individuals (n = 226) of D. russelii and N. naja belonging to multiple clutches (n = 9) and their mothers were maintained in captivity to source ontogenetic stage-specific venoms. Using various in vitro and in vivo assays, we assessed the significance of prey, ontogeny and sex in driving venom composition, function, and potency. RESULTS: Considerable ontogenetic shifts in venom profiles were observed in D. russelii, with the venoms of newborns being many times as potent as juveniles and adults against mammalian (2.3-2.5 ×) and reptilian (2-10 ×) prey. This is the first documentation of the ontogenetic shift in viperine snakes. In stark contrast, N. naja, which shares a biogeographic distribution similar to D. russelii, deployed identical biochemical cocktails across development. Furthermore, the binding kinetics of cobra venom toxins against synthetic target receptors from various prey and predators shed light on the evolutionary arms race. CONCLUSIONS: Our findings, therefore, provide fascinating insights into the roles of ecology and life history traits in shaping snake venoms.


Asunto(s)
Evolución Biológica , Animales , India , Femenino , Masculino , Daboia , Naja naja , Mordeduras de Serpientes , Venenos Elapídicos/química , Venenos de Víboras/química
2.
Mol Ecol ; 33(12): e17372, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38709214

RESUMEN

The NC10 phylum links anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophic pathway. Although numerous amplicon-based studies revealed the distribution of this phylum, comprehensive genomic insights and niche characterization in deep-sea environments were still largely unknown. In this study, we extensively surveyed the NC10 bacteria across diverse deep-sea environments, including waters, sediments, cold seeps, biofilms, rocky substrates, and subseafloor aquifers. We then reconstructed and analysed 38 metagenome-assembled genomes (MAGs), and revealed the extensive distribution of NC10 bacteria and their intense selective pressure in these harsh environments. Isotopic analyses combined with gene expression profiling confirmed that active nitrite-dependent anaerobic methane oxidation (n-DAMO) occurs within deep-sea sediments. In addition, the identification of the Wood-Ljungdahl (WL) and 3-hydroxypropionate/4-hydroxybutyrat (3HB/4HP) pathways in these MAGs suggests their capability for carbon fixation as chemoautotrophs in these deep-sea environments. Indeed, we found that for their survival in the oligotrophic deep-sea biosphere, NC10 bacteria encode two branches of the WL pathway, utilizing acetyl-CoA from the carbonyl branch for citric acid cycle-based energy production and methane from the methyl branch for n-DAMO. The observed low ratios of non-synonymous substitutions to synonymous substitutions (pN/pS) in n-DAMO-related genes across these habitats suggest a pronounced purifying selection that is critical for the survival of NC10 bacteria in oligotrophic deep-sea environments. These findings not only advance our understanding of the evolutionary adaptations of NC10 bacteria but also underscore the intricate coupling between the carbon and nitrogen cycles within deep-sea ecosystems, driven by this bacterial phylum.


Asunto(s)
Desnitrificación , Sedimentos Geológicos , Metano , Metano/metabolismo , Sedimentos Geológicos/microbiología , Desnitrificación/genética , Agua de Mar/microbiología , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Metagenoma , Filogenia , Nitritos/metabolismo , Oxidación-Reducción
3.
J Evol Biol ; 37(8): 891-904, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38847298

RESUMEN

Interspecific variation in body size is one of the most popular topics in comparative studies. Despite recent advances, little is known about the patterns and processes behind the evolution of body size in insects. Here, we used a robust data set comprising all geometrid moth species occurring in Northern Europe to examine the evolutionary associations involving body size and several life-history traits under an explicitly phylogenetic framework. We provided new insights into the interactive effects of life-history traits on body size and evidence of correlated evolution. We further established the sequence of trait evolution linking body size with the life-history traits correlated with it. We found that most (but not all) of the studied life-history traits, to some extent, influenced interspecific variation in body size, but interactive effects were uncommon. Both bi- and multivariate phylogenetic analyses indicated that larger species tend to be nocturnal flyers, overwinter in the larval stage, feed on the foliage of trees rather than herbs, and have a generalist feeding behaviour. We found evidence of correlated evolution involving body size with overwintering stage, host-plant growth form, and dietary specialization. The examination of evolutionary transitions within the correlated evolution models signalled that overwintering as larvae commonly preceded the evolution of large sizes, as did feeding on tree foliage and the generalist feeding behaviour. By showing that both body size and all life-history traits correlated with it evolve at very slow rates, we caution against uncritical attempts to propose causal explanations for respective associations based on contemporary ecological settings.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Mariposas Nocturnas , Filogenia , Animales , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/genética , Mariposas Nocturnas/anatomía & histología , Conducta Alimentaria , Rasgos de la Historia de Vida
4.
J Evol Biol ; 37(5): 526-537, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38491928

RESUMEN

Locomotory performance is an important determinant of fitness in most animals, including flying insects. Strong selective pressures on wing morphology are therefore expected. Previous studies on wing shape in Lepidoptera have found some support for hypotheses relating wing shape to environment-specific selective pressures on aerodynamic performance. Here, we present a phylogenetic comparative study on wing shape in the lepidopteran family Geometridae, covering 374 species of the northern European fauna. We focused on 11 wing traits including aspect ratio, wing roundness, and the pointedness of the apex, as well as the ratio of forewing and hindwing areas. All measures were taken from images available on the internet, using a combination of tools available in Fiji software and R. We found that wing shape demonstrates a phylogenetically conservative pattern of evolution in Geometridae, showing similar or stronger phylogenetic signal than many of its potential predictors. Several wing traits showed statistically significant associations with predictors such as body size, phenology, and preference for forest habitats. Overall, however, all of these associations remained notably weak, with no wing shape being excluded for any value of the predictors, including body size. We conclude that, in geometrids, wing traits do not readily respond to selective pressures optimizing aerodynamic performance of the moths in different environments. Selection on wing shape may nevertheless operate through other functions of the wings, with the effectiveness of crypsis at rest being a promising candidate for further studies.


Asunto(s)
Evolución Biológica , Mariposas Nocturnas , Filogenia , Alas de Animales , Animales , Alas de Animales/anatomía & histología , Mariposas Nocturnas/anatomía & histología , Mariposas Nocturnas/genética , Mariposas Nocturnas/fisiología
5.
Ann Bot ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115944

RESUMEN

BACKGROUND AND AIMS: Soil endemics have long fascinated botanists due to the insights they can provide about plant ecology and evolution. Often, these species have unique foliar nutrient composition patterns that reflect potential physiological adaptations to these harsh soil types. However, understanding global nutritional patterns to unique soil types can be complicated by the influence of recent and ancient evolutionary events. Our goal was to understand whether plant specialization to unique soils is a stronger determinant of plant nutrient composition than climate or evolutionary constraints. METHODS: We worked on gypsum soils. We analyzed whole-plant nutrient composition (leaves, stems, coarse roots and fine roots) of 36 native species of gypsophilous lineages from the Chihuahuan Desert (North America) and the Iberian Peninsula (Europe) regions, including widely distributed gypsum endemics, as specialists, and narrowly distributed endemics and non-endemics, as non-specialists. We evaluated the impact of evolutionary events and soil composition on the whole-plant composition, comparing the three categories of gypsum plants. KEY RESULTS: Our findings reveal nutritional convergence of widely distributed gypsum endemics. These taxa displayed higher foliar Sulfur and higher whole-plant Magnesium than their non-endemic relatives, irrespective of geographic location or phylogenetic history. Sulfur and Magnesium concentrations were mainly explained by non-phylogenetic variation among species related to gypsum specialization. Other nutrient concentrations were determined by more ancient evolutionary events. For example, Caryophyllales usually displayed high foliar Calcium, whereas Poaceae did not. In contrast, plant concentrations of Phosphorus was mainly explained by species-specific physiology not related to gypsum specialization or evolutionary constraints. CONCLUSIONS: Plant specialization to a unique soil may strongly influence plant nutritional strategies, as we described for gypsophilous lineages. Taking a whole-plant perspective (all organs) within a phylogenetic framework has enabled us to gain a better understanding of plant adaptation to unique soils when studying taxa from distinct regions.

6.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33758100

RESUMEN

Research examining institutionalized hierarchy tends to focus on chiefdoms and states, while its emergence among small-scale societies remains poorly understood. Here, we test multiple hypotheses for institutionalized hierarchy, using environmental and social data on 89 hunter-gatherer societies along the Pacific coast of North America. We utilize statistical models capable of identifying the main correlates of sustained political and economic inequality, while controlling for historical and spatial dependence. Our results indicate that the most important predictors relate to spatiotemporal distribution of resources. Specifically, higher reliance on and ownership of clumped aquatic (primarily salmon) versus wild plant resources is associated with greater political-economic inequality, measuring the latter as a composite of internal social ranking, unequal access to food resources, and presence of slavery. Variables indexing population pressure, scalar stress, and intergroup conflict exhibit little or no correlation with variation in inequality. These results are consistent with models positing that hierarchy will emerge when individuals or coalitions (e.g., kin groups) control access to economically defensible, highly clumped resource patches, and use this control to extract benefits from subordinates, such as productive labor and political allegiance in a patron-client system. This evolutionary ecological explanation might illuminate how and why institutionalized hierarchy emerges among many small-scale societies.


Asunto(s)
Evolución Cultural/historia , Jerarquia Social/historia , Recursos Naturales/provisión & distribución , Evolución Social , Factores Socioeconómicos/historia , Antropología Cultural , Esclavización/historia , Inseguridad Alimentaria , Geografía , Historia Antigua , Humanos , Modelos Teóricos , América del Norte , Análisis Espacio-Temporal , Indio Americano o Nativo de Alaska/historia
7.
Ecol Lett ; 26 Suppl 1: S16-S21, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37840027

RESUMEN

Studies of eco-evolutionary dynamics have integrated evolution with ecological processes at multiple scales (populations, communities and ecosystems) and with multiple interspecific interactions (antagonistic, mutualistic and competitive). However, evolution has often been conceptualised as a simple process: short-term directional adaptation that increases population growth. Here we argue that diverse other evolutionary processes, well studied in population genetics and evolutionary ecology, should also be considered to explore the full spectrum of feedback between ecological and evolutionary processes. Relevant but underappreciated processes include (1) drift and mutation, (2) disruptive selection causing lineage diversification or speciation reversal and (3) evolution driven by relative fitness differences that may decrease population growth. Because eco-evolutionary dynamics have often been studied by population and community ecologists, it will be important to incorporate a variety of concepts in population genetics and evolutionary ecology to better understand and predict eco-evolutionary dynamics in nature.


Asunto(s)
Evolución Biológica , Ecosistema , Dinámica Poblacional , Genética de Población , Crecimiento Demográfico
8.
Am Nat ; 201(5): E127-E139, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130229

RESUMEN

AbstractThe SLiM software framework for genetically explicit forward simulation has been widely used in population genetics. However, it has been largely restricted to modeling only a single species, which has limited its broader utility in evolutionary biology. Indeed, to our knowledge no general-purpose, flexible modeling framework exists that provides support for simulating multiple species while also providing other key features, such as explicit genetics and continuous space. The lack of such software has limited our ability to model higher biological levels such as communities, ecosystems, coevolutionary and eco-evolutionary processes, and biodiversity, which is crucial for many purposes, from extending our basic understanding of evolutionary ecology to informing conservation and management decisions. We here announce the release of SLiM 4, which fills this important gap by adding support for multiple species, including ecological interactions between species such as predation, parasitism, and mutualism, and illustrate its new features with examples.


Asunto(s)
Evolución Biológica , Ecosistema , Programas Informáticos , Simulación por Computador , Genética de Población , Biodiversidad
9.
Am Nat ; 202(3): 276-287, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37606945

RESUMEN

AbstractAs plant-microbe interactions are both ubiquitous and critical in shaping plant fitness, patterns of plant adaptation to their local environment may be influenced by these interactions. Identifying the contribution of soil microbes to plant adaptation may provide insight into the evolution of plant traits and their microbial symbioses. To this end, we assessed the contribution of soil microbes to plant salinity adaptation by growing 10 populations of Bromus tectorum, collected from habitats differing in their salinity, in the greenhouse under either high-salinity or nonsaline conditions and with or without soil microbial partners. Across two live soil inoculum treatments, we found evidence for adaptation of these populations to their home salinity environment. However, when grown in sterile soils, plants were slightly maladapted to their home salinity environment. As plants were on average more fit in sterile soils, pathogenic microbes may have been significant drivers of plant fitness herein. Consequently, we hypothesized that the plant fitness advantage in their home salinity may have been due to increased plant resistance to pathogenic attack in those salinity environments. Our results highlight that plant-microbe interactions may partially mediate patterns of plant adaptation as well as be important selective agents in plant evolution.


Asunto(s)
Infertilidad , Salinidad , Humanos , Aclimatación , Fenotipo , Suelo
10.
Bioscience ; 73(8): 602-608, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37680689

RESUMEN

The idea that fire acts as an evolutionary force contributing to shaping species traits started a century ago, but had not been widely recognized until very recently. Among the first to realize this force were Edward B. Poulton, R. Dale Guthrie, and Edwin V. Komarek in animals and Willis L. Jepson, Walter W. Hough, Tom M. Harris, Philip V. Wells, and Robert W. Mutch in plants. They were all ahead of their time in their evolutionary thinking. Since then, evolutionary fire ecology has percolated very slowly into the mainstream ecology and evolutionary biology; in fact, this topic is still seldom mentioned in textbooks of ecology or evolution. Currently, there is plenty of evidence suggesting that we cannot understand the biodiversity of our planet without considering the key evolutionary role of fire. But there is still research to be done in order to fully understand fire's contribution to species evolution and to predicting species responses to rapid global changes.

11.
Gen Comp Endocrinol ; 340: 114293, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37094617

RESUMEN

Young animals need to grow to a large body size fast to maximise their survival prospects until sexual maturity. However, body size varies substantially in wild populations, and neither the selection pressures maintaining this variation, nor the regulatory mechanisms are well understood. IGF-1 administration has been shown to accelerate growth, but this does not necessarily imply that natural variation in growth rate is IGF-1 dependent. To test the latter we administered OSI-906 to pied flycatcher Ficedula hypoleuca nestlings, which has an inhibitory effect on IGF-1 receptor activity. We performed the experiment in two breeding seasons to test the prediction that blocking the IGF-1 receptor downregulates growth. As predicted, OSI-906 treated nestlings had lower body mass and reached a smaller structural size than siblings receiving a vehicle only, with the mass difference being most profound at the age preceding the highest body mass growth rate. The IGF-1 receptor inhibition effect on growth varied with age and year of study, and we discuss possible explanations. The OSI-906 administration results indicate that natural variation in growth rate is regulated by IGF-1, and constitutes a novel tool to study causes and consequences of growth variation, but details of the underlying mechanism still need to be resolved.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Pájaros Cantores , Animales , Factor I del Crecimiento Similar a la Insulina/farmacología , Receptor IGF Tipo 1 , Pájaros Cantores/fisiología , Imidazoles
12.
BMC Plant Biol ; 22(1): 407, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987603

RESUMEN

BACKGROUND: The pollen ornate surface of flowering plants has long fascinated and puzzled evolutionary biologists for their variety. Each pollen grain is contained within a pollen wall consisting of intine and exine, over which the lipoid pollen coat lies. The cytology and molecular biology of the development of the intine and exine components of the pollen wall are relatively well characterised. However, little is known about the pollen coat, which confers species specificity. We demonstrate three types of pollen coat in Zingiberaceae, a mucilage-like pollen coat and a gum-like pollen coat, along with a pollen coat more typical of angiosperms. The morphological differences between the three types of pollen coat and the related molecular mechanisms of their formation were studied using an integrative approach of cytology, RNA-seq and positive selection analysis. RESULTS: Contrary to the 'typical' pollen coat, in ginger species with a mucilage-like (Caulokaempferia coenobialis, Cco) or gum-like (Hornstedtia hainanensis, Hhn) pollen coat, anther locular fluid was still present at the bicellular pollen (BCP) stage of development. Nevertheless, there were marked differences between these species: there were much lower levels of anther locular fluid in Hhn at the BCP stage and it contained less polysaccharide, but more lipid, than the locular fluid of Cco. The set of specific highly-expressed (SHE) genes in Cco was enriched in the 'polysaccharide metabolic process' annotation term, while 'fatty acid degradation' and 'metabolism of terpenoids and polyketides' were significantly enriched in SHE-Hhn. CONCLUSIONS: Our cytological and comparative transcriptome analysis showed that different types of pollen coat depend on the residual amount and composition of anther locular fluid at the BCP stage. The genes involved in 'polysaccharide metabolism' and 'transport' in the development of a mucilage-like pollen coat and in 'lipid metabolism' and 'transport' in the development of a gum-like pollen coat probably evolved under positive selection in both cases. We suggest that the shift from a typical pollen coat to a gum-like or mucilage-like pollen coat in flowering plants is an adaptation to habitats with high humidity and scarcity of pollinators.


Asunto(s)
Zingiberaceae , Aclimatación , Perfilación de la Expresión Génica , Lípidos , Polen , Zingiberaceae/genética
13.
Evol Hum Behav ; 43(1): 71-82, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35110961

RESUMEN

A huge number of hypotheses have been put forward to explain the substantial diversity in economic performance we see in the present-day. There has been a growing appreciation that historical and ecological factors have contributed to social and economic development. However, it is not clear whether such factors have exerted a direct effect on modern productivity, or whether they influence economies indirectly by shaping the cultural evolution of norms and institutions. Here we analyse a global cross-national dataset to test between hypotheses involving a number of different ecological, historical, and proximate social factors and a range of direct and indirect pathways. We show that the historical timing of agriculture predicts the timing of the emergence of statehood, which in turn affects economic development indirectly through its effect on institutions. Ecological factors appear to affect economic performance indirectly through their historical effects on the development of agriculture and by shaping patterns of European settler colonization. More effective institutional performance is also predicted by lower-levels of in-group bias which itself appears related to the proportion of a nation's population that descends from European countries. These results support the idea that cultural evolutionary processes have been important in shaping the social norms and institutions that enable large-scale cooperation and economic growth in present-day societies.

14.
Am J Bot ; 109(9): 1331-1345, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36048829

RESUMEN

The awn of grasses is a long, conspicuous outgrowth of the floral bracts in a grass spikelet. It is known to impact agricultural yield, but we know little about its broader ecological function, nor the selective forces that lead to its evolution. Grass awns are phenotypically diverse across the extant ~12,000 species of Poaceae. Awns have been lost and gained repeatedly over evolutionary time, between and within lineages, suggesting that they could be under selection and might provide adaptive benefit in some environments. Despite the phylogenetic context, we know of no studies that have tested whether the origin of awns correlates with putative selective forces on their form and function. Presence or absence of awns is not plastic; rather, heritability is high. The awns of grasses often are suggested as adaptations for dispersal, and most experimental work has been aimed at testing this hypothesis. Proposed dispersal functions include soil burial, epizoochory, and aerial orientation. Awns may also protect the seed from drought, herbivores, or fire by helping it become buried in soil. We do not fully understand the fitness or nutrient costs of awn production, but in some species awns function in photosynthesis, providing carbon to the seed. Here we show that awns likely provide an adaptive advantage, but argue that studies on awn function have lacked critical phylogenetic information to demonstrate adaptive convergent evolution, are taxonomically biased, and often lack clear alternative hypotheses.


Asunto(s)
Poaceae , Semillas , Carbono , Filogenia , Poaceae/genética , Suelo
15.
Oecologia ; 200(3-4): 397-411, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36357684

RESUMEN

Fruit traits have historically been interpreted as plant adaptations to their seed dispersers. On the other hand, different environmental factors, which vary spatially and temporally, can shape fruit-trait variation. The mistletoe Tristerix corymbosus has a latitudinal distribution along the South American Pacific rim that encompasses two different biomes, the matorral of central Chile and the temperate forest that extends south of the matorral. This mistletoe shows contrasting fruiting phenology (spring vs summer), fruit color (yellow vs green), and seed dispersers (birds vs marsupial) in these two biomes. We characterized geographic variation of morphological and nutritional fruit traits of T. corymbosus to evaluate which macroecological factor, biome or latitude, better explains spatial variation in these variables. For each of 22 populations, we obtained environmental data (temperature, precipitation, and canopy cover), measured fruit and seed morphology traits (size, shape, and weight), and pulp moisture and nutritional content (fiber, protein, fat, carbohydrates, ash, and caloric content). Patterns of variation for each variable were described by fitting and comparing five different simple models varying in slope, intercept or both. Fruit morphology showed a clear biome-related disruptive pattern, seed morphological traits were unrelated to either biome or latitude, whereas nutritional variables showed diverse patterns. Different environmental factors seem to affect fruit development and phenology, determining the observed fruit characteristics, with seed dispersers playing a minor role in shaping these patterns. More generally, the contrasting plant-seed disperser associations we addressed can be interpreted as the outcome of an ecological-fitting rather than of a coevolutionary process.


Asunto(s)
Marsupiales , Muérdago , Phoradendron , Animales , Frutas , Fenotipo , Semillas
16.
J Phycol ; 58(2): 330-342, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35090190

RESUMEN

Fungal symbionts of terrestrial plants are among the most widespread and well-studied symbioses, relatively little is known about fungi that are associated with macroalgae. To fill the gap in marine fungal taxonomy, we combined simple culture methods with amplicon sequencing to characterize the fungal communities associated with three brown (Sargassum muticum, Pelvetia canaliculata, and Himanthalia elongata) and two red (Mastocarpus stellatus and Chondrus crispus) macroalgae from one intertidal zone. In addition to characterizing novel fungal diversity, we tested three hypotheses: fungal diversity and community composition vary (i) among species distributed at different tidal heights, (ii) among tissue types (apices, mid-thallus, and stipe), and (iii) among "isomorphic" C. crispus life cycle stages. Almost 70% of our reads were classified as Ascomycota, 29% as Basidiomycota, and 1% that could not be classified to a phylum. Thirty fungal isolates were obtained, 18 of which were also detected with amplicon sequencing. Fungal communities differed by host and tissue type. Interestingly, P. canaliculata, a fucoid at the extreme high intertidal, did not show differences in fungal diversity across the thallus. As found in filamentous algal endophytes, fungal diversity varied among the three life cycle stages in C. crispus. Female gametophytes were also compositionally more dispersed as compared to the fewer variable tetrasporophytes and male gametophytes. We demonstrate the utility of combining relatively simple cultivation and sequencing approaches to characterize and study macroalgal-fungal associations and highlight the need to understand the role of fungi in near-shore marine ecosystems.


Asunto(s)
Chondrus , Algas Marinas , Animales , Ecosistema , Endófitos , Estadios del Ciclo de Vida
17.
Dokl Biol Sci ; 502(1): 31-35, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35298751

RESUMEN

Using the cytochrome b gene (1143 bp), species identification and the phylogenetic analysis of voles of the generic group Microtus from the eastern part of the Greater Caucasus, including the Ismayilli, Khizi, and Balakan Districts of Azerbaijan, have been carried out. Three species, the Major's pine vole (M. majori), the social vole (M. socialis), and the common vole (M. arvalis form obscurus), have been identified, and five new haplotypes have been described for them. Genetic analysis with the inclusion of the new data showed that for each of the species, the physiographic conditions of the Greater Caucasus played a certain role (isolation, migration route or refugium) during the formation of the modern genetic structure. The obtained results indicate that any new data from the Caucasus could be of critical importance for the reconstruction of the evolutionary history of the modern biodiversity both within the region itself and in adjacent territories.


Asunto(s)
Arvicolinae , Animales , Arvicolinae/genética , Citocromos b/genética , Variación Genética/genética , Filogenia
18.
Semin Cell Dev Biol ; 92: 126-133, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30974171

RESUMEN

Despite their paramount role in plant life, the study of roots has been largely neglected until recently. Here, I shortly describe a few newly-discovered abilities of plants to undergo adaptive changes and execute developmental decisions based on roots' perception of non-resource information pertaining to imminent challenges and opportunities. Seemingly simple in their morphology and architecture and lacking central information-processing centres, roots are able to sense and integrate complex cues and signals over time and space that allow plants to perform elaborate behaviours analogous, some claim even homologous, to those of intelligent animals. Although our knowledge of root behaviour is rapidly expanding, further understanding of its underlying mechanisms is largely preliminary, calling for detailed investigation of the involved cues, signals and information processing controls, as well as their implications for plant development, growth and reproduction under realistic ecological and agricultural settings.


Asunto(s)
Desarrollo de la Planta/genética , Raíces de Plantas/genética , Plantas
19.
Ecol Lett ; 24(7): 1302-1317, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33913572

RESUMEN

Interactions with microbial symbionts have yielded great macroevolutionary innovations across the tree of life, like the origins of chloroplasts and the mitochondrial powerhouses of eukaryotic cells. There is also increasing evidence that host-associated microbiomes influence patterns of microevolutionary adaptation in plants and animals. Here we describe how microbes can facilitate adaptation in plants and how to test for and differentiate between the two main mechanisms by which microbes can produce adaptive responses in higher organisms: microbe-mediated local adaptation and microbe-mediated adaptive plasticity. Microbe-mediated local adaptation is when local plant genotypes have higher fitness than foreign genotypes because of a genotype-specific affiliation with locally beneficial microbes. Microbe-mediated adaptive plasticity occurs when local plant phenotypes, elicited by either the microbial community or the non-microbial environment, have higher fitness than foreign phenotypes as a result of interactions with locally beneficial microbes. These microbial effects on adaptation can be difficult to differentiate from traditional modes of adaptation but may be prevalent. Ignoring microbial effects may lead to erroneous conclusions about the traits and mechanisms underlying adaptation, hindering management decisions in conservation, restoration, and agriculture.


Asunto(s)
Microbiota , Plantas , Aclimatación , Adaptación Fisiológica , Animales , Genotipo
20.
New Phytol ; 229(4): 2311-2323, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33037641

RESUMEN

Extreme environments have driven the evolution of some of the most inspiring adaptations in nature. In the intertidal zone of wave-swept shores, organisms face physical forces comparable to hurricanes and must further endure thermal and desiccation stress during low tides, compromising their physiological and biomechanical performance. We examine how these multiple stressors have influenced the evolution of tissue properties during desiccation using eight phylogenetically independent pairs of intertidal and subtidal macrophytes. Intertidal species generally lost water more slowly than their subtidal counterparts, presumably as an adaption to regular emersion. Under partial desiccation, breaking force, strength, and extensibility of intertidal species generally exceeded those of subtidal species, although important differences existed among phylogenetic pairs. This was often true even when subtidal relatives resisted greater forces or were more extensible under full hydration. The interacting effects of mechanical forces and desiccation during low tide are likely a major selective agent in determining macrophyte performance and fitness. Overall, we found that lineages that have independently evolved to occupy the wave-swept intertidal have converged on performance metrics that are likely to be adaptive to the interacting stressors associated with their extreme niches.


Asunto(s)
Aclimatación , Adaptación Fisiológica , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA